
Contents lists available at ScienceDirect

Engineering Fracture Mechanics

journal homepage: www.elsevier.com/locate/engfracmech

Incremental sequentially linear analysis to control failure for quasi-
brittle materials and structures including non-proportional loading

Chenjie Yu⁎, P.C.J. Hoogenboom, J.G. Rots
Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
Structural analysis
Incremental
Iterative
Implicit
Explicit
Sequentially linear analysis (SLA)
Newton-Raphson (N-R) method
Masonry
Unreinforced concrete

A B S T R A C T

Quasi brittle materials, such as un-reinforced masonry or concrete are difficult to analyse because
often the traditional Newton–Raphson (N-R) procedure fails to converge. Many solutions have
been proposed such as Sequentially Linear Analysis (SLA), but these may fail in case of non-
proportional loading with a large prestress. In this paper a new method is proposed that is based
on a combination of the Newton–Raphson method and Sequentially Linear Analysis. The method
is incremental; each increment starts and ends with an equilibrium state. The solution search
path follows damage cycles sequentially with secant stiffness. The proposed method is demon-
strated to be robust and accurate. It has been tested on prestressed concrete beams. It can be
naturally extended to other types of analyses (e.g. geometrically non-linear analysis and transient
analysis) due to the incremental procedure. In addition, it is shown that high prestress values can
transform the behaviour of a concrete beam from softening to hardening.

1. Introduction

Nonlinear analysis of quasi brittle materials, such as masonry, concrete, reinforced and prestressed concrete, has been applied for
more than 40 years. However, the robustness of the algorithms is still a serious issue. The load-displacement curves of quasi brittle
materials have many little peaks related to initiation and propagation of numerous cracks. These peaks are only visible if one zooms
in on a curve which is computed with very small load increments. Consequently, the tangent stiffness in the neighbourhood of these
peaks varies extremely and can lead to divergence of the Newton-Raphson (N-R) iterations in certain displacements.

Many solution methods have been proposed to adapt the full N-R method (e.g. [1]) or introduce new approaches of solving non-
linear problems. The modified N-R method computes and decomposes the tangential stiffness matrix only in the first iteration at the
beginning of every load step while the full N-R method sets up and decomposes the tangent stiffness matrix in every iteration. The
global tangent stiffness in the N-R method can be based on true negative softening stiffness at local level or on the positive secant
stiffness at local level. Also, arc-length schemes can be added, which is a modification of load control in order to trace post-failure
behavior numerically when a structure softens or snaps back [2–5]. However, these techniques cannot prevent divergence or ill-
conditioning of the system of equations in case of brittle behaviour. A new constraint has been developed based on the energy release
rate in term of geometrically linear damage, geometrically linear plasticity and geometrically non-linear damage to improve the
robustness of the arc length method in [6]. In the implicit–explicit approach (IMPL-EX), the explicit (non-iterative) scheme and
implicit (iterative) scheme are combined [7,8]. IMPL-EX combines an implicit scheme of the stresses in the constitutive model with an
explicit extrapolation of the involved internal variables. The length of the time step influences the accuracy of this method [9]. The
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LATIN method is a non-incremental iterative computational strategy applied over the entire time interval [10]. The main features are
the separation of possibly non-linear local equations in space and time and possibly global linear equations in the spatial variable, a
two-step iterative approach and an ad-hoc space-time global approximation. The difficulty is to define the search paths in the two-
step scheme, which currently is guided by numerical parameters that do not have a clear physical meaning. A fictitious viscosity has
been added in the constitutive equations for the cohesive interface to trace the instable post-behaviour [11].

In order to enhance the robustness of solving non-linear problems, a total approach with secant stiffness (Load-Unload method)
and an “event-by-event” damage model (saw tooth constitutive law) has been introduced by sequentially linear analysis [12]. Se-
quentially linear analysis (SLA) is an alternative to the Newton-Raphson method when bifurcation, snap-back or divergence problems
arise. The incremental-iterative procedure, adopted in nonlinear finite element analysis, is replaced by a sequence of scaled linear
finite element analyses with decreasing secant stiffness, corresponding to local damage increments [13]. The saw tooth model has
been improved in [13,14] to make the results independent of the magnitude of the stiffness reduction in a step. The SLA with fixed
smeared cracking has been improved with a damage dependent shear modulus decreasing along with Young’s modulus to reduce the
mesh-directional bias for fixed smeared cracking [15]. Two methods are proposed to perform SLA with non-proportional loading
[16,17]. An algorithm selects the critical integration point to which a damage increment is applied by extra stresses [16] or a varying
constant-load factor [17]. The non-proportional loading method in [16] has been improved by a constrained optimization to suit for
more non-proportional loading cases [18]. Non-proportional loading still has limitations; the method fails when a large initial
overburden force is applied [19]. In addition, Coulomb friction laws have been introduced for tension-shear failure criterion [18].
SLA has similarity to the discretized lattice model method [20–22]. In lattice models, the continuum is replaced by a lattice of truss or
beam elements. Therefore, the micro structure of the material can be simulated by assigning different properties. A truss or beam
element is removed when a failure criterion is reached in a brittle material.

