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Preface 
 
In the past, torsion was not considered in most calculations of engineering structures. 
Torsion was the domain of mechanical engineers who design machines with axis that 
transfer torsion moments. At present, we do most calculations with computers. The 
software tries to represent reality accurately and includes next to extension, bending 
and shear also torsion. We discover that torsion provides extra opportunities to fulfil 
the requirements of architects, contractors and subcontractors. 
 
Important is of course that we can interpret computation results: Which part of reality 
is taken into account and which part is not? Is the approximation safe or do we need 
to correct in some situations? Important is also that we can name concepts and have 
discussions with others. Finally, it is important that we can check the software by 
calculating simple situations by hand. I hope this reader contributes to this. Perhaps 
also that a software developer who reads this text comes up with ideas to make our 
software even better. 
 
If you have remarks, I would like to hear these. They will be processed in a following 
edition. 
 
Pierre Hoogenboom 
Hoogmade, 3 Augustus 2008 
p.c.j.hoogenboom@tudelft.nl 
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Notation 
 
A ………….. cross-section area …………………………………. mm2 
b …………... cross-section width ……………………………….. mm 
B ………….. bi-moment ………………………………………… kNm2 

wC ………… warping constant (Dutch: welvingsconstante) ……. mm6 
E …………... Young’s modulus (elasticiteitsmodulus) …………. N/mm2 

wEC ……….. warping stiffness ………………………………….. Nmm4 
G ………….. shear modulus (glijdingsmodulus) ……………….. N/mm2 

tGI  ………... torsion stiffness …………………………………… Nmm2 
h …………... cross-section thickness …………………………… mm 

pI …………. polar moment of inertia …………………………… mm4 

tI ………….. torsion constant or torsion moment of inertia ……. mm4 

yyI ………… bending moment of inertia in the z direction …….. mm4 

zzI ………… bending moment of inertia in the y direction …….. mm4 
l …………… length of beam or column ………………………… mm 
cl …………... characteristic length ………………………………. mm 

tm …………. distributed torsion moment load ………………….. kNm/m 

tM …………. internal torsion moment …………………………... kNm 
p ………….. air pressure under the soap film …………………... N/mm2 
q …………... distributed beam load ……………………………... kN/m 
S ………….. membrane force in the soap film …………………. N/mm 
t …………… thickness ………………………………………….. mm 
T …………... torsion moment load ……………………………… kNm 
w ………….. altitude of a floating plate ………………………… mm 
x ………….. length coordinate of the beam or column ………… mm 
y , z ……….. width coordinates of the beam or column ………… mm 

 
θ………….. specific torsion ……………………………………. mm 
ν…………... Poisson’s ratio (dwarscontractiecoëfficiënt) ……… - 
σ………….. normal stress ……………………………………… N/mm2 
τ…………... shear stress ………………………………………... N/mm2 
φ…………... phi hill …………………………………………….. N/mm 
ϕ………….. rotation of a cross-section ………………………… rad 
ψ………….. warping function (welvingsfunctie) ………………. mm2 
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Overview 
 
Three dimensional frame programs include torsion in the analyses. To this end the 
torsion stiffness of the elements must be known. When het program has computed the 
force flow, the stresses in the element are checked. Consequently, in this course two 
things are central: 
 
1. The torsion stiffness tGI  of cross sections of prismatic structural elements such as 
    beams and columns. 
 
 ?=tGI  
 
2. The distribution of torsion stresses over a cross section in particular the largest 
    shear stress maxτ in a cross-section due to the torsion moment tM . 
 

max ?
= tM

τ  

 
Two dimensional frame programs do not include torsion because there is no torsion if 
there is no out of plane deformation. In two dimensional beam grids (concrete 
foundations) torsion can occur. 
 
Advanced 
 
The way in which beam ends are connected can have a large influence on the 
displacements and stresses due to torsion. Advanced frame programs can include this 
influence. For this the warping stiffness wEC  of a cross-section is important. These 
programs do not only draw the torsion moment line tM  but also the bi-moment line 
B. This will be addressed at the end of the course. 
 
Learning objectives 
 
1. Formulas for common cross sections 
2. Calculation of box girders 
3. Using software 
4. Understanding the stress distribution and limitations of the theory 
5. Becoming familiar with the scientific approach 
 
Learning objectives 1, 2 and 3 are directly important for engineering practice. 
Learning objective 4 is important to evaluate computation results. Learning objective 
5 is important to independently solve problems using engineering literature. 
 
Definition 
 

The torsion stiffness tGI  is defined by the following equation ϕ
=t tM GI

l
. In this, l is 

the length of the beam, ϕ is the rotation of the beam ends with respect to each other 
and tM  is the torsion moment (figure 1).1 

 
1  pronounce ϕ = fee 
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Figure 1. Deformation of a beam due to a torsion moment 
 
Estimated torsion stiffness 
 
For calculating the torsion stiffness tGI , often the polar moment of inertia pI  is used. 
It is defined as 
 
 2= ∫p

A
I r dA  

 
In this, A is the cross section area and r is the distance of a point in the cross section to 
the centre of gravity. It can be also calculated as 
 

= +p xx yyI I I  
 
However, the next expression is only true for circular bars and circular tubes  
 
 =t pGI GI  
 
where

2(1 )
EG =
+ ν

 is the shear modulus. E is Young’s modulus, ν is Poisson’s ratio 

and tI  is the torsion constant.2 For other cross sections  
 
 <t pGI GI . 
 
Neglecting the torsion stiffness 
 
Often, torsion contributes little to the force flow. Then the torsion stiffness can be set 
to zero. However, an element can contribute little to the force flow but still it must 
deform the same as the structure. This torsion is called compatibility torsion. The 
torsion moment can be considerable for this element and it is only computed correctly 
if a realistic torsion stiffness is used. 
 
 
 
 

 
2  pronounce ν = nee, many engineers say ν = nu because this is how it is written in Greek 
   books (but not how it is pronounced by Greek people). 

tM

tM
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Reinforced concrete 
 
Reinforced concrete beams without prestress lose much of their torsion stiffness when 
the concrete cracks. In figure 2 the cracked stiffness of specimen RC1-3 is only 18% 
of the uncracked stiffness. 
 

 
Figure 2. Experimental − ϕtM diagrams of reinforced concrete beams [1] 
 
For example, if a grid of foundation beams is computed with uncracked torsion 
stiffness, then part of the load will be carried by the torsion moment and a part by the 
bending moment. However, if the cracked torsion stiffness is used, small torsion 
moments occur and almost all load is carried by bending moments. In the latter case, 
we need to design more longitudinal bars but much less stirrups. 
  
 
Stress distribution 
 
Thin wall closed cross section are very suitable to carry a torsion moment because all 
material is used. open and solid cross sections are less suitable for torsion (figure 3). 
The stress distribution is often called shear flow because it looks like a small river. 
 
 

open massief gesloten geslotenopen massief gesloten gesloten  
Figure 3. Torsion stresses in typical cross sections 
 
 
 

uncracked stiffness 

serviceability moment 

cracked stiffness 

crack moment 

open   solid    closed    closed  
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Tables 
 
Many design manuals have formulas for the torsion 
stiffness tGI  and the largest shear stress maxτ .3  
Particularly comprehensive is “Roark’s Formulas for Stress 
& Strain” [2] (appendix 1). Table 1 is composed by the 
author using a program for cross section analysis. 
 
