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Preface

In the past, torsion was not considered in most calculations of engineering structures.
Torsion was the domain of mechanical engineers who design machines with axis that
transfer torsion moments. At present, we do most calculations with computers. The
software tries to represent reality accurately and includes next to extension, bending
and shear also torsion. We discover that torsion provides extra opportunities to fulfil
the requirements of architects, contractors and subcontractors.

Important is of course that we can interpret computation results: Which part of reality
is taken into account and which part is not? Is the approximation safe or do we need
to correct in some situations? Important is also that we can name concepts and have
discussions with others. Finally, it is important that we can check the software by
calculating simple situations by hand. I hope this reader contributes to this. Perhaps
also that a software developer who reads this text comes up with ideas to make our
software even better.

If you have remarks, I would like to hear these. They will be processed in a following
edition.

Pierre Hoogenboom

Hoogmade, 3 Augustus 2008
p.c.j.hoogenboom@tudelft.nl

2% verbeterde druk, 7 september 2010
39¢ verbeterde druk, 30 januari 2012
4% yerbeterde druk, 26 oktober 2014
5% verbeterde druk, 18 oktober 2019

6" improved English edition, 3 January 2023

The cover figure was made by Cox Sitters [4]. The original drawing is from 1853 by
Aldémar Barré de Saint-Venant [3].



Notation

Ao, CTOSS-SECHION ATCA ...\v'veei it eeeeeieiaeeenennn, mm?
bovoviiiiiii cross-section width ... mm
B, bi-MOment ...........c.ooeiiiiiiiieie e kNm?
Chpovvvvvnnnnn. warping constant (Dutch: welvingsconstante) ....... mm?®
E............... Young’s modulus (elasticiteitsmodulus) ............. N/mm?
ECpvnnn.. Wwarping stiffness ............coooviiiiiiiiiiiie Nmm?*
G.oereen shear modulus (glijdingsmodulus) .................... N/mm?
Gl e, torsion SHINESS +...vveevivineeeiiiieee e Nmm?
B, cross-section thickness .................cccoevviiinnn. mm
Iy, polar moment of inertia ................coeiiiiinnn.. mm*
LIpoooiiiii torsion constant or torsion moment of inertia ....... mm?*

! [TPTTY bending moment of inertia in the z direction ........ mm*

) bending moment of inertia in the y direction ........ mm?*
Loiiiiiiin, length of beam or column .............................. mm
Loiiiiiiiiiiii characteristic length .................... mm

My .oooiininnnn distributed torsion moment load ....................... kNm/m
M,............. internal torsion moment ..................o kNm
Do air pressure under the soap film ........................ N/mm?
G oo distributed beam load ..................co, kN/m
S membrane force in the soap film ...................... N/mm
Foiiiiiinan, thickness .........ooiiiiii mm
T torsion moment load ... kNm
Wi, altitude of a floating plate .....................oenninn. mm
Xotiiieainenn length coordinate of the beam or column ............ mm
VoZ iiaaiinnn width coordinates of the beam or column ............ mm
0. SPECITIC tOTSION . ..'ueiiiieiiie e mm
Vo, Poisson’s ratio (dwarscontractiecoéfficiént) ......... -

G oo, NOTMAl STIESS .....oeveieeeeiee e eei e N/mm?
T, SNEAT STIESS ....\.ivveeii i e e, N/mm?
S phihill ... N/mm
[ SR rotation of a cross-section ................oceevvenennn.. rad
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Overview

Three dimensional frame programs include torsion in the analyses. To this end the
torsion stiffness of the elements must be known. When het program has computed the
force flow, the stresses in the element are checked. Consequently, in this course two
things are central:

1. The torsion stiffness G/, of cross sections of prismatic structural elements such as
beams and columns.

2. The distribution of torsion stresses over a cross section in particular the largest
shear stress 7,,,, 1n a cross-section due to the torsion moment ;.

_M,

T =t
max ?

Two dimensional frame programs do not include torsion because there is no torsion if
there is no out of plane deformation. In two dimensional beam grids (concrete
foundations) torsion can occur.

Advanced

The way in which beam ends are connected can have a large influence on the
displacements and stresses due to torsion. Advanced frame programs can include this
influence. For this the warping stiffness EC,, of a cross-section is important. These
programs do not only draw the torsion moment line M, but also the bi-moment line
B. This will be addressed at the end of the course.

Learning objectives

1. Formulas for common cross sections

2. Calculation of box girders

3. Using software

4. Understanding the stress distribution and limitations of the theory
5. Becoming familiar with the scientific approach

Learning objectives 1, 2 and 3 are directly important for engineering practice.
Learning objective 4 is important to evaluate computation results. Learning objective
5 is important to independently solve problems using engineering literature.

Definition

The torsion stiffness GI, is defined by the following equation M, = GI, ? this, / is
the length of the beam, ¢ is the rotation of the beam ends with respect to each other
and M, is the torsion moment (figure 1).!

! pronounce ¢ = fee



Figure 1. Deformation of a beam due to a torsion moment
Estimated torsion stiffness

For calculating the torsion stiffness G/, often the polar moment of inertia /,, is used.
It is defined as

Ip =J.7"2dA
A

In this, 4 is the cross section area and r is the distance of a point in the cross section to
the centre of gravity. It can be also calculated as

I, =1 +1,,

However, the next expression is only true for circular bars and circular tubes

E . : , N s
where G = 2(1— is the shear modulus. E is Young’s modulus, v is Poisson’s ratio
+Vv

and I, is the torsion constant.” For other cross sections
Gl; <GI,.

Neglecting the torsion stiffness

Often, torsion contributes little to the force flow. Then the torsion stiffness can be set
to zero. However, an element can contribute little to the force flow but still it must
deform the same as the structure. This torsion is called compatibility torsion. The
torsion moment can be considerable for this element and it is only computed correctly
if a realistic torsion stiffness is used.

2 pronounce v = nee, many engineers say v = nu because this is how it is written in Greek
books (but not how it is pronounced by Greek people).



Reinforced concrete
Reinforced concrete beams without prestress lose much of their torsion stiffness when

the concrete cracks. In figure 2 the cracked stiffness of specimen RC1-3 is only 18%
of the uncracked stiffness.

| uncracked stiffness

I /  cracked stiffness
150 £
o rou \ — 1200
AT
. . 125 4 “u *~e—eRC13
serviceability moment | oo __RC23 1000
-3,
£ 100 £
2 Rotation —800 &
= —_— i =
w 75 /o. “‘*5521 w
3 T, {600 3
& RC2-4 S
crack moment F 50 o Testregion_| .00 F
ﬁl 1 deg.4 o Series 1,
25 ¢ } cover = 2?.5 mm (0.8") {200
¢ ] 9\' O—— Series 2,
i ¢ I RC1-4 | cover=42.5 mm (1.67")
0 A A . | 1 1 1 0
0 0 0 0 1 2 3 4 5

RVDT ROTATIONS (degrees)
Figure 2. Experimental M, — ¢ diagrams of reinforced concrete beams [1]

For example, if a grid of foundation beams is computed with uncracked torsion
stiffness, then part of the load will be carried by the torsion moment and a part by the
bending moment. However, if the cracked torsion stiffness is used, small torsion
moments occur and almost all load is carried by bending moments. In the latter case,
we need to design more longitudinal bars but much less stirrups.

Stress distribution
Thin wall closed cross section are very suitable to carry a torsion moment because all

material is used. open and solid cross sections are less suitable for torsion (figure 3).
The stress distribution is often called shear flow because it looks like a small river.

IZa=Srig f + ==
" = ==
! H\:Jfr |-
SS9 Uit j

open solid closed closed

Figure 3. Torsion stresses in typical cross sections



Tables

Many design manuals have formulas for the torsion Tfi
stiffness GI, and the largest shear stress 7,y -> T
Particularly comprehensive is “Roark’s Formulas for Stress 7, l T > h
& Strain” [2] (appendix 1). Table 1 is composed by the .
author using a program for cross section analysis. b T max
>
Table 1. Torsion properties of rectangular cross sections
b i, ]_p M, M, 1000 C, 100 B
h b b3 TmaxPh®  Tobh? bR omaxh?h’
1.0 0.141 0.167 0.210 0.210 0.134 0.368
1.2 0.166 0.203 0.221 0.237 0.352 0.565
1.4 0.187 0.247 0.230 0.262 0.838 0.987
1.6 0.204 0.297 0.237 0.281 1.418 1.37
1.8 0.218 0.353 0.243 0.299 2.000 1.69
2.0 0.229 0.417 0.249 0.314 2.540 1.94
2.5 0.250 0.604 0.261 0.342 3.640 2.35
3.0 0.264 0.833 0.271 0.362 4.416 2.59
4.0 0.281 1.417 0.288 0.388 5.354 2.82
5.0 0.292 2.167 0.299 0.398 5.865 2.90
10.0 0.314 8.417 0.323 0.400 6.642 2.94
50.0 0.331 208.417 0.329 0.400 6.931 2.82
o0 1 0 1 2 1000 100
3 3 5 144 36

For example, for a cross section that is twice as wide as high 7, =0.229 bh> and

M . .
=——L _ Note that/ pls much larger than /; . This is why / pcannot be used

Tmax - 2
0.249bh
to approximate /; . (Spread the word.)

Stress check

Often the shear stress due to torsion is not the only stress in a cross section. Other
stresses occur due to extension, bending and shear. The combination of these stresses
should not lead to failure. For example, in steel structures we check the Von Mises
stress. This is treated in other courses.

Warping

Warping is the deformation of an initially plane cross section. In Dutch it is called
“welving”. It occurs due to a torsion moment and also due to a shear force.

[T 1)

3 pronounce 71 = taf with an “a” as in car. Many engineers say t = tau



Figure 4. Warping of square beam ends due to torsion
Theory of Saint-Venant

In 1856, Aldémar Barré de Saint-Venant # published a theory for torsion [3]. It starts
from the assumption that a cross section rotates around the x axis and warps in the x
direction (figure 5, rotation is shown, warping is not)

Uy, =—zx0

u, = yx0
Uy =y(y,2)0

In this, 6 = P s the specific torsion and v is the warping function, which describes

the warping of the cross section.’ The assumption is only realistic for small 0.