In addition to developing total approaches, research is also ongoing to improve the robustness and efficiency of incremental
approaches. The predictive SUR approach [23] uses a smooth unloading-reloading function (SUR) to compute an approximate
tangent stiffness matrix, which is used in a non-linear incremental-iterative N-R method. The predictive SUR approach is more
efficient than the secant method, but the form of the SUR function significantly affects the convergence characteristics of the model.
The strong discontinuity approaches [24] define in each increment either a loading phase or an unloading phase with the crack state
frozen to improve the robustness when a sudden propagation of cracks through several elements occurs in one increment. Each time
when a crack segment is added in an element, an unloading phase with frozen crack propagation is performed. If the propagation
criterion is met simultaneously in more than one element, the crack is added in the critical element. Other improved approaches are
Non-iterative energy based method (NIEM) [25] and Continuous incremental-only tangential analysis (CITA) [26], both of which
adopt piecewise linear continuum laws. NIEM uses tangent stiffness to scale the global load increments according to the local
discontinuity in the multi-linear stress-strain diagram. NIEM allows for switching between the incremental and the total approach
based on energy dissipation. When a critical bifurcation point is reached, it is impossible to incrementally determine the effective
path and the switch to a total method is adopted with the secant material stiffness. When NIEM switches to the total approach, the
non-proportional loading issue remains. CITA is presented as a continuous, incremental-only, tangential analysis for the New-
ton–Raphson method. Again, the tangent elasticity modulus is based on the true negative stiffness. This method improves the effi-
ciency compared with the secant method and keeps track of the displacement history. The CITA method attempts to control energy
dissipation by limiting the damage level to a single event. Negative tangent stiffness may still cause divergence problems, e.g. in case
of snap-backs. The Force-Release method [27] extends saw-tooth constitutive laws to an incremental and non-iterative procedure.
The Force-Release method is based on redistribution of released stresses. It preserves the linearity of each step. After rupture of the
critical element, a sequentially linear redistribution process of stress release takes place until a static equilibrium state is reached.
However, the method does not follow snap-backs. In an attempt to follow snap-backs, the Force-Release method is combined with the
Load-Unload method [28]. The result is a range of possible solutions, which depends on the choice of external load velocity and ratio

Nomenclature

Roman symbols

ft tensile strength
Gf Mode-I tensile fracture energy
h crack band width
K current stiffness matrix
q load reduction factor in ISLA
r convergence tolerance of μ in ISLA
t stiffness reduction factor
v initial load factor for non-proportional loading in

SLA

Greek symbols

εu ultimate tensile strain

λ load factor in SLA
μ utilisation function which is the largest utilization

value of all elements in ISLA

Abbreviations

CITA continuous incremental-only tangential analysis
IMPL-EX implicit-explicit approach
ISLA incremental sequentially linear analysis
LATIN the large time increment method
NIEM non-iterative energy based method
NR Newton–Raphson method
SLA sequentially linear analysis
SUR smooth unloading-reloading function approach
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between disequilibrium forces and external load increment.
In this paper a new method is proposed which combines the advantages of the Newton–Raphson method and Sequentially Linear

Analysis. The new method will be demonstrated to work effectively for non-proportional problems but it can be naturally extended to
include geometrical nonlinearity, plasticity for cyclic loading and transient analysis.

The idea behind the proposed method is to perform an incremental analysis with Newton-Raphson iterations and linear elastic
material behaviour with load or displacement control. As soon as the stress somewhere is too large, the Young’s modulus of the
considered element is reduced and the load is reduced or increased to the level at which the stress is just not too large. The method is
robust because all physical nonlinearity is included in stiffness damage cycles.

2. General equations and procedures of the new algorithm

Suppose that a structure is loaded by two load cases, one with a constant load factor λ1 and the second with a varying load factor
λ2. This is referred to as non-proportional loading. Here λ2 can be incremented (Section 2.1) or first incremented and then auto-
matically decremented (Section 2.2). In proportional loading, on the other hand, there is only λ2 and no λ1.

Just as in SLA, utilisation values are computed for each element. A utilisation function μ is defined as the largest utilisation value
of all elements, which is a function of the load factors and the stiffness matrix K. The material is in equilibrium if

⩽λ λ Kμ( , , ) 1,1 2 (1)

which means that the stresses or strains of the critical element, i.e. the element that is most close to a first or next damage moment, lie
either on or within the failure surface.

2.1. Load control

For the load control, λ1 is fixed for all load steps and λ2 is incremented. Note that λ2 is fixed within a load step. The load factor λ2

is applied to imposed forces or imposed displacements. Suppose that after load step n somewhere the failure surface is reached.