 
Table 1. Torsion properties of rectangular cross sections 

b
h

 3bh
tI  

3
pI

bh
 2

tM
bhmaxτ

 2
2τ

tM
bh

 3 31000 wC
b h

 2 2
100 B

b hmaxσ
 

1.0 0.141 0.167 0.210 0.210 0.134 0.368 
1.2 0.166 0.203 0.221 0.237 0.352 0.565 
1.4 0.187 0.247 0.230 0.262 0.838 0.987 
1.6 0.204 0.297 0.237 0.281 1.418 1.37 
1.8 0.218 0.353 0.243 0.299 2.000 1.69 
2.0 0.229 0.417 0.249 0.314 2.540 1.94 
2.5 0.250 0.604 0.261 0.342 3.640 2.35 
3.0 0.264 0.833 0.271 0.362 4.416 2.59 
4.0 0.281 1.417 0.288 0.388 5.354 2.82 
5.0 0.292 2.167 0.299 0.398 5.865 2.90 

10.0 0.314 8.417 0.323 0.400 6.642 2.94 
50.0 0.331 208.417 0.329 0.400 6.931 2.82 
∞      1

3  ∞ 1
3  2

5  1000
144  100

36  

 

For example, for a cross section that is twice as wide as high 30.229=tI bh and 

max 20.249
τ = tM

bh
. Note that pI is much larger than tI . This is why pI cannot be used 

to approximate tI . (Spread the word.) 
 
 
Stress check 
 
Often the shear stress due to torsion is not the only stress in a cross section. Other 
stresses occur due to extension, bending and shear. The combination of these stresses 
should not lead to failure. For example, in steel structures we check the Von Mises 
stress. This is treated in other courses. 
 
 
Warping 
 
Warping is the deformation of an initially plane cross section. In Dutch it is called 
“welving”. It occurs due to a torsion moment and also due to a shear force. 

 
3 pronounce τ = taf with an “a” as in car. Many engineers say τ = tau 

h 

b 

τ max 

2 
τ 

τ max 

2 
τ 
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Figure 4. Warping of square beam ends due to torsion 

 
Theory of Saint-Venant 
 
In 1856, Aldémar Barré de Saint-Venant 4 published a theory for torsion [3]. It starts 
from the assumption that a cross section rotates around the x axis and warps in the x 
direction (figure 5, rotation is shown, warping is not) 
 

( , )

= − θ

= θ
= ψ θ

y

z

x

u zx

u yx
u y z

 

 
In this,

l
ϕ

θ =  is the specific torsion and ψ  is the warping function, which describes 
the warping of the cross section.5 The assumption is only realistic for small θ. 

 
Figure 5. Displacement of an arbitrary point due to a small rotation ϕ of a cross 
section (warping is not shown) 
 
Exercise: Check whether Sant-Venant’s assumption makes sense. 
 
Displacement method 
 
In the displacement method we select the warping as an unknown function. The result 
of the derivation [4] is the partial differential equation 

 
4  A.J.C. Barré de Saint-Venant (1797 – 1886) was a French civil engineer. Later in live he 
was a mathematics professor at the École des Ponts et Chaussées [Wikipedia]. 
5  pronounce θ = teta , ϕ = fee, ψ = psee 

tM

tM
x
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2 2

2 2 0
y z

∂ ψ ∂ ψ
+ =

∂ ∂
 

 
with boundary condition 
 

 cos sinz y
n

∂ψ
= α − α

∂
 

 
where α  is the angle between the positive y axis and the outward normal vector on the 
edge in the considered point.6 If ψ  is solved, the stresses can be calculated with 
 

 

 ∂ψ
τ = − θ ∂ 

∂ψ τ = + θ ∂ 

xy

xz

G z
y

G y
z

 

 
and the torsion moment with 
 
 ( )= τ − τ∫t xz xy

A
M y z dA . 

 
The torsion stiffness is 
 

 =
θ

t
t

MGI . 

 
Figure 6. Warping function ( , )y zψ  of a triangular cross section. 

Mathematicians call this function a monkey saddle. 
 
Force method 
 
In the force method we choose the stresses as unknown functions. The result of the 
derivation [4] is the partial differential equation 
 

 
2 2

2 2 2G
y z

∂ φ ∂ φ
+ = − θ

∂ ∂
 

 

and the boundary conditions 
 

6 pronounce α = alfa 
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0
s

∂φ
=

∂
. 

 
The function ( , )y zφ  has no direct physical meaning.7 The function has the shape of a 
hill and therefore it is called φ –hill (figure 7).8 If φ  is solved we can calculate the 
torsion stresses with 
 

 ∂φ
τ =

∂xy z
 

xz y
∂φ

τ = −
∂

. 

 
Figure 7. φ –hill of a triangular cross section 

 
The shear stress in random perpendicular directions n and s can be calculated in the 
same way 
 

 ∂φ
τ =

∂xn s
 

xs n
∂φ

τ = −
∂

 

 
and the torsion moment with 
 

2= φ∫t
A

M dA . 

 
The torsion stiffness is 
 

 =
θ

t
t

MGI . 

 
 
Internal edge 
 
A cross section of a box girder does not only have an external edge but also one or 
more internal edges. It can be proven that for each of the internal edges holds [4, p. 
186] 

 
7 pronounce φ = fee (Greek capital letter) 
8 pronounce fee-hill 
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2xs g
s

ds GAσ = − θ∫  

where s is the considered internal edge and gA the accompanying opening area of the 
cross section. This result is required in the calculation of multi-cell box girder bridges. 
 
Exact solutions 
 
The differential equations can be solved analytically for four cross sections (table 2). 
More exact solutions have not been found. Note that circular sections do no warp. 
 
Table 2. Four exact solutions of the differential equations 

 

y

z

r y

z

r

 

 
0ψ =  

2 2 21
2 ( )G r y zφ = θ − −  

 
 

41
2= = πt pI I r  

0=wC  

max 1
2

τ = tM
Ar

 

max 0σ =  
 

y

z

r

h

y

z

r

h  

 
0ψ =  

2 2 21
2 ( )G r y zφ = θ − −  

4 41
2 ( ( ) )= = π − −t pI I r r h  

0=wC  

maxτ = t

t

r M
I

 

max 0σ =  
   

y
z

aa

b
b y

z

aa

b
b

 

 
2 2

2 2
−

ψ =
+

b azy
b a

  

2 2 2 2

2 2 2 2(1 )a b y zG
a b a b

φ = θ − −
+

 

3 3

2 2
π

=
+

t
a bI

a b
 

2 21
4 ( )= π +pI ab a b  

3 3 2 2 2

2 2 2
( )

24 ( )
π −

=
+

w
a b a bC

a b
 

max 21
2

τ =
π

tM
ab

 

2 2 2 2
max 2 212

π −
σ =

+

a b a b B
a b

 

 

y
z

a

2 3a y
z

a

2 3a

 

 
2 2(3 )

6
ψ = −

z y z
a

 

( )(2 3)(2 3)
6
G a y a y z a y z

a
θ

φ = − + − + +  

49
5 3=tI a  

43 3=pI a  
63

70 3=wC a  

max 36
5 3

τ = tM
a

 

max 49
70 3

B
a

σ =  
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Finite element method 
 
The finite element method can be used to solve the differential equations with ψ  or φ  
for every cross section shape9. To this end the cross section is divided in a large 
number of quadrilateral and triangular elements. There are many programs that can 
perform the computation. Examples are 
 
ShapeDesigner http://mechatools.com 
ShapeBuilder 3.0 http://www.iesweb.com 
 
The program user can set the size of the elements. This can be used to check the 
accuracy of the computation: Repeat the computation with elements of about halve 
size. If the computation results do not change much, it is sufficiently accurate. If the 
results do change much, the elements are too large. We do not need to be economical 
with the number of elements because even a mesh with 10 000 elements is computed 
in seconds on a modern PC. 
 