Figure 5. Displacement of an arbitrary point due to a small rotation ¢ of a cross
section (warping is not shown)

Exercise: Check whether Sant-Venant’s assumption makes sense.
Displacement method

In the displacement method we select the warping as an unknown function. The result
of the derivation [4] is the partial differential equation

4 A.J.C. Barré de Saint-Venant (1797 — 1886) was a French civil engineer. Later in live he
was a mathematics professor at the Ecole des Ponts et Chaussées [Wikipedia].
3 pronounce 0= teta, @ = fee, \y=psee
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with boundary condition

oy )
—=zcosa—ysina

on

where a is the angle between the positive y axis and the outward normal vector on the
edge in the considered point.® If \ is solved, the stresses can be calculated with

and the torsion moment with

M, = I(ytxz—zrxy)dA.
A

The torsion stiffness is

Figure 6. Warping function y(y,z) of a triangular cross section.
Mathematicians call this function a monkey saddle.

Force method

In the force method we choose the stresses as unknown functions. The result of the
derivation [4] is the partial differential equation

and the boundary conditions

6 pronounce o = alfa



a_,
Os

The function ¢(y,z) has no direct physical meaning.” The function has the shape of a
hill and therefore it is called ¢—hill (figure 7).8 If ¢ is solved we can calculate the
torsion stresses with

Ty = (2]
od
T, ___y_

Figure 7. ¢ —hill of a triangular cross section

The shear stress in random perpendicular directions » and s can be calculated in the
same way

_ %
Txn = s
__09
Txs = on

and the torsion moment with

M, =2[¢dA.
A

The torsion stiffness is

Internal edge

A cross section of a box girder does not only have an external edge but also one or
more internal edges. It can be proven that for each of the internal edges holds [4, p.
186]

7 pronounce ¢ = fee (Greek capital letter)
8 pronounce fee-hill



[ o5ds =-2GA4,0

N

where s is the considered internal edge and 4, the accompanying opening area of the
cross section. This result is required in the calculation of multi-cell box girder bridges.

Exact solutions

The differential equations can be solved analytically for four cross sections (table 2).
More exact solutions have not been found. Note that circular sections do no warp.

Table 2. Four exact solutions of the differential equations

r v=0 P
y | 2 2 2 ¢, =0
op=LG0(? -2 =)
z 2 Tmax 1A4t
EAV
Omax =0
_ _1 4 4
) v=0 ]t—]p—27£(r (r—=h)")
C, =0
hz . r My
max It
G1'1'1."$1X_0
, I - nab’
a, .4 b —a tT 2 .2
HIHI - +b
b YL, al 2,2
. > 5 5 5 Ipzznab(a +b7)
VN a“b z
I ) 't (@ =)

V24 (2422
T __M
max_l—z
zﬂab
o _na2b2 a® —b?
max _12 —a2+b2
[l:% 3(14
a z 2 2
——9‘: < =2 (34—
v 6a(y z%) Ip:3\/§a4
2a~3 GO
a3 y ¢26—(a—y)(2a+y—z\/§)(2a+y+z\/§) Cw:% 340
N a
z v,
Tmax 6 3 3
g a
o B
max 9 4
%\/ga




Finite element method

The finite element method can be used to solve the differential equations with y or ¢

for every cross section shape’. To this end the cross section is divided in a large
number of quadrilateral and triangular elements. There are many programs that can
perform the computation. Examples are

ShapeDesigner http://mechatools.com
ShapeBuilder 3.0 http://www.iesweb.com

The program user can set the size of the elements. This can be used to check the
accuracy of the computation: Repeat the computation with elements of about halve
size. If the computation results do not change much, it is sufficiently accurate. If the
results do change much, the elements are too large. We do not need to be economical
with the number of elements because even a mesh with 10 000 elements is computed
in seconds on a modern PC.

Most frame programs have libraries of standard sections, in which torsion

constants /; are included. Therefore, these do not need to be computed. However, if
we design a cross section, than /, must be computed. SCIA Engineer has a module that
automatically computes the torsion constant /; of any cross section with the finite
element method. The structural engineer needs to choose for this computation. If he or
she does not, the program does the structural analysis with the polar moment of
inertia / p This would give completely wrong results (Compare /, with / » in table
1).

Example of a rectangular cross section

We consider a timber beam with a rectangular cross section.

depth =400 mm
width =200 mm

Young’s modulus E=10000 MPa

Poisson’s ratio v=0.1

torsion moment M, =100kNm

shear modulus G E__ 10000 =4545 MPa

T2(+v)  2(1+0,1)

We use table 1. In this table /4 is always smaller than 5. So 4 =200 and b = 400.

% The development of the finite element method got off the ground in 1960. In this year the civil
engineers Ray Clough (1920 —2016) and Edward Wilson (1931 —) wrote a computer program that
computed the stresses in dams. They worked in the University of California at Berkeley. The program
was applied to the Norfork dam, which controls a lake in Arkansas, USA. In the middle of this dam a
large vertical crack had occurred. The finite element computation showed that the dam was safe despite
the crack. The dam did not need to be replaced [21]. The success got the attention of mathematicians.
They developed the method further to solve arbitrary differential equations.

One can say that the mathematician stole our finite element method, remodeled it unrecognisably and
gave it back, so that we can solve the differential equations of Saint-Venant.



GI, =0.2296/3G = 0,229 x 400 % 200> x 4545 = 333x10'" Nmm?

M, 100x10°

- =25.1MPa
0.249bh%  0.249 x 400 x 200>

Tmax =

Exercise: What happens if you accidentally exchange /# and b ?

We can determine G/, and t,,, in another way. According to Roark’s formulas
(appendix 1)

a = 400/2 = 200
b =200/2 =100
4
GI, = Gab®| 163362 | 1= 2
3 al  124*
30 16 100 100% 10
= 4545%200x100° | L2 -3.36—| 1- - |1=333x10""Nmm?
3 200{  12x200

M 2 3 4
3—3”{1 + 0.60952+ O.8865b—2—1.8023b—+ O.9100b—4}
a

Tmax = 3
8a a a a
6 2 3 4
= wﬂoz 1+ 0.6095@%.886510—02—1.802310—03+0.9100%
8x200x100 200 200 200 200
=25.46 MPa

The third and last way to determine G/, and T, is by the finite element method.
The program SCIA Engineer produces (See figures 8, 9, 10 and 11):

1, =730175100 mm*
G, =4545x 730175100 = 331.9x10'°
Ty =2.55x10™* MPa

max
The torsion stiffnesses that are determined with the three methods agree well.
The largest stress determined by table 1 and Roark’s formulas agree well too. The
largest stress computed by SCIA Engineer is much too small. Apparently, this stress
needs to be multiplied with 103 M ;- This is caused by the philosophy of the program.
After all, in this phase of a structural analysis, the moments are not known.

Note: In figure 9, the altitude lines have negative values. So, we are looking at a ¢ —
valley instead of a ¢ —hill. For the principle this does not matter.

Note: The figures also show buttons that are related to shear stiffness and the stresses
due to a shear force. For this is also a differential equation. This subject is not covered
in these notes.

10



Cross-sections characteristics
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Figure 8. Element mesh and warping of the cross section
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Figure 9. ¢ —hill
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Cross-sections characteristics
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Figure 10. Shear stresses 7, in the z direction of the cross section
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Interpretation of the ¢-hill

A top view of the ¢ —hill gives much qualitative information on de distribution of the
shear stresses. In a certain point the direction of the shear stress is equal to the
direction of the altitude line (figure 12). The magnitude of the shear stress is inversely
proportional to the distance between the altitude lines. Therefore, the altitude lines are
stress trajectories. Large stresses occur where the altitude lines are close to each other.

Figure 12. Relation between the stresses and the altitude lines of the ¢ —hill
Estimated torsion stiffness

A formula exists for estimating the torsion stiffness of squat cross sections [5].

4
GA
Gl ~ 7
iy P
In this A4 is the cross section area. The word squat means here that the cross section is
not elongated, has no thin parts and has no parts sticking out. Examples are, square
cross sections (8% to large), solid round cross sections (exact) and cross sections

shaped as an equilateral triangle (14% to large). The formula can be derived by
rewriting the solution for an ellipse cross-section (table 2).

Thin wall open cross sections

Formulas exist for thin strips and thin wall open cross sections.

Strip v
Gl, =GLph’ | - | 4rh
__m, 2

max — 1 2
L ph

Thin wall open cross section

bl

l

Gly = .G shik; — |
i

7ol Lbn
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More accuracy can be obtained by replacing 1 by numbers from table 1.
If G is the same for all parts, the latter formula simplifies into

M, h;
'Cj= L
Il‘

Exercise: Derive this formula.
Example of a balustrade

A glass balustrade has a wooden hand rail (see figure 13). The connection is glued.
The shear modulus of glass is
G= £ = 70000 _ 29167 N/mm?
2(1+v) 2(14+0.2)
The torsion stiffness of the glass is
GI, =2916711320%20° =103-10° Nmm?
The torsion stiffness of the wood is

GI, =4000%0.207x100x 60> =17.9-10° Nmm?

In total GI, =121-10° Nmm?.

The balustrade is loaded by a torsion moment of 2 kNm. The largest shear stress in
the glass is

103 2-10°

T= 7= 9.7 N/mm?
121 %1320><20
‘ 100 \
20 N
V2 / 60 mm

1
A \
hard wood ——:C

G = 4000 N/mm?>

=
- 1300 i

glass — > :::fi::;\ . :
2 T hmin I

E =70000 N/mm Y[

v=02 20 8

Figure 13. Balustrade with hand rail Figure 14. Box girder
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The largest shear stress in the wood cannot be calculated by hand because this is
influenced by the connection with the glass. In the top of the hand rail the shear stress
is approximately

179 2-10°

T= 7= 3.4 N/mm?
121 0.239x100x 60

Formulas by Bredt

In 1896, Rudolph Bredt derived two convenient formulas for closed thin wall beams
that have just one cell [6] (figure 14). 1

44*
Gl = S (Bredt’s second formula)
3 S
M
T, =—21! (Bredt’s first formula)
7 24h;

Exercise: In closed cross sections the largest shear stress occurs in the thinnest wall, while in
open cross sections the largest shear stress occurs in the thickest wall. What causes this?