= =λ λ Kμ μ( , , ) 1n n1 2 (2)

where the subscript on μ and K refer to a load step.
For the next step λ2 is increased to ′λ2. If

= ′ >
+ +λ λ Kμ μ( , , ) 1n n1

1
1 2 1

0 (3)

where =+K Kn n1
0 .

Then restart from μn, which means that the displacements are reset to the values at the end of step n. Subsequently the stiffness
matrix is reduced.

= ′
+ +λ λ Kμ μ( , , )n n1

2
1 2 1

1
(4)

where +Kn 1
1 means that the Young’s modulus of the critical finite element is reduced in the stiffness matrix for this step, which is based

on the rotating smeared crack with constant stiffness reduction t. In this model, the Young’s modulus in principal directions of the
critical finite element is reduced. A step in which the stiffness is reduced is called a cycle. The superscript on μ and K refers to the
cycle number of a load step.

Restart from μn and continue reducing the stiffness matrix until

= ′ ⩽
+

+
+λ λ Kμ μ( , , ) 1n

m
n
m

1
1

1 2 1 (5)

where +Kn
m

1 refers to the stiffness matrix being reduced m times for the critical element of each load step.
A routine with the name “Find μ” is defined in Fig. 1. Fig. 2 shows the program structure diagram for the imposed loading. The

structure state refers to the displacements, velocities and accelerations of the nodes. The parameter r is defined as the material
equilibrium convergence tolerance value.

Fig. 3 illustrates the searching path of the imposed loading of force control and displacement control separately. F and U represent
the force vector and displacement vector. The blue line is the target curve. The green dotted lines present the load steps. The red
dashed lines present the current stiffness, which has been reduced from the previous value based on the stiffness reduction. The black
solid arrow lines are the procedure paths for every cycle. The pink solid arrow lines are the output paths for all the cycles in one load
step. The solid dots are the equilibrium states while the open dots are the temporary trial states. It is noted that the paths of the black
dashed lines result from the internal force change along with the stiffness reduction. The N-R procedure has been performed to update
the internal force based on the current displacements and the reduced stiffness. When reaching an equilibrium state, a load increment

Perform a non-linear analysis (Newton-Raphson)
For all elements

Calculate the utilisation value
Store the maximum utilisation value as μ and the critical element number

Fig. 1. Routine “Find μ”.
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is applied for the next load step. If the utilization value is still smaller than 1, the next load increment is applied (Step 1→ 2→ 3 in
Fig. 3a). Otherwise, the procedure restarts from the structure state of the previous load step, which means that the displacements are
reset to the values of the previous load step. Below, two procedures in one cycle are described:

– Firstly, the secant stiffness of the critical element of the previous cycle is reduced by the defined stiffness reduction factor, which is
the same as for SLA. It is noted that the damage procedure is irreversible, which means that all stiffness reductions of the previous
cycles are repeated before the current cycle in this load step. Due to these stiffness reduction procedures, the internal forces are
updated based on the displacements of the previous load step and the algorithm reaches a temporary equilibrium state, which is
calculated by the N-R iterations. One N-R iteration is enough for a geometrically linear analysis. Eq. (6) is adopted to update a
temporary equilibrium state for the force control loading while Eq. (7) is employed for the displacement control loading.
However, several N-R iterations are needed for a geometrically non-linear analysis.

′ = − ′K u F FΔ ext int (6)

′ = − ′K u FΔ int (7)

where ′K is the reduced stiffness, ′Fint is the updated internal forces due to the reduced stiffness and Fext is the external forces for the
force control loading.

– Secondly, the incremental load is applied and a linear analysis is performed for the current load step.

For instance, an equilibrium state starts at Step 8 and ends up at Step 12 (a load step). A new load increment is applied at Step 9.
After that, the stiffness is reduced sequentially from Step 10 to Step 12 (cycles). The search path of this load step is Step 8→ 9→ 8→

Fig. 2. Program structure diagram for the Load control.

a. Displacement control loading  b. Force control loading 
Fig. 3. Searching path for the Load control.
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8a→ 10→ 8→ 8b→ 11→ 8→ 8c→ 12.

2.2. Load scaling control

For the Load scaling control, λ1 is fixed and λ2 is incremented or decremented depending on the capacity of the structure, which is
based on μ. Two control methods are introduced below in the Load scaling control.

2.2.1. Damage control method
Suppose that after load step n somewhere the failure surface is reached.

= =λ λ Kμ μ( , , ) 1n n1 2 (8)

For the next cycle

= >
+ +λ λ Kμ μ( , , ) 1n n1

1
1 2

1
1

0
(9)

where λ2
1 is an increased λ2 and =+K Kn n1

0 . The superscript on λ refer to the cycle number of a load step.
Subsequently, reduce the Young’s modulus of the critical element and restart from μn

=
+ +λ λ Kμ μ( , , )n n1

2
1 2

1
1

1
(10)

Fig. 4. Program structure diagram of the Damage control method in Load scaling control.
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where +Kn 1
1 is the stiffness matrix with reduced Young’s modulus of the critical element.