Most frame programs have libraries of standard sections, in which torsion 
constants tI are included. Therefore, these do not need to be computed. However, if 
we design a cross section, than tI must be computed. SCIA Engineer has a module that 
automatically computes the torsion constant tI of any cross section with the finite 
element method. The structural engineer needs to choose for this computation. If he or 
she does not, the program does the structural analysis with the polar moment of 
inertia pI . This would give completely wrong results (Compare tI  with pI  in table 
1). 
 
Example of a rectangular cross section 
 
We consider a timber beam with a rectangular cross section. 
 
depth = 400 mm 
width = 200 mm 
Young’s modulus  E = 10000 MPa     
Poisson’s ratio   ν = 0.1 
torsion moment  100=tM kNm     

shear modulus   10000 4545
2(1 ) 2(1 0,1)

EG = = =
+ ν +

 MPa  

 
We use table 1. In this table h is always smaller than b. So h = 200 and b = 400.  

 
9 The development of the finite element method got off the ground in 1960. In this year the civil 
engineers Ray Clough (1920 – 2016) and Edward Wilson (1931 – ) wrote a computer program that 
computed the stresses in dams. They worked in the University of California at Berkeley. The program 
was applied to the Norfork dam, which controls a lake in Arkansas, USA. In the middle of this dam a 
large vertical crack had occurred. The finite element computation showed that the dam was safe despite 
the crack. The dam did not need to be replaced [21]. The success got the attention of mathematicians. 
They developed the method further to solve arbitrary differential equations. 
 
One can say that the mathematician stole our finite element method, remodeled it unrecognisably and 
gave it back, so that we can solve the differential equations of Saint-Venant. 
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3 3 100.229 0,229 400 200 4545 333 10= = × × × = ×tGI bh G Nmm² 
6

max 2 2
100 10 = 25.1

0.249 0.249 400 200
×

τ = =
× ×

tM
bh

MPa 

 
Exercise: What happens if you accidentally exchange h and b ? 
 
 
We can determine tGI  and maxτ in another way. According to Roark’s formulas 
(appendix 1) 
 
a = 400/2 = 200 
b = 200/2 =100 

4
3 16

3 43.36 1
12

  
= − −      

t
b bGI Gab
a a

 

4
3 1016

3 4
100 1004545 200 100 3.36 1 333 10
200 12 200

  
= × × − − = ×   ×   

Nmm² 

2 3 4
max 2 2 3 4

3 1 0.6095 0.8865 1.8023 0.9100
8

 
τ = + + − + 

  

wM b b b b
aab a a a

 

6 2 3 4

2 2 3 4
3 100 10 100 100 100 1001 0.6095 0.8865 1.8023 0.9100

2008 200 100 200 200 200

 × ×
= + + − + 

× ×   
 

25.46=  MPa 
 
 
The third and last way to determine tGI  and maxτ is by the finite element method. 
The program SCIA Engineer produces (See figures 8, 9, 10 and 11): 
 

730175100=tI  mm4 
104545 730175100 331.9 10= × = ×tGI  

4
max 2.55 10−τ = ×  MPa 

 
The torsion stiffnesses that are determined with the three methods agree well.  
The largest stress determined by table 1 and Roark’s formulas agree well too. The 
largest stress computed by SCIA Engineer is much too small. Apparently, this stress 
needs to be multiplied with 310−

tM . This is caused by the philosophy of the program. 
After all, in this phase of a structural analysis, the moments are not known. 
 
Note: In figure 9, the altitude lines have negative values. So, we are looking at a φ –
valley instead of a φ –hill. For the principle this does not matter. 
 
 

Note: The figures also show buttons that are related to shear stiffness and the stresses 
due to a shear force. For this is also a differential equation. This subject is not covered 
in these notes. 
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Figure 8. Element mesh and warping of the cross section 
 

 
Figure 9. φ –hill 
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Figure 10. Shear stresses xzτ in the z direction of the cross section 
 

 
Figure 11. Shear stresses xyτ in the y direction of the cross section 

z

y
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Interpretation of the φ –hill 
 
A top view of the φ –hill gives much qualitative information on de distribution of the 
shear stresses. In a certain point the direction of the shear stress is equal to the 
direction of the altitude line (figure 12). The magnitude of the shear stress is inversely 
proportional to the distance between the altitude lines. Therefore, the altitude lines are 
stress trajectories. Large stresses occur where the altitude lines are close to each other. 
  

n

s

σ   =        = 0xn s
∂φ
∂

σ                  maxxs =
n

∂φ
−

∂
=

n

s

σ   =        = 0xnσ   =        = 0xn s
∂φ
∂

σ                  maxxs =
n

∂φ
−

∂
=σ                  maxxs =

n
∂φ

−
∂

=

 
Figure 12. Relation between the stresses and the altitude lines of the φ –hill 
 
Estimated torsion stiffness 
 
A formula exists for estimating the torsion stiffness of squat cross sections [5]. 
 

 
4

24
≈t

p

GAGI
Iπ

 

In this A is the cross section area. The word squat means here that the cross section is 
not elongated, has no thin parts and has no parts sticking out. Examples are, square 
cross sections (8% to large), solid round cross sections (exact) and cross sections 
shaped as an equilateral triangle (14% to large). The formula can be derived by 
rewriting the solution for an ellipse cross-section (table 2). 
 
Thin wall open cross sections 
 
Formulas exist for thin strips and thin wall open cross sections. 
 
Strip 

31
3=tGI G bh  

max 21
3

wM
bh

τ =  

 
Thin wall open cross section 
 

31
3= ∑t i i i

i
GI G b h  

21
3

τ = tj t
j

t j j

GI M
GI b h

 

 

b 
h 

b i 

  

xnτ

xsτ

ih
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More accuracy can be obtained by replacing 1
3 by numbers from table 1. 

If G is the same for all parts, the latter formula simplifies into 
 

τ = t j
j

t

M h
I

 

 
Exercise: Derive this formula. 
 
Example of a balustrade 
 
A glass balustrade has a wooden hand rail (see figure 13). The connection is glued. 
The shear modulus of glass is 

70000
2(1 ) 2(1 0.2)

= =
+ ν +
EG = 29167 N/mm² 

The torsion stiffness of the glass is  
3 91

329167 1320 20 103 10= × = ⋅tGI  Nmm² 

The torsion stiffness of the wood is 
3 94000 0.207 100 60 17.9 10= × × × = ⋅tGI  Nmm² 

In total 9121 10= ⋅tGI Nmm². 
The balustrade is loaded by a torsion moment of 2 kNm. The largest shear stress in 
the glass is 

6

21
3

103 2 10
121 1320 20

⋅
τ =

×
= 9.7 N/mm² 

 

 
 
Figure 13. Balustrade with hand rail   Figure 14. Box girder 
 

s i 

h i 

A 
h min 

60 mm

100

20

20

2
hard wood

4000 N/mm=G

1300

2
glass

70000 N/mm
0.2

=
ν =
E



 15 

The largest shear stress in the wood cannot be calculated by hand because this is 
influenced by the connection with the glass. In the top of the hand rail the shear stress 
is approximately 
 

6

2
17.9 2 10
121 0.239 100 60

⋅
τ =

× ×
= 3.4 N/mm² 

 
Formulas by Bredt 
 
In 1896, Rudolph Bredt derived two convenient formulas for closed thin wall beams 
that have just one cell [6] (figure 14). 10 
 

24
=

∑
t

i

i ii

AGI s
G h

  (Bredt’s second formula) 

2
τ = t

j
j

M
Ah

  (Bredt’s first formula) 

 
Exercise: In closed cross sections the largest shear stress occurs in the thinnest wall, while in 
open cross sections the largest shear stress occurs in the thickest wall. What causes this? 
 