Membrane analogy

The differential equation of the force method is the same as that of a soap film. This
was first used by Ludwig Prandtl in 1903 [7].!! The differential equation of a soap
film is

q+dq

2 2 ¢
o? o2 S ¢ mWL/$/T?$

In this, S is the horizontal tensile force in the film and p : qlTT p
is the over pressure under the film. The boundary
condition is w = 0 on the edge.

Thus we can interpret the ¢ —hill as a soap film over an open box. The top view of the
box has the shape of the cross section of the beam. There is overpressure in the box,
which makes the film bulge.

Often this is called “membrane analogy”. This name is an unfortunate choice because
a membrane can have different stresses in different directions. A soap film has in all
directions the same stress.

10" Rudolph Bredt (1842 — 1900) was a structural designer. He was in charge of the first crane
building company of Germany in Wetter an der Ruhr (DEMAG)[22].

' Ludwig Prandtl (1875 — 1953) was a professor in Gottingen, Germany. He also did
groundbreaking research in flow around ships and airplanes and he was active in both world
wars [Wikipedia].
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When comparing the soap film differential equation (p. 15) to the ¢ —hill differential
equation (p. 6), we notice that the tensile force S in the soap film can be related to the
shear modulus G of the beam material. The overpressure p in the box can be related to
the specific torsion 0 of the beam.

¢
1
G

N “n =
I

2

D

Membrane analogy for box girders

The cross section of a closed box beam has not only an external edge but also one or
more internal edges. On each of the internal edges, there are two conditions for the
soap film

M _y

Os

ow
S| —ds=pA, .
iﬁns Plg

In this, 5 is the considered internal edge and 4, is the considered area of the cross
section opening. The last formula can be derived from the formula on the top of page
8. This means that the value of w is constant on an internal edge. Moreover, the
vertical resultant of the soap film force over the internal edge is equal to the
overpressure p times the area Ag of the opening.

Figure 15 shows the interpretation: A horizontal weightless plate shaped as the

opening, hovers above the opening. The soap film is attached to the plate edge. The
soap film pulls the plate down the overpressure pushes the plate up.

weightless plate

soap film

) opening
cross section shape|

box

Figure 15. Weightless plate as internal boundary condition
Application of the membrane analogy
The membrane analogy is very suitable for manual calculation of the ¢ —hill of box
girders (thin wall, closed, multiple cells). The altitudes of the weightless plates are

calculated from equilibrium. The girder walls are thin, therefore, the curvature of the
soap film is neglected. The force ¢ [N/m] that pulls down the weightless plate edges

16



follows from the slope of the film. It is customary to take all dimensions to the centre
lines of the walls. This strongly reduces the amount of calculation work and prevents
calculation mistakes. The calculation is demonstrated in appendix 2.

weightless plate

S Eﬁ%ﬁ%'_

p

q

soap film

tube wall

A\
N4

[
==

N

Figure 16. Forces on a weightless plate

Nabla girder '

The membrane analogy can be used
to analyse a nabla girder (appendix
3). The result is

Gl, =G5 a’h

M

_4\/’ t

T =43 —
max 27 azh

Hollow core slab

The membrane analogy can be used to analyse a hollow core slab (appendix 4). The
round channels are modelled square to make the hand calculation possible. The
middle webs are left out of the model because these contribute little.

¢

t t L a
La a. 4 aJ_a.

b
b>5a

12 The symbol V is pronounced nabla. It is often used in mathematics.
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GI
! 15h—49a
\ 156-50a M,
Thax = g 2 2 -
5h% —20ab+12a° at

The largest shear stress in the cross section occurs in the middles of the top and
bottom edges.

This hollow core slab model is clearly a rough approximation of reality. The real
torsion stiffness is larger (the author estimates 60% larger). The real largest shear
stress can be larger or smaller (the author estimates 30% larger). For accurate values
we need to do a finite element analysis.

Sand hill analogy

There is also an analogy for plastic analysis of torsion properties. The plastic ¢ —hill
looks like a sand hill. For an experiment, we cut a plate in the shape of the cross
section. Subsequently, we sprinkle dray sand on the plate until the shape of the hill
does not change any longer (figure 17).

Figure 17. Plastic ¢ —hill of an L shaped cross section, top view [8]

Stress concentrations

Stress concentrations occur in re-entrant corners of cross sections. After all, here the
¢ —hill has a larger slope. Often it is necessary to round re-entrant corners. A formula

by Trefftz approximates the stress in a 90°-corner of a box girder (figure 18) [9]. 3

Tmax = 1.74 i/gr

In this, 7 is the radius of the rounding, /4 is the wall thickness and t is the shear stress
at some distance of the corner. This formula is not accurate but on the safe side [10].
The stress concentration is important in fatigue calculations.

13 Erich Trefftz (1888 — 1937) was a structural mechanics professor in Dresden. He was a
good friend of Richard von Mises who had to leave Germany in 1933 because he was Jewish
[German Wikipedia].
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_ stress concentration

dead corner

Figure 18. Stress concentration in a 90° corner
Shear centre

The shear centre is a point in the cross section of a beam. If a force goes through the
shear centre, it will not produce a torsion moment. The shear centre coincides with the
centre of gravity in cross sections that are double symmetrical, for example in a
rectangular cross section or in an I section (appendix 5). In other cross sections it does
not coincide, for example a U section (figure 19 and 20).

F
a
shear centre — [ —
\F shear centre
"\ centre of gravity ¥ "’\ centre of gravity
— —
Figure 19. Torsion moment Fa Figure 20. No torsion moment

The place of the shear centre is calculated from the distribution of shear stresses in a
cross section due to a shear force. This calculation is not treated in this course.

Rotation

Above is not mentioned around which point the cross sections rotate. From figure 5
we can get the impression that the x axis goes through the centre of gravity. However,
it can be proven that the position of the x axis does not have an influence on the
calculated torsion stiffness or the calculated torsion stresses. The theory of Saint-
Venant does not tell us around which point a cross section rotates.

Theorem .
A torsion moment rotates the cross sections around the shear = ol
centre. e
\1\ ———1
\
Proof ® \ M} M,
This can be simply proven for linear elastic beams. A force + N -\
. . . < -
through the shear centre gives a rotation ¢ = 0 of each point N g0ad
of a cross section. From reciprocity (symmetry of the v
procity (sy ry

stiffness matrix) follows that a torsion moment on an
arbitrary point of the cross section gives a displacement u =0
of the shear centre. So, the cross section rotates around the shear centre.
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Orthotropic plate

A bridge or floor that consists of parallel beams is often modelled as an orthotropic
plate (figure 21). An orthotropic plate is a plate with different stiffnesses in
perpendicular directions [11]. The plate moments m,., , m,,,, m,, and shear forces v,
v, are computed by a finite element program. When dimensioning the beams, the
beam moments and beam shear force is calculated as follows.

M, =m,b

M, =-2m,b

V=q.b

In this, b is the centre to centre distance of the beams. The equations assume that the
beams span in the x direction. Note the factor 2 in the formula for the torsion moment.
The explanation is that the plate torsion moment M., OCCUrs in two directions while
the beam is in one direction.

a Part of an orthotropic plate (idealisation) b Part of a beam (reality)
Figure 21. Moments and shear forces

The torsion stiffness of the orthotropic plate is ﬂ (So my, = ﬂp o) In this G/, is

the torsion stiffness of a beam. The factor 4 is explained by the beam moment which
is a factor 2 larger than the plate moment (see above) and the beam torsion

deformation which is a factor 2 smaller than the definition of plate torsion
0 w)
Ox0y

By the way; an orthotropic plate model is not accurate. Deviations in moments and
shear forces can be larger than 20%. Much more accurate is to model webs, top
flanges and bottom flanges with plate elements too.

deformation (ny =2

Example of a bridge deck

A cable stayed bridge has a deck of prestressed concrete (figure 22 and 23). The span
between the pylons is / = 237.6 m. The 7, of the bridge deck cross section is
calculated in the table below. Note that the cross beams (4) also contribute to the
torsion stiffness of the deck. After all, they experience the same specific torsion as the
other parts. You can convince yourself by twisting a sheet of paper: lines in both
directions twist the same.
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Figure 22. Cross section of the deck of a cable stayed bridge [12 p. 52]

4400

Figure 23. Longitudinal section of the deck of a cable stayed bridge [12]

// —
o o — 4/!/ |
Y 0 b o b
4

200, | 350

1900

350

i I l; number I,; xI; xnumber//

1 1.0088 m* 237.6 m 2 2.018 m* 68 %

2 0.0232 m* 4.4 m 12x54 0.279 m* 10 %

3 0.0197 m* 4.4 m 11x54 0.217 m* 7 %

4 0.0696 m* 283 m 53 0.439 m* 15 %
total 7, |2.950 m* 100 %

Exercise, box

An open box is supported in 3 corners and loaded by a force in 1 corner. This load

produces mostly torsion in the walls and bottom of the box. Show that the deflection

s u= lazF/Gh3 and the shear stress is ©= %F/h2 . In this, £ is de wall thickness.

(This is not a simple exercise.)
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Local buckling

Thin wall tubes can buckle due to torsion. For example, the torsion moment at which
a circular tubes buckles is

2nEAF I
T 3
3J2(1-v?)4

In this, /4 is the wall thickness and 7 is the radius to the centre line of the wall [13].

Figure 24. Buckling of a circular tube loaded in torsion

Volume elements

A beam can be also modelled with volume elements or solids. We can choose
elements with 4, 8, 10 or 20 nodes. The 20 node elements are the best and these are
considered here. The torsion stresses are computed with an error smaller than 3%, if
we model 3 elements in the thickness (figure 25). The elements need to be
approximately square in the cross section. This determines the number of elements in
the beam depth. An error smaller than 1% is obtained with 5 elements in the thickness
[14].

Figure 25: Element mesh for computing torsion stresses with an error smaller than 3%
Constrained warping

The typical torsion stresses only occur, if warping is not constrained (figure 26). In
engineering practice this is often not the case. This causes deviations compared to the

ideal torsion theory. The deviations occurs at supports, where torsion moments are
applied and where the cross section changes.

22



_\/‘H

g\- free warping

constralned warping

e

Figure 26. Torsion deformation of two short I sections

W\ i \\

Especially thin wall open cross sections are sensitive to constrained warping. For
example, in a cantilever I section, the theory of Saint-Venant is valid at a distance of
approximately five times the section depth from the fixed end (figure 27).