If μ is still larger than 1, then again restart from μn
=

+ +λ λ Kμ μ( , , )n n1
3

1 2
2

1
1

(11)

where λ2
2 is a reduced λ2

1 based on a constant reduction q or a function q μ( ) ( =λ qλ2
2

2
1 or =λ q μ λ( )2

2
2
1). Parameter q is smaller than 1

but larger than λ λ/2 2
1, e.g. λ λ/2 2

1 is 0.9 and q is 0.95. Parameter q can be adjusted by a decreasing function q μ( ) where =q (1) 1.
If μ is still larger than 1, then repeat restarting from μn until

= ⩽
+

+
+λ λ Kμ μ( , , ) 1n

m m
n1

1
1 2 1

1 (12)

where λ m
2 means that λ2 is adjusted m times, which is a reduced −λ m

2
1 based constant reduction q or a function q μ( ).

In case of a weakly non-linear situation, the relation between the load factor and utilization function can be linearized. Eqs.
(7)–(10) can be written as

=
+

Cμn 1
1

0 (13)

= + +
+

C C E C λμ (Δ )n 1
2

0 1 2 2
1

(14)

= + +
+

C C E C λμ (Δ )n 1
3

0 1 2 2
2

(15)

where C0 represents the value of μ with a new load factor of Load step n+ 1, C1 represents some non-linear function of ΔE and μ and
C2λ represents a linear relation of λ and μ when the stiffness is fixed.

Load factor λ2
2 can have any values close to but different from λ2

1. In the practical application, λ2
2 is defined as λ2

1 over
+

μn 1
2 . The

utilisation ratio μ should be 1, therefore,

= = + +
+

C C E C λ1 μ (Δ )n 1
4

0 1 2 2
3

(16)

from which λ2
3 can be solved.

=
− −

−

+ + +

+ + +

λ λ
(2μ 1 μ μ )

μ (μ μ )
n n n

n n n
2
3

2
1 1

2
1

2
1

3

1
2

1
3

1
2 (17)

For a strongly non-linear situation, parameter p is defined as an adjustment value which varies depending on μ to render |μ− 1|
smaller than r. Actually, p is smaller than 1 when μ is larger than 1, and vice versa. Eq. (17) is in fact scaling the load level to the level
at which the most loaded element is loaded to just its strength, which is typical for SLA. Fig. 4 shows the program structure diagram
for Load scaling control.

In this paper, this method is called damage control method because Young’s modulus of just the critical element is once reduced
and further remains unchanged during load factor adjustment iterations. Like in SLA, only one element is damaged in every load step
of the damage control method.

Fig. 5 shows the restart procedure of the implicit algorithm. Important is saving and loading of the structure state. Only when
|μ− 1| is smaller than r the structure state will be saved and overwritten. Consequently, the analysis is restarted with the structure
state of the last cycle of the previous load step. Without the restart command the algorithm would continue with the structure state of
the previous cycle of the current load step, which would be incorrect. This restart procedure ensures that every load step’s calculation
is based on the correct structure state and stiffness of just the critical element.

2.2.2. Load and damage control method
Compared with SLA, the damage control method has more calculating cycles since several extra cycles are necessary (inter-

polation procedure) for every stiffness reduction to reach an equilibrium state. In order to improve the efficiency for arc length

Fig. 5. Restart procedure of the algorithm.
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control, the stiffness matrix is reduced rather than fixed during load factor adjustment iterations. Consequently, the total number of
cycles still equals the number of the stiffness reductions. In other words, the total number of cycles is not increased by the load factor
scaling procedure.

To this end Eqs. (11) and (12) are adjusted. The stiffness matrix is being reduced during the iterations rather than being reduced
only once and then fixed.

If μ is larger than 1, then restart from μn
=

+ +λ λ Kμ μ( , , )n n1
3

1 2
2

1
2

(18)

If μ is still larger than 1, then restart from μn until

= ⩽
+

+
+λ λ Kμ μ( , , ) 1n

m m
n1

1
1 2 1

m (19)

where λ m
2 is a reduced −λ m

2
1 based on a constant reduction q or a function q μ( ).

The program structure diagram is shown in Fig. 6. Fig. 7 shows the algorithm path of the Damage control method and the Load
and damage control method for applying a force load. F and U represent the force vector and displacement vector. The blue line is the
target curve. The green dotted lines present the load steps. The red dashed lines indicate the reduced stiffness based on the stiffness
reduction. The black solid arrow lines are the procedure paths for every cycle. The pink solid arrow lines are the output paths for all
the cycles in one load step. The solid dots are the equilibrium states while the open dots are the temporary trial states. It is noted that
the paths of the black dashed lines result from the internal force change along with the stiffness reduction. The N-R procedure has
been performed to update the internal force based on the current displacements and the reduced stiffness.