Membrane analogy 
 
The differential equation of the force method is the same as that of a soap film. This 
was first used by Ludwig Prandtl in 1903 [7].11 The differential equation of a soap 
film is 
 

 
2 2

2 2
w w p

Sy z
∂ ∂

+ = −
∂ ∂

. 

 
In this, S is the horizontal tensile force in the film and p 
is the over pressure under the film. The boundary 
condition is w = 0 on the edge. 
 
Thus we can interpret the φ –hill as a soap film over an open box. The top view of the 
box has the shape of the cross section of the beam. There is overpressure in the box, 
which makes the film bulge.  
 
Often this is called “membrane analogy”. This name is an unfortunate choice because 
a membrane can have different stresses in different directions. A soap film has in all 
directions the same stress. 

 
10  Rudolph Bredt (1842 – 1900) was a structural designer. He was in charge of the first crane 
building company of Germany in Wetter an der Ruhr (DEMAG)[22]. 
11  Ludwig Prandtl (1875 – 1953) was a professor in Göttingen, Germany. He also did 
groundbreaking research in flow around ships and airplanes and he was active in both world 
wars [Wikipedia]. 
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When comparing the soap film differential equation (p. 15) to the φ –hill differential 
equation (p. 6), we notice that the tensile force S in the soap film can be related to the 
shear modulus G of the beam material. The overpressure p in the box can be related to 
the specific torsion θ of the beam. 
 
 w = φ  

 1S
G

=  

2p = θ  
 
Membrane analogy for box girders 
 
The cross section of a closed box beam has not only an external edge but also one or 
more internal edges. On each of the internal edges, there are two conditions for the 
soap film 
 

 0w
s

∂
=

∂
 

 ∂
=

∂∫ g
s

wS ds pA
n

. 

 

In this, s is the considered internal edge and gA is the considered area of the cross 
section opening. The last formula can be derived from the formula on the top of page 
8. This means that the value of w is constant on an internal edge. Moreover, the 
vertical resultant of the soap film force over the internal edge is equal to the 
overpressure p times the area gA of the opening. 
 
Figure 15 shows the interpretation: A horizontal weightless plate shaped as the 
opening, hovers above the opening. The soap film is attached to the plate edge. The 
soap film pulls the plate down the overpressure pushes the plate up. 
 
 

zeepvlies

trommel

doorsnedevorm

gewichtsloos plaatje

opening
zeepvlies

trommel

doorsnedevorm

gewichtsloos plaatje

opening

 
 

Figure 15. Weightless plate as internal boundary condition 
 
Application of the membrane analogy 
 
The membrane analogy is very suitable for manual calculation of the φ –hill of box 
girders (thin wall, closed, multiple cells). The altitudes of the weightless plates are 
calculated from equilibrium. The girder walls are thin, therefore, the curvature of the 
soap film is neglected. The force q [N/m] that pulls down the weightless plate edges 

openingopening

box               

soap film        
weightless plate             

cross section shape
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follows from the slope of the film. It is customary to take all dimensions to the centre 
lines of the walls. This strongly reduces the amount of calculation work and prevents 
calculation mistakes. The calculation is demonstrated in appendix 2. 
 

 
Figure 16. Forces on a weightless plate 

 
Nabla girder 12 
 
The membrane analogy can be used 
to analyse a nabla girder (appendix 
3). The result is 
 
 

39
4=tGI G a h  

4
max 27 23τ = tM

a h
 

 
 
 
Hollow core slab 
 
The membrane analogy can be used to analyse a hollow core slab (appendix 4). The 
round channels are modelled square to make the hand calculation possible. The 
middle webs are left out of the model because these contribute little. 
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12 The symbol∇ is pronounced nabla. It is often used in mathematics. 
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The largest shear stress in the cross section occurs in the middles of the top and 
bottom edges. 
 
This hollow core slab model is clearly a rough approximation of reality. The real 
torsion stiffness is larger (the author estimates 60% larger). The real largest shear 
stress can be larger or smaller (the author estimates 30% larger). For accurate values 
we need to do a finite element analysis. 
 
Sand hill analogy 
 
There is also an analogy for plastic analysis of torsion properties. The plastic φ –hill 
looks like a sand hill. For an experiment, we cut a plate in the shape of the cross 
section. Subsequently, we sprinkle dray sand on the plate until the shape of the hill 
does not change any longer (figure 17). 
 

 
 

Figure 17. Plastic φ –hill of an L shaped cross section, top view [8] 
 
Stress concentrations 
 
Stress concentrations occur in re-entrant corners of cross sections. After all, here the 
φ –hill has a larger slope. Often it is necessary to round re-entrant corners. A formula 
by Trefftz approximates the stress in a 90°-corner of a box girder (figure 18) [9]. 13 
 

 3max 1.74τ = τ
h
r

 

 
In this, r is the radius of the rounding, h is the wall thickness and τ is the shear stress 
at some distance of the corner. This formula is not accurate but on the safe side [10]. 
The stress concentration is important in fatigue calculations. 
 

 
13 Erich Trefftz (1888 – 1937) was a structural mechanics professor in Dresden. He was a 
good friend of Richard von Mises who had to leave Germany in 1933 because he was Jewish 
[German Wikipedia]. 
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Figure 18. Stress concentration in a 90° corner 
 

Shear centre 
 
The shear centre is a point in the cross section of a beam. If a force goes through the 
shear centre, it will not produce a torsion moment. The shear centre coincides with the 
centre of gravity in cross sections that are double symmetrical, for example in a 
rectangular cross section or in an I section (appendix 5). In other cross sections it does 
not coincide, for example a U section (figure 19 and 20). 

dwarskrachten-
centrum
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centrum

zwaartepunt zwaartepunt

dwarskrachten-
centrum
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Figure 19. Torsion moment Fa         Figure 20. No torsion moment 
 
The place of the shear centre is calculated from the distribution of shear stresses in a 
cross section due to a shear force. This calculation is not treated in this course. 
 
Rotation 
 
Above is not mentioned around which point the cross sections rotate. From figure 5 
we can get the impression that the x axis goes through the centre of gravity. However, 
it can be proven that the position of the x axis does not have an influence on the 
calculated torsion stiffness or the calculated torsion stresses. The theory of Saint-
Venant does not tell us around which point a cross section rotates. 
 
Theorem 
A torsion moment rotates the cross sections around the shear 
centre. 
 
Proof 
This can be simply proven for linear elastic beams. A force 
through the shear centre gives a rotation ϕ = 0 of each point 
of a cross section. From reciprocity (symmetry of the 
stiffness matrix) follows that a torsion moment on an 
arbitrary point of the cross section gives a displacement u = 0 
of the shear centre. So, the cross section rotates around the shear centre. 
 

ϕ wM

dead corner

   stress concentration

centre of gravity centre of gravity

shear centre      shear centre                                    
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Orthotropic plate 
 
A bridge or floor that consists of parallel beams is often modelled as an orthotropic 
plate (figure 21). An orthotropic plate is a plate with different stiffnesses in 
perpendicular directions [11]. The plate moments xxm , yym , xym and shear forces xv , 

yv are computed by a finite element program. When dimensioning the beams, the 
beam moments and beam shear force is calculated as follows. 
 