Vs Ve constrained warping free warping ~\ "
t

— 1

Vlasov \ Saint-Venant \

! !

Figure 27. Influence of constrained warping

Theory by Vlasov '

In 1933, Vasiliy Vlasov developed a torsion theory which included constrained
warping [15]. This theory is also called warping torsion or non-uniform torsion. Next
to this, the torsion theory by Saint-Venant is also called circulatory torsion or uniform
torsion. In Vlasov’s theory the specific torsion deformation 0 is not constant along the
x axis. The cross section rotation @(x) follows from the differential equation

4 2
£c, 4 2-Gl, d >
dx dx

:mt-

In this, EC,, is the warping stiffness, G/, is the torsion stiffness and m;, is a
distributed torsion moment load along the beam. The warping constant C,,, has the
unit m® and is defined as

14 Biacos Bacrmii 3axaposud (1906 — 1958) (Vasily Vlasov) was professor in Moscow. He
wrote a book on thin wall beams (1940) for which he received the Stalin prize first class. He
also wrote a book on shell structures (1949). [Russian Wikipedia]
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Cy = [widd.
A

The bi moment is defined as

B= —I G WdA.
A
It occurs in a cross section when warping is constrained. It has the unusual unit Nm?.

When the differential equation is solved, the bi moment and the torsion moment can
be calculated with

2
B= —ECWd—;P
dx
M, =g, 92 48
dx dx

(for a derivation see appendix 10). Vlasov’s theory reduces to Saint-Venant’s theory
if the warping stiftness C,, is zero, the distributed moment load m;, is zero and

warping is free.
Interpretation of the bi moment

For I sections the bi moment can be interpreted as the moment M in each of the
flanges times their distance (figure 28)

B=Ma.

This also explains the name (bi = 2). For other sections the interpretation is not this
easy. Figure 28 shows that a bi moment occurs when warping is forced out of a cross
section.

<

M

Figure 28. (left) Warping due to torsion and (right) the bi moment that removes this
warping

Boundary conditions of the Vlasov theory

A beam end has an imposed rotation ¢ or an applied torsion moment M, . V&i{e have to
choose, one or the other. In addition, the beam end has an imposed warping d_q) or an
applied bi-moment B. Support examples are *
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fixed .coooviiii no rotation, no warping ¢0=0, 0=0
fork support ...l no rotation, free warping ¢0=0, B=0
free end with a thick head plate .. free rotation, no warping M;=0, 06=0
freeend ... free rotation, free warping M, =0, B=0

Example of a box girder bridge '°

We consider a box girder bridge with a length / = 60 m. The torsion stiftness GI; 1s
2690 108 Nm? and the warping stiffness £C,, is 1183 10° Nm*. At both sides the
bridge is supported without constraining warping. In the middle the bridge is
supported by two temporary columns. One of these columns is knocked out in a
construction accident. The remaining temporary column carries most of the bridge
selfweight eccentrically. This introduces a very large torsion moment 7= 269 10°
Nm.
The boundary conditions at x =0 and x=/ are |

B d2 o N d2 (p+ 1?\
¢ =0 =0 ¢ =0 =0 |

T
dx? dx? Y‘)
The transition conditions in the middle x = %l are A ‘
2
oot 4o _de d*o" _d*¢" '
dx dx dxz dx2 % |

— d3([)_ d(P+ d3(P+

de
Gl -EC -EC
" d RS X Yo’

—T+Gl,

The differential equation is solved by Maple (appendix 6) (figure 29, 30 and 31).

~— 150 107 rad

De Saint Venant P -~ ~
\/ ~

60 m

Figure 29. Cross section rotation ¢
135 10 Nm

135 1 05 De Saint Venant en Vlasov

Figure 30. Torsion moment distribution M,

15 The situation is borrowed from a reader by Cor van der Veen [23], professor at Delft
University of Technology.



Vlasov

Figure 31. Bi moment distribution B
Interpretation of the moment distribution

The torsion moment distribution (figure 30) can be easily predicted. The torsion load
can choose to go to the left support or the right support. It has a preference for the
stiffest way. Both beam halves have the same stiffness (same length, same cross
section). Therefore, half the torsion load goes to the left support and the other half
goes to the right support.

Similarity with the shear force distribution

The torsion moment distribution in figure 30 has the shame shape as the shear force
distribution due to a point load (not shown). Figure 32 shows another example. Since
the torsion moment distribution looks like the shear force distribution they can be
accidentally exchanged when studying finite element results. It is important to check
this.

hinge 1 fork my
hinge |2 m‘bfork
EI A ! Gl,

\ [

!

0.125¢/ 0.125m,l

- V' distribution <> M, distribution
—I <

0.375¢/ 0.375m,l

Figure 32. Similarity of shear force distribution and torsion moment distribution
Around the bend

In a complicated frame, it is not always clear where torsion moments come from. The
following rules may be useful (figure 33).1

A bending moment that goes around the bend becomes a torsion moment.

A torsion moment that goes around the bend becomes a bending moment.

16 Statement by Leo Wagemans, professor at Delft University of Technology.
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/ torsion moment distribution

bending moment distribution

Figure 33. Moments in a curved beam
Head plate

A head plate that is welded to an I section constrains de warping according to the
following equation.

B:%Gﬁbhd—q’

dx
TS~b
,\ %
L
S—h head plate
\
A

Figure 34. Head plate welded to an I section
Stresses according to Vlasov

The stress distribution according to the torsion theory of Vlasov consists of three
parts.

1) shear stress according to the Saint-Venant theory

2) shear stress due to constrained warping

3) normal stress due to constrained warping

In general the largest values of the parts occur in different points of the cross section.
Therefore software is needed to find the governing point. This is even more so if also
stresses occur due to

4) normal force N
5) moment M, in the y direction

6) moment M _ in the z direction
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7) shear force ¥, in the y direction

8) shear force V,in de z direction

If y and z are the principal directions of the cross section, the normal stress are
computed by !’

N M M B
ou(2)=—t—Zz+—Ly-—y
A4 I, I, C,,

Formulas also exist for shear stress in thin wall cross sections. However, these are too
large to include here. As far as the author knows, there are no formulas for the shear
stresses 1), and ., due to constrained warping in solid cross sections.

Stresses in an I section

There is a simple formula for the largest normal stress in I sections due to a bi
moment.

B
Ln-nep?

Omax =

In this, B is the bi moment, ¢ is the flange thickness, b is the flange width and 4 is the
cross section depth. The stress o,,,,, occurs in the edges of the flanges.

Example, stresses in a box girder bridge

We consider the box girder bridge of the previous example. The dimensions of the
cross section are shown in figure 35. The program ShapeBuilder was used to compute
the warping function y and the torsion properties of the cross section (figure 36). An
extreme value of y is —51100 cm? in the left bottom corner. Before, it was calculated
that the largest bi moment is B =282 10° Nm? (figure 31). Therefore, the normal
stress due to warping is

5 2
o =By 22 TUNMT 56 n2) 2366 105 N/m? = 3.66 N/mm?

\V
*oq, 39.44 m°

The reinforcement has a yield stress of 550 N/mm?. The required reinforcement
percentage is 3.66 / 550 = 0.7%. This is small despite the very large load. (Common
reinforcement percentages are between 0.1 and 2.0%). Often, the stresses due to
constrained warping are negligible for solid and closed cross sections. These stresses
are not negligible in thin wall open cross sections.

17 pronounce ¢ = sikma
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Figure 35. Cross section dimension of the box girder bridge

By the way, ShapeBuilder can compute all cross section properties, including shear
stiffnesses, stress distribution due to shear forces and the location of the shear centre.
To this end it solves similar differential equations as for torsion. This is not treated in
this course.
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Figure 36. Warping function y of the box girder bridge

Distortion

The theories of Saint-Venant and Vlasov assume that a cross section warps but does
not change shape in another way (See assumptions with figure 5). This is a good
approximation for many beams. However, sometimes a cross section does change
shape (figure 37). This is called distortion. To compute distortion we make a finite
element model with shell elements.

29



Shell elements

Advantage of a computation with shell elements (figure 37) is that torsion and
constrained warping are automatically included. The cross section

properties G/, , EC,,, and the stresses T,y ,Gmax do not need to be calculated
separately. Also, the model can be extended with diaphragms, support details and
prestress cables. The computed stresses are more accurate than those computed with
Saint-Venant or Vlasov. In addition, the model can be used to check global buckling

and local buckling with a geometrically nonlinear computation.
Disadvantage of a computation with shell elements is that it is more work to build the
model and cross section quantities such as torsion moments and shear forces are not

readily available.

How to use shell elements is treated in a course on the finite element method for
plates and disks.

nabij de oplegging

Figure 37. Distortion of a box girder bridge cross section [16]
(Half the bridge is drawn. The deformation is enlarged. Warping does not occur in the
bridge middle.)

Example of a cantilever

We consider the cantilever of figure 38. The fixed end cannot warp. The other end is
loaded by a torsion moment 7 while warping is free [17].

<y

— .

12,7 267 mm \€
— 2540 mm T=2,26kNm

108

Figure 38. Cantilever
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The material data and cross section data is
E =207000 N/mm?, G = 79300 N/mm?, I,, =278000 mm*, C,, =191 10 mm®.

The calculation is performed in appendix 7. Figure 39 shows the torsion moment
distribution. At the support, the torsion moment is completely carried by constrained
warping (Vlasov). At the free end, the torsion moment is completely carried by the
shear flow in the cross section (Saint-Venant). Figure 40 shows the stresses in the
fixed end and the free end.

2,26 kNm
AN I do
« |contribution of shear flow GI, —
N dx
fixed end ~ . ~ dB free end
:[contrlbutlon of constrained warping b
___________ n
Figure 39. Torsion moment distribution M,
19
: 17 130 N/mm?
= — (R~
t V T
411 W 103 Nmm
Txs l\ O xx Txs M VA
il
W -103
@&4 125 88 FESS S
9 Vlasov stress Saint-Venant stress
fixed end free end

Figure 40. Stresses in cantilever cross sections [17]

Note that the largest Vlasov normal stress 6, is much larger than the Saint-Venant
shear stress 7,,; (in absolute sense). The Vlasov shear stresses 1, are small,
nonetheless, the moment they produce is equal to the load 7.