To summarize, if the incremental load is prescribed in load steps, it is referred to as the Load control method. Here load can be both
a prescribed force load increment or a prescribed displacement load increment. If the incremental load is scaled based on the reduced
stiffness, it is referred to as the Load and damage control method. The latter is especially suitable in case the problem cannot be handled
in displacement control for obtaining post-peak behavior. In addition, there is a third algorithm called the Damage control method.
Here, the stiffness is only reduced once in the first cycle no matter how many cycles the load step has. Since the stiffness remains
unchanged after the first cycle, the scaling procedure follows a linear interpolation procedure to search for the suitable load factors. It
is quite similar to SLA in that the algorithm reaches an equilibrium state for every damage step and the load factors are governed by
the utilization value. But the difference is that in ISLA every equilibrium state search starts from the equilibrium state of the previous
“load step”, which indeed is the previous damage step, instead of restarting from the origin in the total scheme of SLA. However, in
the Load and damage method the stiffness is continued to be reduced every cycle. So, the number of stiffness reductions is the same as
that of the cycles in the load step.

3. Highly prestressed beam test

In [29], the principle, algorithms and search paths of incremental sequentially linear analysis has been demonstrated for the case
of proportional loading of a simply supported notched beam. In that publication, the effectiveness of the scheme with cycles has been
illustrated in detail for a number of typical prescribed load steps. Plots of the number of cycles per load step, element criticality and
stress-strain jumps illustrate the searching path.

The example in the present section focuses on the robustness of this method for non-proportional loading. To this end, the beam
mentioned before [29] has been re-used without a notch and subjected to the combination of a horizontal prestress P at both ends of
the beam and a vertical load L at the top, as illustrated in Fig. 8. This beam is adapted from Hordijk’s experiment in 1981 [30]. It has
also been used in [16,17]. P is applied as a stress of 5 or 10MPa over the total area of the beam ends instead of 1MPa as used before
[16,17]. L is applied as two point loads up to and beyond the peak, which increase to failure and reduce afterwards. No reinforcement

Fig. 6. Program structure diagram of Load and damage control method in Load scaling control.
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is applied.

3.1. Material properties and modified material model

This case considers softening for tension. The concrete properties are E=32,000MPa, Poisson’s ratio= 0.2, tensile strength
ft=3MPa, fracture energy Gf=0.06 N/mm. The compressive behaviour is elastic. Eq. (20) is used to determine the ultimate strain
to consider mesh size dependency (Fig. 9).

=G
f ε h

2
t u

f (20)

where h is the element size and εu is the strain at which the concrete is completely fractured. This paper does not consider mesh
directional dependency. Mesh directional bias has been studied in [31–33]. Possible solutions include non-local damage models
[34,35], the strong discontinuity approaches [36,37] and the extended finite element method [38,39].

Fig. 10 shows the analysis cycles when Young’s modulus is sequentially reduced to 50% of the previous value (The virtual strength

a. Damage control method   b. Load and damage control method 

Fig. 7. Searching path of Load scaling control.

Fig. 8. Test model dimension and load combination.
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Fig. 9. Material properties of concrete (tension softening).
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is 4.22MPa). In this paper a reduction factor of 90% has been used. This has not been displayed here because it would produce an
unclear picture.

3.2. FEM model in ABAQUS and ANSYS

The analyses have been performed by (1) Standard N-R with force control in ABAQUS, (2) Standard N-R with arc length control in
ABAQUS, (3) SLA in ANSYS [8] and (4) the proposed method in ANSYS. The same material properties, element sizes (5 mm) and
structural model have been used in all analyses (Fig. 8). In ANSYS the rotating smeared crack model is used. In ABAQUS the concrete
damaged plasticity model is used to simulate concrete behaviour. The parameters inputted for this model are: dilation angle is 30°,
eccentricity is 0.1, fb0/fc0= 1.16, K=0.667, and viscosity parameter is 0 [40].

The plane element used in ABAQUS is CPS8R, which is an 8-node biquadratic plane stress quadrilateral with reduced integration.
The plane element used in ANSYS is PLANE183. It is a higher order 2-D, 8-node element. The integration point scheme for both
element types is 2× 2 Gauss.

Fig. 11 shows the colour range of the maximum principal strain contours.

3.3. Comparison for 1 MPa prestress

The original 1MPa prestress [16,17] is applied for comparison. Fig. 12 indicates that the proposed method and SLA deliver almost
the same force-displacement diagram. Moreover, one crack is localized and propagates to the top of the beam for both methods
shown in Figs. 13 and 14. Actually, the plateau of the curve can continue to extend to more than 10mm. These two methods produce
almost identical results for the 1MPa prestress test. Both of them have no divergence issues.