2
=

= −

=

x xx

t xy

x

M m b
M m b

V q b

 

 

 
In this, b is the centre to centre distance of the beams. The equations assume that the 
beams span in the x direction. Note the factor 2 in the formula for the torsion moment. 
The explanation is that the plate torsion moment xym occurs in two directions while 
the beam is in one direction. 
 

 
 
       a Part of an orthotropic plate (idealisation)       b Part of a beam (reality) 
       Figure 21. Moments and shear forces 
 
The torsion stiffness of the orthotropic plate is 

4
tGI

b
. (So 

4
= ρt

xy xy
GIm

b
.) In this tGI  is 

the torsion stiffness of a beam. The factor 4 is explained by the beam moment which 
is a factor 2 larger than the plate moment (see above) and the beam torsion 
deformation which is a factor 2 smaller than the definition of plate torsion 
deformation (

2
2 ∂

ρ = −
∂ ∂xy

w
x y

). 
 
By the way; an orthotropic plate model is not accurate. Deviations in moments and 
shear forces can be larger than 20%. Much more accurate is to model webs, top 
flanges and bottom flanges with plate elements too. 
 
 
Example of a bridge deck 
 
A cable stayed bridge has a deck of prestressed concrete (figure 22 and 23). The span 
between the pylons is l = 237.6 m. The tI  of the bridge deck cross section is 
calculated in the table below. Note that the cross beams (4) also contribute to the 
torsion stiffness of the deck. After all, they experience the same specific torsion as the 
other parts. You can convince yourself by twisting a sheet of paper: lines in both 
directions twist the same. 

xxm
xym

xvx
z
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yym

y

yym
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Figure 22. Cross section of the deck of a cable stayed bridge [12 p. 52] 
 
 

 
Figure 23. Longitudinal section of the deck of a cable stayed bridge [12]  
 
 
i tiI  il  number number /× ×ti iI l l   
1 1.0088 m4 237.6 m  2 2.018 m4   68 % 
2 0.0232 m4     4.4 m  12×54 0.279 m4   10 % 
3 0.0197 m4     4.4 m  11×54     0.217 m4     7 % 
4 0.0696 m4   28.3 m  53   0.439 m4   15 % 
        total tI  2.950 m4 100 % 
 
Exercise, box 
 
An open box is supported in 3 corners and loaded by a force in 1 corner. This load 
produces mostly torsion in the walls and bottom of the box. Show that the deflection 
is 2 33

5u a F Gh=  and the shear stress is 23
5 F hτ = . In this, h is de wall thickness. 

(This is not a simple exercise.) 
 

 

4

1

2 3
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Local buckling 
 
Thin wall tubes can buckle due to torsion. For example, the torsion moment at which 
a circular tubes buckles is 
 

5

3
2 4

2

3 2(1 )

π
=

− ν
t

E r h
M . 

 
In this, h is the wall thickness and r is the radius to the centre line of the wall [13]. 
 

 
Figure 24. Buckling of a circular tube loaded in torsion 

 
Volume elements 
 
A beam can be also modelled with volume elements or solids. We can choose 
elements with 4, 8, 10 or 20 nodes. The 20 node elements are the best and these are 
considered here. The torsion stresses are computed with an error smaller than 3%, if 
we model 3 elements in the thickness (figure 25). The elements need to be 
approximately square in the cross section. This determines the number of elements in 
the beam depth. An error smaller than 1% is obtained with 5 elements in the thickness 
[14]. 
 

 
Figure 25: Element mesh for computing torsion stresses with an error smaller than 3% 
 
Constrained warping 
 
The typical torsion stresses only occur, if warping is not constrained (figure 26). In 
engineering practice this is often not the case. This causes deviations compared to the 
ideal torsion theory. The deviations occurs at supports, where torsion moments are 
applied and where the cross section changes.  
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Figure 26. Torsion deformation of two short I sections 

 
 
Especially thin wall open cross sections are sensitive to constrained warping. For 
example, in a cantilever I section, the theory of Saint-Venant is valid at a distance of 
approximately five times the section depth from the fixed end (figure 27). 
 
 

 
 
Figure 27. Influence of constrained warping 

 
 
Theory by Vlasov 14 
 
In 1933, Vasiliy Vlasov developed a torsion theory which included constrained 
warping [15]. This theory is also called warping torsion or non-uniform torsion. Next 
to this, the torsion theory by Saint-Venant is also called circulatory torsion or uniform 
torsion. In Vlasov’s theory the specific torsion deformation θ is not constant along the 
x axis. The cross section rotation ϕ(x) follows from the differential equation 
 

4 2

4 2
ϕ ϕ

− =w t t
d dEC GI m
dx dx

. 

 
In this, wEC  is the warping stiffness, tGI  is the torsion stiffness and tm  is a 
distributed torsion moment load along the beam. The warping constant wC  has the 
unit  m6 and is defined as 
 

 
14 Вла́сов Васи́лий Заха́рович (1906 – 1958) (Vasily Vlasov) was professor in Moscow. He 
wrote a book on thin wall beams (1940) for which he received the Stalin prize first class. He 
also wrote a book on shell structures (1949). [Russian Wikipedia] 
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2= ψ∫w
A

C dA . 

 

The bi moment is defined as 
 

= − σ ψ∫ xx
A

B dA . 

 

It occurs in a cross section when warping is constrained. It has the unusual unit Nm². 
When the differential equation is solved, the bi moment and the torsion moment can 
be calculated with 
 

2

2
ϕ

= − w
dB EC
dx

 

ϕ
= +t t

d d BM GI
dx dx

 

 
(for a derivation see appendix 10). Vlasov’s theory reduces to Saint-Venant’s theory 
if the warping stiffness wC  is zero, the distributed moment load tm  is zero and 
warping is free. 
 
Interpretation of the bi moment 
 
For I sections the bi moment can be interpreted as the moment M in each of the 
flanges times their distance (figure 28) 
 

B M a= . 
 

This also explains the name (bi = 2). For other sections the interpretation is not this 
easy. Figure 28 shows that a bi moment occurs when warping is forced out of a cross 
section. 
 
 

 
Figure 28. (left) Warping due to torsion and (right) the bi moment that removes this 
warping 
 
Boundary conditions of the Vlasov theory 
 
A beam end has an imposed rotation ϕ  or an applied torsion moment tM . We have to 
choose, one or the other. In addition, the beam end has an imposed warping d

dx
ϕ  or an 

applied bi-moment B. Support examples are 

a M 

M 
x 
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fixed …………………………... no rotation, no warping 0ϕ = , 0θ =  

fork support …………………… no rotation, free warping 0ϕ = , B = 0 

free end with a thick head plate .. free rotation, no warping 0=tM , 0θ =  

free end ……………………….. free rotation, free warping 0=tM , B = 0 
 
Example of a box girder bridge 15 
 
We consider a box girder bridge with a length l = 60 m. The torsion stiffness tGI  is 

8 22690 10 Nm and the warping stiffness wEC  is 9 41183 10 Nm . At both sides the 
bridge is supported without constraining warping. In the middle the bridge is 
supported by two temporary columns. One of these columns is knocked out in a 
construction accident. The remaining temporary column carries most of the bridge 
selfweight eccentrically. This introduces a very large torsion moment T = 269 510  
Nm. 
The boundary conditions at  x = 0  and  x = l  are 