Misunderstanding

It is a stubborn misunderstanding that for thin wall open cross sections the
contribution of the torsion stiffness G/, can be neglected. Table 3 shows the results of
three computations. The first computation is the same as above; in the second
computation the torsion stiffness G/, is neglected and in the third computation the
warping stiffness EC,, is neglected. The column with ¢ gives the rotations of the
cantilever end. It is shown that EC,,, cannot be neglected and G/, can certainly not be
neglected for computing the deformation of this beam.
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Table 3. Consequences of neglecting stiffnesses

GI, EC,, &
1 2,205-10°°Nmm?  3,954-10!°Nmm*  0.217rad
20 3,954-.101° 3,180
3 2.205-101° 0 0,260
Future

All commercial frame analysis programs that the author knows, use Saint-Venant’s
theory and not Vlasov’s. In the future, the programs can be extended with the Vlasov
theory [18]. To that end, the section libraries need to contain not only the torsion
constants /; but also the warping constants C,,,. The program user will be able to
select whether the warping is constrained, free or linked for every beam end or
column end. Linked means that two elements have the same warping where they are
connected. Subsequently, the program will take this into account when computing the
deformations and stresses. Appendix 9 gives the stiffness matrix of a frame element
according to the Vlasov theory.

Characteristic length

The characteristic length is defined as

EC

I, = |

<N\ G

This gives the length of the Vlasov part (figure 27). It is also a measure for the width
of the peak in the bi moment distribution (figure 31): At a distance /. from the
constrained warping, the bi moment is 37% of its maximum value. At a distance of
31. is the bi-moment 5% of its maximum value.

Trick

All frame analysis programs make use of the torsion theory of Saint-Venant. We can
use a trick to nonetheless include constrained warping [18]. When both ends of an
element cannot warp, the torsion stiffness needs to be multiplied by the enlargement
factor

=21

c

where / is the beam length. When one of the beam ends cannot warp, the torsion
stiffness needs to be multiplied by the enlargement factor

L
-1,

Subsequently, the largest bi moment for both cases can be calculated by
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ézicht.

Obviously, this occurs where the warping is constrained.'® (The sign depends on the
direction of the x axis of the element but actually the sign is not important.) The trick
is valid if a distributed torsion moment is not present m, =0.

The trick is very accurate if / > 6/, (error < 1%). For smaller lengths, table 4 can be
used.

Table 4. Magnification factors for torsion stiffness due to constrained warping [18]

beam length / 051. 11. 1.51. 21 251, 31, 41, 51,
both sides constrained 49.2 132  6.53 4.19 3.11 2.52 1.93 1.65
one side constrained 13.2  4.19 2.52 1.93 1.65 1.50 1.33 1.25

The trick is useful to show that the real displacement due to torsion will be smaller
than a common frame analysis predicts.

Safe or not safe?

Above it was shown that the real structure is stiffer than predicted by the Saint-Venant
torsion theory. Consequently, real deformation will be smaller than computed
deformations. So, for the serviceability limit state the common frame analysis is on
the safe side.

Also it was shown that locally the real stresses can be much higher than predicted by
the Saint-Venant torsion theory. However, this does not mean that the structural part
will collapse. Most construction materials display somewhat plastic behaviour
(aluminium, timber, reinforced concrete). According to plasticity theory, every
equilibrium system with stresses smaller than or equal to the yield stress is a safe
approximation for strength. A linear elastic computation according to the theory by
Saint-Venant is such an equilibrium system. So, also for the ultimate limit state, the
common frame analysis is on the safe side.

An exception is fatigue. In case of fatigue, the difference between the largest stress
and the smallest stress in a material point is important. The largest stress is strongly
reduced when the material yields at the first large load. However, the stress difference
will not become smaller due to yielding and it occurs in every subsequent load.
Therefore, in case of fatigue, choose circular tubes (these do not warp). If open
section are necessary, it is important to let them warp freely. If nonetheless warping is
constrained, warping stresses need to be accurately calculated and checked. Appendix
8 gives a calculation example.

The rule for constrained warping is: Prevention is better than calculating.

1% The exact formula is

B=+ [.M, tanh % if both ends cannot warp

c

A [
B=%+[.M,tanh— if one end cannot warp
C
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Torsional buckling and lateral torsional buckling

The quantities learned in this course can
be also used in stability checks. The

: o «—N
normal force at which a column fails in
torsion buckling is
2 N 7
N+ TECw | '
I /2 M
p

The bending moment at which a beam
fails in torsional lateral buckling is

2 2
= " | o ,TECy
2 o2 )

In this, / is the column or beam length and EI.,, is the bending stiffness in the lateral
direction. These formulas are valid in the principal directions of a cross section and
fork support at the ends [19].
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Appendix 1. Formulas for torsion properties [2, table 20]

¥ I :%nr4
2r M,
l Tmax :1—3
ETCT"
T I - na’b’
2b LT 22
" " _ Mt
20 i Tmax_%nab?‘
¥ 1, =225q"
20 M,
Tmax ==
i 6641
I =ab®| 18-33620 L b >h
t—a T— . Z( _Ea_“' a2
2 3 4
T :%LI+0.60952+0.8865b——1.8023b—+O.9100b—J
max 2 2 3 4
ab a a a a
_1 4
Iy =gg3a
Mt
Tmax :ﬁ
20
3,3
P L TN
15a“ +20b b
1, =0.0915b" (%—O.SS%J NE) <%< 23
a a2
M,b 0.2OO+0.309B—0.0418—2
b 2 a
- — —<—<2\/§
max It 3 b

2 4

4 h h? n n* n
1, =2r* 0.7854-0.03332 - 2.6183 = +4.1595— —3.0769—+0.9299
r r r r 7

Tmax =

M 2 3 4 5
—;(0.6366+1.7598ﬁ—5.4897h—2+14.062h—3—14.510h—4+6.434h—5

v r r v v r

hzf(l—COSOL) 0<—<1
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2 3 4 5
L= (0.0034 ~0.06972% +0.5825%—0.2950 % +0.0874 %~ 0.011 1“—5]

s n2 TE3 n4 T
01<%<20
T
MZ
Tmax = 2 3 4 5
3 0.0117—0.21379+2.24750‘—2—4.6709“—3+5.1764°‘—4—2.2000“—5
T T 0 T T
01<%<1.0
T
two flat side_s i h2 h3 h4
- 1, =2, 0.7854—0.4053= 3 58105 +5.2708 -~ 2.0772"-
r r r r
0< <03
r
2 3 4 5
M
Tinax = 0.6366+2.5303ﬁ—11.157h—z+49.568h—3—85.886}1—4+69.849h—5
r r r r r r
h=r—w 0< h <0.6

r

four flat sides

h=r—w

4 h h? n
I, =2r* 0.7854-0.7000=~7.7982 = +14.578

r v v

2 3
Tmax = %[0.6366 + 2.6298ﬁ— 5.6147h—2 + 30.853h—3]
r

r v v

0 Sﬁ <0.293
r

1,4 4
Itzgﬂs(ro )
roMt
|, 4 4
En(ro _’7)

Tmax =
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n(D* -d*

I =
, 161’ ) 384n* 4
el d D 32| 1+ 2 ol NPT
. L l (A-n")1-n") (1-n")"(1-n")
5 2 2
- : S 16i)Mt4 14 4;12?Hr 322n - 22 4
k:% (D" —-d™) l-n (1-n")1-n")
d 48n (1+2n +3n* +2n° )
"= (1-n?)1-nM(1-n®)
64n (2+12n% +19n* + 2818 +18n +14n10+3n12)
(1- n)(l n)(l n)(l n)
3,3
a’b
I = (1 Q)
a +b
T = Mt
ma %nabz(l—q“)
_Gy _by
7 a b
L an’t(a-10*(b-11?
r 2
n(a+b—1) 1+O.258(a_7b)2
(a+b—1)
T = M,
average_ 1 1
ani(a—Lo)b-11)
44%
It:T
Mt
Taveragezm

A is the average of the surfaces enclosed by the outer edge and inner edge.
U is the length of the median edge

thickness not constant

442
[~du
t
_ t
Taverage = YT
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, 2tt(a—1)*(b-1)?

p tLh<a,b
t(a—t)+t1(b—tl)
Mt . .
T = in the short sides
average 2t(a—1)(b-1))
M,

T = in the long sides
average 20 (a—1)b—1) g

There will be higher stresses in inner corners unless
fillets of fairly large radius are provided

2543
It—3nrt

_(6nr+1.80)M,

Fmax = 4n2r2t2

<r

r=ivfe
_(3U+1.80)M,

I<r
U is the lengte of the median line

v
4

41, 4U*

]t:

2 4
1+0.15] ©2_ 2
_M,D 164° 2r
T 2 4
! 147 Dz
164
I 1s the moment of inertia around the x axis.

T

A is the cross-section area.
D is the diameter of the largest inscribed circle.
r is the radius of curvature of the boundary at the location of the stress.

1
3 4
- + -
F 4u?
A is the cross-section area.
U is the length of the dashed median line.
T as in previous cross-section.

U
F=J't3dU
0

]t=

A4

If =
401p

T as in previous cross-section.
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I, =Lb(m+n)(m* +n*) -

_m? (0.10504—0.105 +0.08485% — 0.067465° +0.0515s4)—

—_n? (0.10504+O.IOS+0.O848S2 +0.067465° +0.0515s4)

m-—n
S =
b
MDD 1
I n2D4
1+ 3
| 164
7y | han|i-021 0= [eed?| L-0n0s -4 |+
V& 3 a 12a c 192¢
r=1r .
: T ¢ +D4(0.15+0.10£jmin(2,£)
— d }- ; X
(b+r) +rd+1d
= 4 d<2b+r)
2r+b
D D
1+0.0899 In(1+—) +0.181—
=MD ( 21”) 2r
1 > D*
1+ 3
164
: "’1 b A ' ) 4 4
r—' N %—0-212(1— b ) +cd? %—0.1051(1— d D |+
" a  12a ¢ 192c

NN < +p* %(0.07 " 0.076%)

D:2(d+b+3r—\/2(2r+b)(2r+d)) d<b<2(d+r)

T as in previous cross-section

As previous cross-section (sum of the parts)

4
I =2ab*| L-02120-2" +lcd3+2D4(0.15+0.101)min(£,i)
3 a 124 3 b d b

T as in previous cross-section
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hi i

2 3
]t=2rj-(kl+k2:—l+k3—+k4 \]

o r02 r(?
h h?
k= 0.4427+0.0064—-0.0201-
h h?
ky =—0.8071-0.4047=+0.1051=
h h?
k3 =-0.0469 +1.2063——0.3538—
‘i g
h h?
ky = 0.5023-0.9618=+0.3639—
7 h
02<1<06 01<2<1.0
% %

2 3
M 7 7 7
Timax =—3t[hl +h2 —l+h3 l—2+h4 1—3]

T To o o

h h?