3.4. Comparison for 5 MPa prestress

Fig. 15 shows the force displacement diagrams for 5MPa prestress of ISLA, N-R and SLA with marked deviation points of SLA and
N-R. The SLA analysis stops at a displacement of 1.8 mm while ISLA can continue up to 2.2mm and further. The cracks have already
propagated to the top of the beam at the displacement of 2.2 mm in ISLA. Hence the ISLA results beyond this point are not shown. The
diagram of SLA is quite similar, but the N-R method fails earlier. The reason for the SLA algorithm to stop at 1.8mm displacement is
explained here. Initially, the constant-load factor v can be adjusted to almost equal to the varying-load factor λ as shown in Fig. 16.
However, after 1.8 mm displacement the constant-load factor v cannot be adjusted to equal the live load factor λ as shown in Fig. 17.
It appears that the algorithm of non-proportional loading in SLA [16] as well as [17] is only suitable for weakly non-linear situations.

Fig. 18 shows the crack propagation calculated by the proposed method, at 5 stages, which are marked in Fig. 15. Initially,
symmetrical ductile cracks occur at the bottom of the beam and the maximum principal strain of two symmetrical critical elements go

Fig. 10. Stiffness reduction procedure: sequentially reduced stiffness to 50% of the previous value.

Fig. 11. Contour color range.
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into the green zone in Fig. 18a. At this moment, the displacement-reaction force diagram meets the end point of the initial slope.
Afterwards, the right critical crack propagates much faster than the left one until the displacement-reaction force diagram reaches the
first peak shown in Fig. 18b. After that, the displacement-reaction force diagram drops a little and then rises to a second peak when
the left critical crack catches up with the right one in Fig. 18c. Then the development of the left critical crack even surpasses the right
one in Fig. 18d. Finally, the main cracks bifurcate, with branch cracks forming and extending to the top of the beam in Fig. 18e. There
is no further damage due to the elastic compressive capacity. Similar crack propagation is obtained by SLA, for which the final crack
pattern is shown in Fig. 19. The spacing of cracks is governed by the positions of the critical elements which have the largest ratio of
the maximum principal stress versus strength in a cycle. Initially multiple elements can be critical and cracks start in a distributed
manner, but eventually only two dominant cracks survive while other elements are unloaded. It is an advantage of SLA and ISLA to
handle bifurcations properly. For a four-point loaded beam, two dominant cracks are underneath the loading positions.

Fig. 15 shows that the reaction force-displacement diagrams of the ABAQUS N-R analysis can only reach the end point of the
initial slope although the structure almost has hardening behaviour. The value of initial slope is the same for SLA and the proposed
method. The crack pattern is also similar but has fewer cracks (Fig. 20).

Only extremely small load steps (1e−7 at the end) with arc-length control can find the hardening part of the reaction force-
displacement diagram shown in Fig. 15. The first peak is lower than SLA and the proposed method, nevertheless they align well after
the second peak. After that they both have a similar hardening slope. As shown in Fig. 21, the ultimate crack pattern is similar to that
of the proposed method and SLA while it has less cracks at the end point of the initial slope and the first peak, which results in lower
capacity than SLA and the new method.
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Fig. 12. Reaction force-displacement diagrams for the 1MPa prestress test.

Fig. 13. Maximum principal strain contour when the midspan displacement is 0.3mm by the proposed method for the 1MPa prestress test.

Fig. 14. Maximum principal strain contour when the midspan displacement is 0.3 mm by SLA for the 1MPa prestress test.
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3.5. Comparison for 10 MPa prestress

Fig. 22 shows the reaction force-displacement diagrams for 10MPa prestress of SLA and the proposed method with marked
deviation points of SLA and N-R. They overlap in the beginning of the curves. SLA fails to continue earlier than the 5MPa prestress
test and does not reach the final hardening slope. N-R arc length even diverges before N-R force control.

Figs. 23 and 24 show the crack patterns for the proposed method and for SLA, which are marked in Fig. 22. In SLA, the numerical
procedure stops at the stage of two major symmetrical cracks. The proposed method continues and also shows the formation of
branch cracks. The main difference with the crack development in the 5MPa prestress test is that two dominant cracks develop
simultaneously. It is because the higher prestress has a higher effect in preventing cracks to propagate to the top of the beam.

The reaction force-displacement diagram of the Newton-Raphson method with force control has a good agreement with SLA and
the proposed method from the initial slope to the final hardening slope (Fig. 22). The hardening behaviour can be obtained without

Fig. 15. Reaction force-displacement diagrams for the 5MPa prestress test.
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arc length method. Fig. 25 also shows symmetrical crack development in N-R force control even until the branch crack moment
whereas the proposed method has random branch cracks.