2 2

2 20 0 0 0
− +

− +ϕ ϕ
ϕ = = ϕ = =

d d
dx dx

 

The transition conditions in the middle  x = 1
2 l  are 

2 2

2 2

− + − +
− + ϕ ϕ ϕ ϕ

ϕ = ϕ = =
d d d d
dx dx dx dx

 

3 3

3 3

− − + +ϕ ϕ ϕ ϕ
− = + −t w t w

d d d dGI EC T GI EC
dx dxdx dx

 

 
The differential equation is solved by Maple (appendix 6) (figure 29, 30 and 31). 
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Figure 29. Cross section rotation ϕ  
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Figure 30. Torsion moment distribution tM  

 
15 The situation is borrowed from a reader by Cor van der Veen [23], professor at Delft 
University of Technology. 
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Vlasov
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Vlasov
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Figure 31. Bi moment distribution B 
 
Interpretation of the moment distribution 
 
The torsion moment distribution (figure 30) can be easily predicted. The torsion load 
can choose to go to the left support or the right support. It has a preference for the 
stiffest way. Both beam halves have the same stiffness (same length, same cross 
section). Therefore, half the torsion load goes to the left support and the other half 
goes to the right support. 
 
Similarity with the shear force distribution 
 
The torsion moment distribution in figure 30 has the shame shape as the shear force 
distribution due to a point load (not shown). Figure 32 shows another example. Since 
the torsion moment distribution looks like the shear force distribution they can be 
accidentally exchanged when studying finite element results. It is important to check 
this.  
 

 
 
Figure 32. Similarity of shear force distribution and torsion moment distribution 
 
Around the bend 
 
In a complicated frame, it is not always clear where torsion moments come from. The 
following rules may be useful (figure 33).16 
 
A bending moment that goes around the bend becomes a torsion moment. 
 
A torsion moment that goes around the bend becomes a bending moment. 

 
16 Statement by Leo Wagemans, professor at Delft University of Technology. 
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   Figure 33. Moments in a curved beam 

 
Head plate 
 
A head plate that is welded to an I section constrains de warping according to the 
following equation. 
 

31
3

dB G t bh
dx
ϕ

=  

 
Figure 34. Head plate welded to an I section 
 
Stresses according to Vlasov 
 
The stress distribution according to the torsion theory of Vlasov consists of three 
parts. 
1) shear stress according to the Saint-Venant theory 
2) shear stress due to constrained warping  
3) normal stress due to constrained warping 
 
In general the largest values of the parts occur in different points of the cross section. 
Therefore software is needed to find the governing point. This is even more so if also 
stresses occur due to 
 
4) normal force N 
5) moment yM in the y direction 

6) moment zM in the z direction 

b

t

h

head plate

buigend-momentenlijn
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7) shear force yV in the y direction 

8) shear force zV in de z direction 
 
If y and z are the principal directions of the cross section, the normal stress are 
computed by 17 
 

( , )σ = + + − ψyz
xx

zz yy w

MMN By z z y
A I I C

 

 
Formulas also exist for shear stress in thin wall cross sections. However, these are too 
large to include here. As far as the author knows, there are no formulas for the shear 
stresses xyτ and xzτ due to constrained warping in solid cross sections. 
 
Stresses in an I section 
 
There is a simple formula for the largest normal stress in I sections due to a bi 
moment. 

max 21
6 ( )

B
h t t b

σ =
−

 

 
In this, B is the bi moment, t is the flange thickness, b is the flange width and h is the 
cross section depth. The stress maxσ occurs in the edges of the flanges. 
 
Example, stresses in a box girder bridge 
 
We consider the box girder bridge of the previous example. The dimensions of the 
cross section are shown in figure 35. The program ShapeBuilder was used to compute 
the warping function ψ  and the torsion properties of the cross section (figure 36). An 
extreme value of ψ  is –51100 2cm in the left bottom corner. Before, it was calculated 
that the largest bi moment is 5 2282 10 Nm=B (figure 31). Therefore, the normal 
stress due to warping is 
 

 
5 2

2 6 2 2
6

282 10 Nm ( 5.118 m ) 3.66 10 N/m 3.66 N/mm
39.44 m

σ = − ψ = − − = =xx
w

B
C

 

 
The reinforcement has a yield stress of 550 N/mm². The required reinforcement 
percentage is 3.66 / 550 = 0.7%. This is small despite the very large load. (Common 
reinforcement percentages are between 0.1 and 2.0%). Often, the stresses due to 
constrained warping are negligible for solid and closed cross sections. These stresses 
are not negligible in thin wall open cross sections. 
 

 
17 pronounce σ = sikma 
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Figure 35. Cross section dimension of the box girder bridge 
 
By the way, ShapeBuilder can compute all cross section properties, including shear 
stiffnesses, stress distribution due to shear forces and the location of the shear centre. 
To this end it solves similar differential equations as for torsion. This is not treated in 
this course. 
 
 

 
 
Figure 36. Warping function ψ  of the box girder bridge 
 
Distortion 
 
The theories of Saint-Venant and Vlasov assume that a cross section warps but does 
not change shape in another way (See assumptions with figure 5). This is a good 
approximation for many beams. However, sometimes a cross section does change 
shape (figure 37). This is called distortion. To compute distortion we make a finite 
element model with shell elements. 
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Shell elements 
 
Advantage of a computation with shell elements (figure 37) is that torsion and 
constrained warping are automatically included. The cross section 
properties tGI , wEC  and the stresses maxτ , maxσ  do not need to be calculated 
separately. Also, the model can be extended with diaphragms, support details and 
prestress cables. The computed stresses are more accurate than those computed with 
Saint-Venant or Vlasov. In addition, the model can be used to check global buckling 
and local buckling with a geometrically nonlinear computation. 
 
Disadvantage of a computation with shell elements is that it is more work to build the 
model and cross section quantities such as torsion moments and shear forces are not 
readily available. 
 
How to use shell elements is treated in a course on the finite element method for 
plates and disks. 

 
Figure 37. Distortion of a box girder bridge cross section [16] 
(Half the bridge is drawn. The deformation is enlarged. Warping does not occur in the 
bridge middle.) 
 
Example of a cantilever 
 
We consider the cantilever of figure 38. The fixed end cannot warp. The other end is 
loaded by a torsion moment T while warping is free [17]. 
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Figure 38. Cantilever 
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The material data and cross section data is 

2 2207000 N/mm , 79300 N/mmE G= = , 4278000 mmwI = , 8 6191 10 mmwC = . 
 
The calculation is performed in appendix 7. Figure 39 shows the torsion moment 
distribution. At the support, the torsion moment is completely carried by constrained 
warping (Vlasov). At the free end, the torsion moment is completely carried by the 
shear flow in the cross section (Saint-Venant). Figure 40 shows the stresses in the 
fixed end and the free end. 
 

 
Figure 39. Torsion moment distribution tM  
 
 

 
Figure 40. Stresses in cantilever cross sections [17] 
 
 
Note that the largest Vlasov normal stress xxσ is much larger than the Saint-Venant 
shear stress xsτ  (in absolute sense). The Vlasov shear stresses xsτ  are small, 
nonetheless, the moment they produce is equal to the load T. 
 