By = 2.0014-0.1400=-0.3231—

h h?

hy = 2.9047+3.0069—+4.0500—
h h?

hy ==15.721-6.5077—~12.496 —
‘i g

h h?

hy= 29.553+4.1115—+18.845—
i 7

1

In Roark’s [2] are torsion
formulas for 8 more
cross sections of machine
axis.
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Appendix 2. Calculation of the torsion properties of a multi-cell box girder
[4, Volume 1, p. 196]

In this example the torsion stiffness and shear stresses are calculated of a multi-cell
box girder bridge (figure 41). The thickness of the top deck (#/2) is half the thickness
(¢) of the other parts. Since < a, we can work with the centre-to-centre distances (a
and 2a) of the box walls. The contributions of the walls themselves can be also
neglected. The cantilever flanges of the box can be neglected for the same reason.

r<a

Figure 41. Cross section of the bridge

Figure 42 shows the cross section, the soap film and two weightless plates that occur
in the membrane analogy. The left plate moves w1 and the right plate moves w. In
this drawing we choose w» larger than wy . This will be consistently used in the
calculation. The answers will show whether the assumption was correct.

two weightless plates

soap film w,
S - MAMAME MME w,
cross section with two 5 ——g
cells [~ : 5t !
7 72/ : %ﬁ !

L t i
z
t
2a j
a

Figure 42. Equilibrium of soap film and weightless plates

The soap film membrane shear forces g play a large part in the calculation. Since w» is
larger than w1 , the drawn shear forces will have positive values.
q:ﬂs q/_ﬂS qu:ﬁS qm:ﬂs q!m:WZ_WIS

t 1 t 1 t
2! 2!
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The first four shear forces ¢, ¢', ¢" and ¢’ act downwards on the plates. The last

"

shear force ¢"" acts up on plate 1 and down on plate 2 (If wi were larger than wy , this

would be the other way around). The vertical equilibrium is

nee

ga +qg2a+q2a—-4q"a=paa (plate 1)

q"a+q"a+q"a+q"a=paa (plate 2)
So
Mea + Ms24 + %S2a - MM g, - 2pa2 (plate 1)
t t Et t
%Sa+%Sa +¥Sa +@Sa=pa2 (plate 2)
~t
2

Simplified and divided by a

8§w1 - %wz = 2pa (plate 1)
_§WI + 5§w2 = pa (plate 2)

From these two equations we solve

wlzgﬁat w zmgat

39 § 27398

"

The displacement w» is smaller than wi. So, in fact, shear force ¢”"" acts opposite to

what is drawn.
We make the transition to the ¢ —hill with w=¢, p =26 and S= 1/G. The result is

22 20
b =3506a by =356a

The torsion moment is twice the volume of the ¢ —hill

M, =2(¢-2a-a+¢y-a-a) = M, :%Ga?’te

Apparently, the torsion constant is

_128 ;

I =
7 39

t

We express ¢1 and ¢ in the moment
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M,
64 42

_loM,

b= 2

O

The stresses we calculate from the slope of the ¢ —hill (figure 43)

6 _ 11 M, L b2, by _ 10 M,
" = (I)_Z _ @& " = (I)l _(I)Z _ L%

Figure 43 shows the true directions of the shear stresses. The direction of the first
arrow can be chosen and the other arrow directions follow from the ¢ —hill slopes.
The middle web has the same slope as the right hand web, consequently, 7"’ has the

same direction as 7.

l r f T”” T” |1 a

Figure 43. Shear stresses in the cross section

Exercises

The resultant of the vertical shear stresses should be zero. The resultant of the
horizontal shear stresses should be zero. Check this.

The vertical shear stresses should give a torsion moment 1 A7, . The horizontal shear
stresses should give a torsion moment %M ;- Check this.

Use Bredt’s formulas to calculate torsion constant /, and the stresses 1 , if the middl
web is left out. What do you conclude?

€
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Appendix 3. Calculation of a nabla girder

The prestressed concrete box girder of this example is known in the Netherlands as
nabla girder applied in the Deltawerken when closing the Haringvliet. What follows is
a Delft University exam problem (Elasticity theory, 12 Jan. 1998) [20].

A box girder is loaded in torsion. The thickness of all walls is % (see figure). We
calculate the girder with the membrane analogy. The weightless plates in the corners
of the girder will have the same displacement because the girder is rotation
symmetrical.

a Calculate the displacements w; and w» of the weightless plates.

b

Calculate the torsion stiffness G/, of the cross section.

¢ Calculate the shear stresses in the cross section and draw them in the correct

directions.

Suppose that warping in the girder is locally constrained. Will this increase the torsion
stiffness, or will it become smaller, or will it stay the same? Explain your answer.

Answers

a Weightless plates

We choose w» of the middle cell larger than w of the corner cells. Equilibrium of the
weightless plate above the corner cells is

Wo-WM

w w
p%aa%\/g:aSTI-Fa S71-aS P

Equilibrium of the weightless plate above the middle cell gives

P%aa%\/gza SW2};W1 +a SW2];W1 +a S—Wz};w1
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This can be simplified to
p%a 3:%(3W1—W2)
L322
pya —;3(W2—W1)

from which we can solve w; and w» . A

Wﬁ%\/g%ah

w2=%\/§§ah

W m

cross section A-A

b Torsion stiffness
From the soap film we go to the ¢ —
hill with the following substitutions.

w=0
p=20
1

S:_
G

So
(|D =1 \/5 0G ah
173

0r=2~/36G ah
The torsion moment is two times the volume of the ¢ —hill.
M, =2 (%a a%\/3_(|)1 +%a a%\/g O +%a a%\/g O +%a a%\/g (|)2)
:az%ﬁ@ b1 +6y)
Substitution of the former in the latter gives
M, =a* 143 (3143 0G ah+13 06 ah)
=a” 13(1+1)0G an
=G3a’h 0
For a beam model of the girder holds
M,=GI 6

So, the torsion stiffness is
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Gl,=G3ah

¢ Shear stress
The shear stress is the slope of the ¢ —hill. First, we rewrite the equation for the
torsion moment

0G ah =41
9 a2

and express ¢1 and ¢ in the torsion
moment

In the outer walls of the girder, the
shear stress is

M
% =35k =20
a“h
In the inner walls is the shear stress

M M
2 /3%t _4 377t
h h 27 a2h

d Warpin
If warping is locally constrained, the girder will be stiffer than calculated above but
not much because closed cross sections hardly warp.
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Appendix 4. Calculation of a hollow-core slab

The hollow-core slab of this example was a Delft University exam problem (Elasticity
theory 26 October 2001) [20]. The plate has 11 channels and is modelled as a thin wall
closed cross section. Only 6 of the 12 webs have been included in the model. All walls
have a thickness .

00000000000

Cross section of a hollow-core slab

t

7a \a\a\

Model of the slab for calculation of the torsion properties

a The inner webs have been left out of the model. Why?

b Formulate the equilibrium equations of the membrane analogy. Use symmetry. (You do
not need to simplify or solve the equations.)

¢ The equations have been solved with the following result.

_ 85 pat _ 108 pat _ 115 pat

MT2327 ¢ M"27232 ¢ MTo2 g

In this wy is the displacement of the weightless plate above cell 1, w» is that of cell 2
and wj is that of cell 3. In addition, S is the soap film stress and p is the pressure under
the weightless plates.

Use this to calculate the torsion stiffness GI; of the slab cross section.

d Calculate the shear stresses in the slab cross section as a function of the torsion moment
and draw the shear stresses in the correct direction.

Answers
a Inner webs

The inner webs have been left out for two reasons. 1) They probably contribute little to
the torsion properties. 2) Fewer equations need to be solved now.

b Equations
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equilibrium of the plate above cell | pa? =345 — 52~ M
t

cell 2 pazzaswzt—ngsw??_asu

cell 3 pa7a:2aSW3_ 2 +2(7a)Sﬁ
t

Torsion stiffness
From soap film to ¢ —hill with substitutions

1
W= =20 S=—
¢ p G

Thus

85 108 115
d1= 23 20Gat ¢y = 232 20Gat ¢33 = 732 20Gat

The torsion moment is two times the content of the ¢ —hill.

M, = 2(2¢1 a® + 205 a? + o3 a(7a))

_ 85 108 115
2(2 23 20Gat a® +2108 232 20Gat a® + 13 532 26Gata(7a))

M, = %GGa t

For a wire frame model we use
M, =GI0

Therefore, the torsion stiffness is
61, = 1N Ga’t

Shear stresses

The shear stress is the slope of the ¢ —hill. We rewrite the equation for the torsion
moment

M
0Gat =—f-35-

a211‘|

and express ¢1, ¢2 and ¢3 in the torsion moment.

M M
(|)1 _ 85 89 97 F t 58 (|)2 108 58 (|)3 —

232 2 1191 232 191

‘A
=N
(¢
N
=
[
©

N
w
N
N}
N
-
N
=
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g5 M, o, =108 M, b3 115 M,

4)1 T ———— T ———— = ———
2382 2 2382 2 2382 2
The shear stresses become
4 T2 s & 4
<« D <« D <«
2 3 2 1
71“ T3 < T4y fizg “lflrs My
P T 2 N
o=t s M,
¢ 2382 2,
o, = b2 _ 108 My
¢ 2382 2,
s Gp—¢1_ 23 M,
/ 2382 2,
o b3 7 M,
: 2382 2,
s =98 115 M,
r 2382 2

Encore (not an exam question)
The graph below shows the torsion stiffness as a function of the number of webs 7 in the
model. It appears that a model with just 4 webs is sufficiently accurate for calculation of

the torsion stiffness.