Fig. 26 shows numbers of cycles of every load step in ISLA. For the 5MPa prestress test, the total number of cycles of ISLA is
13,047 while that of SLA before divergence is 20,688. The total number of increments for the N-R arc length control is 258,958. The
very small arc length has to be employed in order to reach convergence, while each increment has several iterations. The maximum
number of cycles of a load step in ISLA is 23. For the 10MPa prestress test, the total number of cycles of ISLA is 18,936 while that of

Fig. 18. Maximum principal strain contours of crack propagation by the proposed method for the 5MPa prestress test.

Fig. 19. Maximum principal strain contour of final crack pattern by SLA for the 5MPa prestress test.

Fig. 20. Maximum principal strain contour of final crack pattern by N-R force control analysis for the 5MPa prestress test.

Fig. 21. Maximum principal strain contours of the crack propagation of the N-R arc length control analysis for the 5MPa prestress.
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SLA before divergence is 7519. The total number of cycles of SLA for 10MPa prestress test is smaller than that of ISLA is because SLA
diverges very early. The maximum number of cycles of a load step in ISLA is 21. From these numbers it is clear that ISLA used the
lowest number of computation steps. Nevertheless, it is recommended to further improve the efficiency of ISLA by reducing the
number of cycles.

Fig. 22. Reaction force-displacement diagram for the 10MPa prestress.

Fig. 23. Maximum principal strain contour of the final crack pattern of SLA for the 10MPa prestress.

Fig. 24. Maximum principal strain contours of the crack propagation of the proposed method for the 10MPa prestress.

C. Yu et al. Engineering Fracture Mechanics 202 (2018) 332–349

344



The strength limit of the beams can be calculated by hand from equilibrium. This is due to the linear elastic compression zone. The
limit strength of the total reaction force is

=
−F P h d
a

,

where P is the prestressing force (uniformly applied), h is the beam depth, d is the element size (4-node element with 1 integration
point) and a is the horizontal distance between a load and a support reaction. The limit strength with 5MPa prestress is 15.8 kN; The
limit strength with 10MPa prestress is 31.6 kN, which are in a good agreement with the computational results.

4. Physical and geometrical non-linear analysis test

ISLA is an incremental procedure. Therefore, geometrically non-linear effects can be naturally included in ISLA. When geome-
trically non-linear effects are considered, the B matrix and geometrical non-linear matrix (which is related to internal forces) are
implemented and updated by the Lagrange method. Only the material matrix is updated by ISLA.

TUD-COMP-0b is a quasi-static one-way out-of-plane tests administered by TU-Delft [41]. This specimen was a single-wythe wall
constructed of calcium silicate units 102mm thick. It was 1.4 m long and 2.75m high. The wall is subjected to a constant overburden
load of 0.2 MPa and is subsequently subjected to a uniform face pressure load via airbags. The wall is fully clamped at its base. For the
top boundary, the horizontal in-plane and out-of-plane translations are fixed, as well as all rotations, but the top boundary is free to
displace vertically. The two side supports are free. The FEM model is shown in Fig. 27.

The one-way bending gives a crack at top and bottom and in the middle of the wall This leads to a three-hinged mechanism where
the geometrically non-linear effect governs post-peak softening behaviour.

4.1. Modelling approach

Table 1 depicts model information. The analyses have been performed by (1) Geometrically linear and physically non-linear arc
length control analysis in ABAQUS, (2) Geometrically and physically non-linear arc length control analysis in ABAQUS, (3) Geo-
metrically linear and physically non-linear SLA in ANSYS and (4) Geometrically and physically non-linear ISLA in ANSYS.

Fig. 25. Maximum principal strain contours of the crack propagation by N-R force control for the 10MPa prestress.

a  5 MPa prestress test    b  10 MPa prestress test 
Fig. 26. Numbers of cycles of every load step in ISLA.
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Fig. 27. FEM model.

Table 1
Model loading, geometry, material properties and boundary conditions.

Loading
Dead load Self-weight
Overburden 0.2 MPa
Estimated lateral pressure 4000 kPa
Geometry Value Description

wbr = 0.214 m Horizontal dimension of bricks
hbr = 0.071 m Vertical dimension of bricks
tbr = 0.102 m Brick thickness
L = 1.4 m Length of wall
H = 2.75 m Height of wall/building
Steel material properties Value Description

E = 2.1×1011 N/m2 Steel Young’s modulus
ν = 0.3 Poisson’s ratio
Masonry material properties Value Description

ρ = 1800 kg/m3 Mass density
E = 3.5×109 N/m2 Masonry Young’s modulus
ν = 0.21 Poisson’s ratio
ft = 1.5×105 N/m2 Masonry tensile strength
Gf = 15 N/m Fracture energy for tensile failure
Boundary conditions Description
Base Clamped
Top • In- and out-of-plane translation fixed. Free to displace vertically

• Rotation fixed in all directions
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The same material properties, element sizes (0.1 m×0.1m) and structural model have been used in all analyses. To simulate the
loading frame, two 2.4 m beams are tied to the top and bottom of the wall respectively with 6 DOFs. At phase one, 30 kN line load
corresponding to 0.2MPa overburden is applied at the top beam in Y direction. Then at phase two, lateral pressure is applied at the
whole wall.