 
Misunderstanding 
 
It is a stubborn misunderstanding that for thin wall open cross sections the 
contribution of the torsion stiffness tGI  can be neglected. Table 3 shows the results of 
three computations. The first computation is the same as above; in the second 
computation the torsion stiffness tGI  is neglected and in the third computation the 
warping stiffness wEC  is neglected. The column with ϕ̂  gives the rotations of the 
cantilever end. It is shown that wEC  cannot be neglected and tGI  can certainly not be 
neglected for computing the deformation of this beam. 
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Table 3. Consequences of neglecting stiffnesses 
 tGI  wEC  ϕ̂  
1 102,205 10⋅ Nmm2 153,954 10⋅ Nmm4 0,217 rad 

2 0 153,954 10⋅  3,180  

3 102,205 10⋅  0 0, 260  

 
Future 
 
All commercial frame analysis programs that the author knows, use Saint-Venant’s 
theory and not Vlasov’s. In the future, the programs can be extended with the Vlasov 
theory [18]. To that end, the section libraries need to contain not only the torsion 
constants tI  but also the warping constants wC . The program user will be able to 
select whether the warping is constrained, free or linked for every beam end or 
column end. Linked means that two elements have the same warping where they are 
connected. Subsequently, the program will take this into account when computing the 
deformations and stresses. Appendix 9 gives the stiffness matrix of a frame element 
according to the Vlasov theory. 
 
Characteristic length 
 
The characteristic length is defined as 
 

w
c

t

ECl
GI

=  

 
This gives the length of the Vlasov part (figure 27). It is also a measure for the width 
of the peak in the bi moment distribution (figure 31): At a distance cl  from the 
constrained warping, the bi moment is 37% of its maximum value. At a distance of 
3 cl  is the bi-moment 5% of its maximum value. 
 
Trick 
 
All frame analysis programs make use of the torsion theory of Saint-Venant. We can 
use a trick to nonetheless include constrained warping [18]. When both ends of an 
element cannot warp, the torsion stiffness needs to be multiplied by the enlargement 
factor 

2 c

l
l l−

 

 
where l is the beam length. When one of the beam ends cannot warp, the torsion 
stiffness needs to be multiplied by the enlargement factor 
 

c

l
l l−

. 
 

Subsequently, the largest bi moment for both cases can be calculated by  
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ˆ ≈ ± c tB l M . 
 
Obviously, this occurs where the warping is constrained.18 (The sign depends on the 
direction of the x axis of the element but actually the sign is not important.) The trick 
is valid if a distributed torsion moment is not present 0xm = . 
The trick is very accurate if 6 cl l≥ (error < 1%). For smaller lengths, table 4 can be 
used. 
 
Table 4. Magnification factors for torsion stiffness due to constrained warping [18] 
beam length l 0.5 cl  1 cl  1.5 cl  2 cl  2.5 cl  3 cl  4 cl  5 cl  
both sides constrained 49.2 13.2 6.53 4.19 3.11 2.52 1.93 1.65 
one side constrained 13.2 4.19 2.52 1.93 1.65 1.50 1.33 1.25 
 
The trick is useful to show that the real displacement due to torsion will be smaller 
than a common frame analysis predicts. 
 
Safe or not safe? 
 
Above it was shown that the real structure is stiffer than predicted by the Saint-Venant 
torsion theory. Consequently, real deformation will be smaller than computed 
deformations. So, for the serviceability limit state the common frame analysis is on 
the safe side. 
 
Also it was shown that locally the real stresses can be much higher than predicted by 
the Saint-Venant torsion theory. However, this does not mean that the structural part 
will collapse. Most construction materials display somewhat plastic behaviour 
(aluminium, timber, reinforced concrete). According to plasticity theory, every 
equilibrium system with stresses smaller than or equal to the yield stress is a safe 
approximation for strength. A linear elastic computation according to the theory by 
Saint-Venant is such an equilibrium system. So, also for the ultimate limit state, the 
common frame analysis is on the safe side. 
 
An exception is fatigue. In case of fatigue, the difference between the largest stress 
and the smallest stress in a material point is important. The largest stress is strongly 
reduced when the material yields at the first large load. However, the stress difference 
will not become smaller due to yielding and it occurs in every subsequent load. 
Therefore, in case of fatigue, choose circular tubes (these do not warp). If open 
section are necessary, it is important to let them warp freely. If nonetheless warping is 
constrained, warping stresses need to be accurately calculated and checked. Appendix 
8 gives a calculation example. 
 
The rule for constrained warping is: Prevention is better than calculating. 

 
18 The exact formula is 
ˆ tanh

2
= ± c t

c

lB l M
l

   if both ends cannot warp 

ˆ tanh= ± c t
c

lB l M
l

      if one end cannot warp 
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Torsional buckling and lateral torsional buckling 
 
The quantities learned in this course can 
be also used in stability checks. The 
normal force at which a column fails in 
torsion buckling is 
 

2

2

 π
= +  

 

w
t

p

ECAN GI
I l

. 

 
The bending moment at which a beam 
fails in torsional lateral buckling is 
 

2 2

2 2

 π π
= +  

 

yy w
t

EI ECM GI
l l

. 

 
In this, l is the column or beam length and yyEI  is the bending stiffness in the lateral 
direction. These formulas are valid in the principal directions of a cross section and 
fork support at the ends [19]. 
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Appendix 1.  Formulas for torsion properties [2, table 20] 
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xI is the moment of inertia around the x axis. 
 A is the cross-section area. 
 D is the diameter of the largest inscribed circle. 
 r  is the radius of curvature of the boundary at the location of the stress. 
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cross sections of machine 
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Appendix 2. Calculation of the torsion properties of a multi-cell box girder 
[4, Volume 1, p. 196] 
 
In this example the torsion stiffness and shear stresses are calculated of a multi-cell 
box girder bridge (figure 41). The thickness of the top deck (t/2) is half the thickness 
(t ) of the other parts. Since t a, we can work with the centre-to-centre distances (a 
and 2a) of the box walls. The contributions of the walls themselves can be also 
neglected. The cantilever flanges of the box can be neglected for the same reason. 
 

 
Figure 41. Cross section of the bridge 
 
Figure 42 shows the cross section, the soap film and two weightless plates that occur 
in the membrane analogy. The left plate moves w1 and the right plate moves w2. In 
this drawing we choose w2 larger than w1 . This will be consistently used in the 
calculation. The answers will show whether the assumption was correct. 

 
Figure 42. Equilibrium of soap film and weightless plates 
 
The soap film membrane shear forces q play a large part in the calculation. Since w2 is 
larger than w1 , the drawn shear forces will have positive values. 
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The first four shear forces , ,q q q′ ′′ and q′′′ act downwards on the plates. The last 
shear force q′′′′ acts up on plate 1 and down on plate 2 (If w1 were larger than w2 , this 
would be the other way around). The vertical equilibrium is  
 

2 2 2 ( 1)
( 2)

′ ′′′′+ + − =
′′ ′′ ′′′ ′′′′+ + + =

q a q a q a q a p a a         plate 
q a q a q a q a p a a         plate 

 

 
So 
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Simplified and divided by a 
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From these two equations we solve 
 

1 2
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39 39

= =
p pw a t w a t
S S

 

 
The displacement w2 is smaller than w1. So, in fact, shear force q′′′′ acts opposite to 
what is drawn. 
 
We make the transition to the φ –hill with  w = φ,  p = 2θ  and  S = 1/G. The result is 
 

1 2
22 20
39 39

φ = θ φ = θG a t G a t  

 
The torsion moment is twice the volume of the φ –hill 
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Apparently, the torsion constant is 
 

3128
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We express φ1 and φ2 in the moment 
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1 22 2
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φ = φ =t tM M
a a

 

 
The stresses we calculate from the slope of the φ –hill (figure 43) 
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Figure 43 shows the true directions of the shear stresses. The direction of the first 
arrow can be chosen and the other arrow directions follow from the φ –hill slopes. 
The middle web has the same slope as the right hand web, consequently, ′′′′τ  has the 
same direction as ′′τ . 
 