A G]t
21+— Ga3t
n=2
n=4 20.5 . . e e °
n==6 )
20
n=12 f N

The largest shear stress converges less quickly with increasing » (not shown). But the
model with 6 webs is sufficiently accurate. The largest shear stress in a model with 12

webs is 1. = 225 My, , which is just 0.8% larger than the model with 6 webs.

ax ~ 4624 2,
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Appendix 5. Formulas for open thin wall cross sections [5]

The place of the shear centre is indicated with O.

b

{
1

t

~-

Ol
t h/2
l o
LY .

52

I, =1@bty+he)

_1 3,2
C =5 tbh

Tnax = % ¢ = max(ipt,,)
B

Omax = %

o h B 4

3 3
bith+by 1y

Ii=4(of by 3+

3, .3
_1.2 400
Co=131"— 3
bi 1 +b 1y
_ B
1.2
1p2ht

2
3%
6btstht,,

I, =1@be} +hty)
c —Lp3p2 3bt+2ht,
v f6btf+htw
B

lbzhtf3btf+2htw
6 3bts+ht,

I, =1@bty+hey)

O max Of  Oppax

Omax =~

_B
1,2
Lbihn

2 24;(b* +bh+h?) +3bht,,

C,=-Lbn
Yo (2b+ h)>



[
M
0 7
h
—>| etw
<>
b
h
— etw
v
b

sin o — oL .cos A
e=2r— M ———
oL —Sin o.cos o

1 :%roct3

. 2
SI o —acosa

CW:%rSt(oc3—6( , )
o —SsSmaoacosa

I, =1t} +hty)

Cy =2 () +18)

I, =1t} +hty)

_ 1 /1,433 3,3
CW—%(Zb tf+h tw)

More cross sections are in Roark’s [2, table 21].
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Appendix 6. Maple calculation of a box girder bridge with the Vlasov theory

>restart:

>1:=60: # [m]
>ECw:=1183e9: # [Nm4]
>GIt:=2690e8: # [Nm2]
>mt:=0: # [Nm/m]
>T:=269e5: # [Nm]

>

>with (DEtools) :

> ODE:=ECw*diff (phi (x) ,x,x,x,x)-GIt*diff (phi (x) ,x,x)=mt;
ot 0?
ODE := 1183 10" | — ¢(x) |- .2690 10" | — (x) |=0
ox ox

>bound_con:= phi (0)=0, (D@E@2) (phi) (0)=0, GIwW*D(phi) (1/2)-
ECw* (D@@3) (phi) (1/2)=T/2, D(phi) (1/2)=0;

bound _con = §(0)=0, (D> )()(0) =0,
2690 102 D($)(30)—.1183 10" (D(3))(¢)(30)= .1345000000 10%, D(¢)(30) =0

>evalf (dsolve ({ODE,bound con}, {phi(x)1}))
d(x) = .00005000000000 x + .6423299796 107'° e

6423299796 10710 4768521749 1)

>phi:=0.5000000000e-4*x%x-0.6423299796e-
10*exp (0.4768521749*x)+0.6423299796e-10*exp (-0.4768521749*x) :
>B:=-ECw*diff (phi,x, x):
>Mt:=Re (GIt*diff (phi,x)+diff (B,x)):
>plot(phi(x) ,x=0..1/2);
0.00144

(~4768521749 x)

0.00124

0.0014
0.0008
0.00084
0.00044

0.00024

o g 10 15 70 75 ]
>plot(Mt,x=0..1/2);

13450000.54

13450000

13445999 54

134499099
0

>plot(B,x=0..1/2);
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2.8e+17

2e+171

1.8e+H171

TeHl7q

SR

g g 10 15 20 x5 a0
>x:=1/2: simplify(B); simplify (phi);
2820580643 10°

001395145701
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Appendix 7. Maple calculation of a cantilever with the Vlasov theory

> restart:

> 1:=2540: # [mm]

> ECw:=207000*191e8: # [Nmm4]

> GIt:=79300*%278000: # [Nmm2]

> mt:=0: # [Nmm/mm]

> T:=2.26e6: # [Nmm]

>

> with (DEtools) :

> ODE:=ECw*diff (phi (x) ,x,x,x,x)-GIw*diff (phi (x) ,x,x)=mt;

4 2
ODE :=0.3953700010" (54 d)(x)] - 22045400000[;'2 d)(x)j =0
X X

> bound_con:= phi (0)=0, D(phi) (0)=0, GIw*D (phi) (1)-
ECw* (D@@3) (phi) (1)=T, (D@E@2) (phi) (1)=0;
bound con :=¢(0)=0,D(d)(0)=0,

22045400000D(¢)(2540) — 0.3953700010'° (D'*)($)(2540) = 0.226 107,
(2)
(D )(9)(2540)=0
> evalf (dsolve ({ODE,bound con}, {phi(x)}))
d(x) =—0.04341381587+ 0.0001025157176x — 0.267929963310° ¢' 024 )
1+0.04341408381¢" 01

> phi:=-.4154442895e-1+.9810141906e-4*x-.2563929731e-

6*exp (.2361332449e-2*x)+.4154468535e-1*exp (-.2361332449%e-2*x) :
> B:=-ECw*diff (phi,x, x):

> Mtl:=GIt*diff (phi, x):

> Mt2:=diff (B, x):

> plot(phi,x=0..1);

0.2
0.15+
0.1

0.05+

a &0 1000 1500 2000 2500

> plot(B,x=0..1);
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500 1000 1500 2000 2500

-2eHlg4

-4e+H1G

-BeHlg

-Ge-+15

> plot ({Mt2, Mtl+Mt2} ,x=0..1) ;
Ze+15 1

1 5e+05
18405

500000

0 500 1000 } 1500 2000 2500
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Appendix 8. Calculation of torsion stresses in an I section

M, =1.20 kNm
N t, =5.6 mm
\ h =200 mm
[=3400 mm | t;=8.5mm
———|b=100 mm
Figure. Cantilever loaded in torsion Cross-section, IPE 200
Young’s modulus ~ E=2.1 10° N/mm?
Poisson’s ratio v=0.35
Shear modulus = E =77777 N/mm?
2(1+v)
Torsion constant I, = %(h —tf)ts’v +%bt} =52152 mm*

Warping constant C,, = ﬁ’f (h—ty )2b> =1299 107 mm®

ECy =820.0 mm

Characteristic length /. =
t

In general, a torsion moment causes shear stresses and it can cause normal stresses. In
cross-sections that can warp freely only shear stresses occur. This happens in the free
end of the cantilever. The largest shear stress is

Mt
~ 0T 196 N/mm2,
It

T max

The Von Mises stress is 4/3 rf‘nax =339 N/mm”.

In cross-sections that cannot warp mostly normal stresses occur. This happens at the
fixed end of the cantilever. The bi-moment is

B=1.M, =9840 10° Nmn2,

which is accurate if /. < %l , which is fulfilled. The largest normal stress in this

section 1S

Omax = B =363 N/mm?>.

1 2
gh=tp)tyb

This stress occurs at the left and right of the flanges both in compression and tension.
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The rotation at the free end is

o=20l1 1 tanh L |=0.763 rad.
Gl z

t c

It needs to be mentioned that from a plastic point of view the stresses due to the bi-
moment can be neglected because just the shear stresses are an equilibrium system
that can carry the load.

Check

A finite element analysis was made with ANSYS 11. Applied are 20 node brick
shaped elements (solid95). At the fixed end all degrees of freedom have zero
displacement imposed. At the free end the torsion loading is applied by 6 forces. The
model consists of 959820 degrees of freedom. A linear elastic analysis was performed
(31 minutes on a Pentium 4 PC).

Figure. Mesh and torsion loading (red arrows) at the free end of the cantilever

Figure. Torsion deformation
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The horizontal displacement of nodes in the free ends of the flanges are —87.3 mm and

87.3 mm. Therefore, the rotation is

8734873
=00

=0.873rad.

The hand calculation result is 13% smaller. This might be caused by shear

deformation of the flanges.

-200
-155.556
-111.111
-66.667
—22.222
22,222
85.667
111.111
155.5586
200

= = =

BE0CAEOEN

= ]

P

I |

Figure. Horizontal and vertical shear stresses in a cross-section 300 mm from the free

end

The stresses in the re-entrant corners of the cross-section are ignored. (In theory the
sharp corners have infinitely large stresses.) The largest shear stress in the free end
cross-section is 200 N/mm?. The hand calculation result is 2% smaller.
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-351.51
-273.708
-195.508
-117.304
-35.102
3901
117.302
195.504
z273.707
351.%08

BEOORACNN

Figure. Normal stresses in a cross-section 50 mm from the fixed end

The largest normal stress in the fixed end cross-section is 352 N/mm?. The hand
calculation result is 3% larger. The differences between the results of the hand
calculation and the finite element analysis are acceptable for most purposes.
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Appendix 9. Stiffness matrix of a frame element

In some frame programs the torsion properties have not been implemented correctly.
To help software developers, this appendix gives the stiffness matrix consistent with
the torsion theory of Saint-Venant. The x axis is in the direction of the beam or
column. The y and z axis are the principal directions of the cross section. e, and e,
are the coordinates of the shear centre. /., is the moment of inertia of the cross
section in the y direction and /_, is the moment of inertia in the z direction. Shear
deformation has been neglected.

u u
x1 F x2
X uyl x1 sz
u
y
y uZl z2
a )
1 y
z y b
z1 FZZ
Dx1 Px2
@y
P21 ?z2
R 77
M 22
z1
0 0 0 0 —? 0 0 0 0 ¥l
El,, El,, El, El, El,,
s 0 e 12— 0 66—~ 0 -2—* 0 e 127 0 6—% Uyt
I ! I I !
12%22 eylzﬂ;z —6%22 0 0 0 —12%22 —e},lzﬂ% —6i222 0 Uz
I I ! I I !
T EI,, EIl,, EI,, EI,,
Gl 22w 2Bl (Bl Py pfy Bl G 0Py Bl (Bl (P gy
i “ l3 y 3 Yy 12 Z 12 Z ! y 13 i z 13 y 13 Yy 12 Z 12
4Bz 0 0 0 6i222 ey6i2” 2Bl 0 Pyl
! I I !
EI,, EI, EI, EI,
4—1«"-‘ 0 -6—= 0 e, 6—2% 0 2—]” 21
! !
% 0 0 0 0 0 U
EL,, EL,, EI
» »y Yy
sym. . . . 12—— 0 —e,12 0 —6—— || uyp
? e 2 V
El,, El,, El,,
121—3 eylzl—3 6[T 0 o
Gl, o Ely 5 EI, El, El,
T+e2127+e},12 3 ey6l—2 e, 6 2 02
EI,
4= 0 oy
El,,
4
1 JLPz2 |

The matrix can checked in the following way. A rotation ) around the shear centre at

node 2 gives ¢, =M, ) =e, N, U,y =—e,n. The other displacements and rotations
T o GI
are zero. Substitution in the matrix gives M = —Twn s M, = Twn . The other

forces and moments are zero. This is the correct result.
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The latter stiffness matrix can be extended with shear deformation and constrained
warping. In addition, the y and z axes do not need to point in the principal directions
and the element can be translated over distances s, and s, compared to the nodes.
Moreover, linearly distributed loads ¢, ¢, and g, can be applied and a linearly
distributed torsion moment m, can be applied. The result is not shown here because it
does not fit on one page. The Maple script below produces the 14x14 elements of the
stiffness matrix. These can be copied to Fortran or another language in which a frame

program is writen.