4.2. Test results

Fig. 28 shows the midspan displacement versus base shear force diagrams for (1) Geometrically and physically non-linear ISLA,
(2) geometrically linear and physically non-linear SLA, (3) geometrically linear and physically non-linear Newton–Raphson method
and (4) geometrically and physically non-linear Newton–Raphson method. The deviation points of N-R and SLA are marked in the
figure. It can be observed that the peak capacities meet well for these four analyses. However, the geometrically non-linear effect
governs post-peak softening behaviour. Both geometrical linear analyses from SLA and Newton–Raphson method have a hardening
behaviour after the peak. For all three methods, the total load meets the peak 10 kN at 2.6mm and the peak plateau keeps stable until
the displacement is 5.6mm. Then the total load drops below 8 kN when the midspan displacement increases to 9mm. Then, the total
load becomes almost zero when the ultimate displacement is approximately 100mm (98mm).

5. Discussion

The new algorithm extends sequentially linear analysis to classical non-linear implicit analysis with Newton-Raphson iterations.
The name we propose for this solution method is incremental sequentially linear analysis (ISLA): the words “sequentially” and
“linear” refer to the established sequentially linear analysis from which the method is derived; the word incremental refers to the
incremental procedure.

Indeed, an implicit scheme is chosen in this paper. However, an explicit scheme can also be used in the algorithm. The main
difference would be that the algorithm does not restart from the previous equilibrium state to update incremental displacements.

In the load control method, every load step can contain one increase or decrease of the load and several reductions of Young’s
modulus of various elements. In the damage control method, every load step can contain one reduction of Young’s modulus and
several changes of the load. In the load and damage control method, every load step can contain several changes of the load and
several reductions of Young’s modulus of various elements. Table 2 shows the differences of these methods.

For the imposed displacement loads, it is recommended to use the load control method. For the force loads, this method can be
used too but the post peak response cannot be obtained. The damage control method can be used to determine the post peak
behaviour and snap back behaviour of structures. The load and damage control method is much faster than the damage cycle method.
It is also robust and it provides the same results. Based on efficiency, the load control method and the load and damage control
method are suggested for large structures.

Fig. 28. Midspan displacement-force curves for comparison of geometrical linear and non-linear effects.
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6. Comparison of SLA and ISLA

Sequentially linear analysis (SLA) and incremental sequentially linear analysis (ISLA) have several features in common. Young’s
modulus of the material around a critical integration point is reduced. The critical integration point is defined as the point with the
largest utilisation factor. The load is adjusted to make the largest utilisation factor equal to one. In other words, all integration points
pass the utilisation factor check.

On the other hand, there are also differences between SLA and ISLA, which are shown in Table 3.

7. Conclusions

This paper proposes the incremental sequentially linear analysis (ISLA). This method is incremental; each increment starts and
ends with an equilibrium state. The solution search path follows damage cycles sequentially with secant stiffness.

• The proposed method has a similar high robustness as SLA. It is also user friendly without mapping back procedure in SLA. In
addition, it produces smooth curves like [9] instead of the usual jumpy curves of SLA.

• The searching path of ISLA is based on physical parameters (damage history and displacement history) instead of numerical
parameters in other methods. The equilibrium state is updated based on stiffness reductions of critical elements and load in-
crements. The damage is also introduced to the structure correctly at the corresponding displacements.

• The proposed method can be easily implemented in commercial software. The results are reproducible. The algorithm does not
switch between methods and therefore does not depend on the value of switch parameters.

• Non-proportional loading can be analysed without modifications. There is no restriction on the load definition; load cases can be
applied and removed simultaneously or separately.

• The method is an incremental procedure and can be naturally extended to geometrically non-linear analysis and transient ana-
lysis.

• Non-proportional SLA as proposed in Ref. [17] does not converge for high prestressing values on the specimens analysed in this
paper. Currently, it is not clear whether regular SLA can be expected to solve this. ISLA on the other hand does converge.

• Large prestressing values prevent softening of the force-displacement relation while the stress-strain relation does soften.

• The proposed method cracks grow one after the other intermittently, whereas the cracks grow simultaneously in the non-linear
Newton-Raphson method with arc length control.

• The bending cracks in the specimens branch into multiple cracks. For accurate computation of the crack branches the
Newton–Raphson method with arc length control needs a very small step size and a lot of computation time. The proposed method
also need much computation time but is still faster than the Newton–Raphson method with arc length control.

• The point at which the bending cracks branch into multiple cracks is higher for 5MPa prestressing than for 10MPa prestressing.
For even higher prestressing values the crack branching starts directly at crack initiation. On the other hand, for low prestressing
values like in Ref. [17] this point is higher than the beam height, which results in no branch cracks and a softening force-
displacement curve.
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