”yl Uy Fxl J_I’f\xz sz
FZ‘i Uz
yl
o
(Py DPx1 Mxl sz
L%'? ?:1
Myl
le
S
Y X
ykr / ;‘%SZ
B &# 2S5 B
Wl W2g 2
z
Fa | TN [Kn Kip Kipg || wa
Fy1 N, Ko Uyl
le N3 K3’3 Uz
Mxl N4 Px1
Myl N5 (Pyl
Mz | | Ne 01
Bii_| M|, W
Fyo Ng Ux)
Fy2 N9 Llyz
F,, Ny SYm. Uyn
My | | M Px2
My | | Mo ®y2
M| |3 9.2
| B, [ N4 Kia14 ]| wy
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Note that there is a restriction to connecting elements. The warping can only be
connected when elements have the same cross section and are in line with each other.
If not, one must choose for no warping (w = 0) or no bi moment (B = 0).

> restart: # Frame element stiffness matrix including constrained warping

> # The element has 3 lines: 1) structure line, 2) normal force centre line, 3) shear
> force centre line. The normal force centre line is offset by sy, sz to the structure
> centre line. The shear centre line is offset by ey, ez to the normal force centre
1i

> gx: —qxl*(l—x/l)+qx2*x/l: # load on the normal force centre line

> qy:=qyl* (1-x/1)+qy2*x/1:

> qz:=qzl* (1-x/1)+gz2*x/1:

> mx:=mx1l* (1-x/1)+mx2*x/1:

> e:=diff (ux(x),x): # axial strain of the structure centre line

> phiy:=gy(x)-diff (uy(x),x): # rotations of a section. g is the shear deformation
> phiz:=gz (x)-diff (uz(x),x):

> Ky:=diff (phiy, x) : # curvatures

> Kz:=diff (phiz, x):

> N:=EA*e+EA*sy*Ky+EA*sz*Kz: # normal force and moments

> My:=EA*sy*e+EIyy*Ky+EIyz*Kz:

> Mz:=EA*sz*e+EIyz*Ky+EIzz*Kz:

> Vy:=GAy*gy (X) : # shear forces

> Vz =GAz*gz (x) :

> B:=-ECw*diff (phi (x),x,x): # bi moment

> # phi is the rotation around the shear centre line
> Mx:=GIw*diff (phi (x),x)+diff (B, x)+Vz*ey-Vy*ez: # torsion moment

> DEl:= diff (N, x)+gx=0:

> DE2:= diff (Vy,x)+qy=0:

> DE3:= diff (Vz,x)+gz=0:

> DE4:= diff (Mx,x)+mx=0:

> DE5:= diff (My,x)-Vy=0:

> DE6:= diff (Mz,x)-Vz=0:

> BCl:= uxl=ux(0), ux2=ux(l):

> BC2:= uyl:uy(O)+ph1(O) (sz+tez), uy2=uy(l)+phi(l)* (sz+ez), phizl=-gy(0)+D(uy) (0),

phiz2=-gy (1) +D(uy) (1) :
> BC3:= uzl=uz (0) -phi(0)* (sytey), uz2=uz(l)-phi(l)*(sytey), phiyl= gz (0)-D(uz) (0),
phiy2= gz (1)-D(uz) (1) :

> BC4:= phixl=phi (0), phix2=phi (1), wl=D(phi) (0), w2=D(phi) (1):

> Opl:=dsolve ({DEl,DE2,DE3,DE4,DE5,DE6,
BC1,BC2,BC3,BC4}, {ux (x),uy(x),uz (x),phi(x),gy(x),gz(x)}): assign(Opl):

> e:=diff (ux(x),x):

> phiy:=gy(x)-diff (uy(x),x):

> phiz:=gz (x)-diff (uz(x),x):

> Ky:=diff (phiy,x):

> Kz:=diff (phiz,x):

> N:=EA*e+EA*sy*Ky+EA*sz*Kz:

> My:=EA*sy*e+EIyy*Ky+EIyz*Kz:

> Mz:=EA*sz*e+EIyz*Ky+EIzz*Kz:

> Vy:=GAy*gy (x) :

> Vz:=GAz*gz (X) :

> B:=-ECw*diff (phi(x),x,x):

> Mx:=GIw*diff (phi (x),x)+diff (B, x)+Vz*ey-Vy*ez:

> x:=0: Fxl:=-N: Fyl:=-Vy: Fzl:=-Vz: Mxl:=-Mx: Myl:=-Mz: Mzl:=My:
> x:=1: Fx2:=N: Fy2:=Vy: Fz2:=Vz: Mx2:= Mx: My2:=Mz: Mz2:=-My: B2:=
>

>

>

>

>

>

>

>

>

>

>

>

[ ]:=simplify(diff (Fx1l,uxl)):
K[1,2]:=simplify(diff (Fxl,uyl

[ ]:=simplify(diff(Fyl,uyl

[

)
)
)
K[14,14] :=simplify(diff (B2,w2)

)
) :
)

uxl:=0: uyl:=0: uzl:=0: phixl:=0: phiyl:=0: phizl:=0: wl:=0:
ux2:=0: uy2:=0: uz2:=0: phix2:=0: phiy2:=0: phiz2:=0: w2:=0:
N[1l]:=simplify (Fx1):

N[2]:=simplify (Fyl):

# etc.
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Appendix 10. Derivation of Vlasov’s theory
In this appendix the equations of the torsion theory of Vlasov are derived.
Ingredients

The following definitions are used.

strain £ = Ouy [4] (1)
Ox
warping u, =10 (p. 5) (2)
torsion deformation 6 = ? (. 5) 3)
X
Ty =Tays +7T

14
shear stresses v 4)

8
Toys = G(%—z)e

(p- 6) )
oy
Ts =G(—+y)0
0z
.\ dz dy
boundary condition T, o Tyz Tl 0 [4] (6)
torsion moment Mg = I(y Tyzs —ZTyys)dA (p. 6) @)
A
My = J. (Y Tzpy — ZTxyV)dA ®)
A
M, =M;g+M,y, )
m; + dj\l/[’ =0 (10)
X
Mg =GI;0 (p. 3) (11)
bi moment B=- j 6 W d4 (p. 24) (12)
A
warping constant C,= J. ¥2dA4 (p- 24) (13)
A

One of the equilibrium equations of linear elastic material is

6Gxx + a’txy + 6sz =0
Ox oy 0z

[4] (14)

One of the constitutive equations of linear elastic materials is

€y = -V —-v—2£, [4]



In beams the stresses perpendicular to the surface are small and neglegible.

Soc,, =0,,=0. Substitution in the previous equation gives
G =Et€,,. (15)
Approximation

. 1 . :
It is assumed that — I (TS Txyp + Taz§ Tazy )dA is much smaller than the torsion

GGA

moment in a beam cross section.
1
@J.(TxyStxyV + TXZSTXZV)dA <M, (16)
A

This is fulfilled for thin wall open cross sections. This follows from figure 40: the
Saint-Venant stress flows partially with the Vlasov stress and partially against the
Vlasov stress. The with and against contribution to the integral cancel each other out.
For other cross-sections the accuracy of this approximation is not clear. Note that the
Vlasov theory shows that constrained warping for closed and solid cross sections is
often neglegeble. However, the unclearness above makes the conclusion less hard.
More research is needed.

Derivation

Substitution of equation 1, 2 and 3 in 15 gives
=E¥Y——. (17)

Substitution of this in equation 12 using equation 13 gives

2
B= —ECWd—;P (18)
dx

Substitution of this in equation 17 gives

_BY
C

w

(19)

Cxx =

Substitution of this in equation 14 gives

GTXJ/V +aszV _a_Bi
dy oz  oxC,’
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ot 2
[(E Ty gy - jd—BidA

oy Oz x C,,
otV 61
Application of the product rule —= 4 =TV = oF " @ and equation 13 gives
y y
Otgr¥ 0¥ otV ov dB
J'( Xy — Ty — L oxzV = xzV T,y “)dA=".
y oy oy 0z 0z dx
¢ OtgyY ot ¥ dz dy
Green theorem is D 22V g =t P — Y —)dS
£( P P ) f( xyV dS TxzV dS)

which is equal to zero because of equation 6. (The Saint-Venant stresses already
comply with the boundary condition therefore the Vlasov stresses must also comply.)
Application of this gives

oY dB

J.(TxyV oy +szV P )dA:E-

Substitution of equation 5 gives

‘Esz dB
_onaa=
Go V=7

TxyS
[ Gy (=4 2)+ Ty (
y GO

This can be written as

1 dB
_[ Vly -z TV )dA = @ IJ; (TxyVTxyS + Ty Tyzs )dA+ E
Application of equation 8 and 17 gives

dB

M
V= dx

Substitution of this and equation 11 in equation 9 gives

do dB
M, =G, 22+ (20)
dx dx
Substitution of equation 18 in 20 and the result in equation 10 gives
2
ECWd 2- o1, 42 2 =m 1)
dx dx
Q.E.D.
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