 

 
Figure 43.  Shear stresses in the cross section 
 
 
Exercises 
 
The resultant of the vertical shear stresses should be zero. The resultant of the 
horizontal shear stresses should be zero. Check this. 
 
The vertical shear stresses should give a torsion moment 1

2 tM . The horizontal shear 
stresses should give a torsion moment 1

2 tM . Check this. 
 
Use Bredt’s formulas to calculate torsion constant tI  and the stresses τ , if the middle 
web is left out. What do you conclude? 
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′τ

′′′′τ ′′τ

′′′τ

′′τ



 46 

Appendix 3. Calculation of a nabla girder 
 
The prestressed concrete box girder of this example is known in the Netherlands as 
nabla girder applied in the Deltawerken when closing the Haringvliet. What follows is 
a Delft University exam problem (Elasticity theory, 12 Jan. 1998) [20]. 
 
A box girder is loaded in torsion. The thickness of all walls is h (see figure). We 
calculate the girder with the membrane analogy. The weightless plates in the corners 
of the girder will have the same displacement because the girder is rotation 
symmetrical. 
 

a  Calculate the displacements w1 and w2 of the weightless plates. 
 

b  Calculate the torsion stiffness tGI  of the cross section. 
 

c  Calculate the shear stresses in the cross section and draw them in the correct 
directions. 
 

d Suppose that warping in the girder is locally constrained. Will this increase the torsion 
stiffness, or will it become smaller, or will it stay the same? Explain your answer. 
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a 31
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Answers 
 

a  Weightless plates 
We choose w2 of the middle cell larger than w1 of the corner cells. Equilibrium of the 
weightless plate above the corner cells is 
 

 1 1 1 1 2 1
2 2 3 w w w - wp a a a S +a S - a S

h h h
=  

 
Equilibrium of the weightless plate above the middle cell gives 
 

 1 1 2 1 2 1 2 1
2 2 3 w - w w - w w - wp a a a S +a S +a S

h h h
=  
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This can be simplified to 
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( )
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from which we can solve w1 and w2 . 
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b  Torsion stiffness 

From the soap film we go to the φ –
hill with the following substitutions.  
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The torsion moment is two times the volume of the φ –hill. 
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Substitution of the former in the latter gives 
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For a beam model of the girder holds 
 
 θt tM = GI  
 
So, the torsion stiffness is 
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 39
4=tGI G a h  

 
c Shear stress 

The shear stress is the slope of the φ –hill. First, we rewrite the equation for the 
torsion moment  
 

 4
9 2θ = tMG ah
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and express φ1 and φ2 in the torsion 
moment 
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In the outer walls of the girder, the 
shear stress is  
 

 1 4
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In the inner walls is the shear stress 
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d  Warping 

If warping is locally constrained, the girder will be stiffer than calculated above but 
not much because closed cross sections hardly warp. 
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Appendix 4. Calculation of a hollow-core slab 
 
The hollow-core slab of this example was a Delft University exam problem (Elasticity 
theory 26 October 2001) [20]. The plate has 11 channels and is modelled as a thin wall 
closed cross section. Only 6 of the 12 webs have been included in the model. All walls 
have a thickness t. 
 

 

    
 
   Cross section of a hollow-core slab 

  
a a a a7a

a

t

t

t t t1 2 3 12

 
 
   Model of the slab for calculation of the torsion properties 

 
 

a The inner webs have been left out of the model. Why? 
 

b Formulate the equilibrium equations of the membrane analogy. Use symmetry. (You do 
not need to simplify or solve the equations.) 
 

c The equations have been solved with the following result.  
 

  85
1 232

patw
S

=     108
2 232

patw
S

=     115
3 232

patw
S

=  

 
In this w1 is the displacement of the weightless plate above cell 1, w2 is that of cell 2 
and w3 is that of cell 3. In addition, S is the soap film stress and p is the pressure under 
the weightless plates. 
 
Use this to calculate the torsion stiffness GIt  of the slab cross section. 
 

d Calculate the shear stresses in the slab cross section as a function of the torsion moment 
and draw the shear stresses in the correct direction. 
 
Answers 
 

a Inner webs 
The inner webs have been left out for two reasons. 1) They probably contribute little to 
the torsion properties. 2) Fewer equations need to be solved now. 
 

b Equations 
 



 50 

www w w12 231

 
 

equilibrium of the plate above cell 1 2 1 2 13 w w wpa a S a S
t t

−
= −  

cell 2     2 3 22 1 22 w ww w wpa a S a S a S
t t t

−−
= + −  

 

cell 3     3 2 37 2 2(7 )w w w
pa a a S a S

t t
−

= +  

c Torsion stiffness 
From soap film to φ –hill with substitutions 
 

w = φ     p = θ2     1S
G

=  

Thus 
 Gatφ = θ85

1 232 2     Gatφ = θ108
2 232 2     Gatφ = θ115

3 232 2  

 
The torsion moment is two times the content of the φ –hill. 
 
 ( )= φ + φ + φ2 2

1 2 32 2 2 (7 )tM a a a a  

( )= θ + θ + θ2 285 108 115
232 232 2322 2 2 2 2 2 (7 )tM Gat a Gat a Gat a a  

= θ 31191
58tM Ga t  

 
For a wire frame model we use 
 
 = θt tM GI  
 
Therefore, the torsion stiffness is 
 
 = 31191

58tGI Ga t  

 
d Shear stresses 

The shear stress is the slope of the φ –hill. We rewrite the equation for the torsion 
moment 
 

 θ = 58
2 1191
tM

Gat
a

 

 
and express  φ1,  φ2  and  φ3 in the torsion moment. 
 

 φ = 85 58
1 232 2 11912 tM

a
 φ = 108 58

2 232 2 11912 tM
a

 φ = 115 58
3 232 2 11912 tM

a
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 φ = 85
1 2382 2

tM
a

  φ = 108
2 2382 2

tM
a

  φ = 115
3 2382 2

tM
a

 

 
The shear stresses become 
 

τ1 τ3

τ2

τ1

τ1

τ1

τ1

τ1

τ2

τ4

τ5

τ5

τ4

τ2

τ2

τ3
1 2 3 2 1

 
 

 φ
τ = = 851
1 2382 2

tM
t a t

 

φ
τ = = 1082
2 2382 2

tM
t a t

 

φ − φ
τ = = 232 1
3 2382 2

tM
t a t

 

φ − φ
τ = =3 2 7
4 2382 2

tM
t a t

 

φ
τ = =3 115
5 2382 2

tM
t a t

 

 
Encore (not an exam question) 
The graph below shows the torsion stiffness as a function of the number of webs n in the 
model. It appears that a model with just 4 webs is sufficiently accurate for calculation of 
the torsion stiffness. 
 
 
 
n = 2
n = 4
n = 6

n = 12  
122 84 6 10

n

GIw
Ga  t321

20

20.5

 
 

 
The largest shear stress converges less quickly with increasing n (not shown). But the 
model with 6 webs is sufficiently accurate. The largest shear stress in a model with 12 

webs is wM
a t

τ = 225
max 4624 2

 , which is just 0.8% larger than the model with 6 webs. 

 
 
 
 
 
 
 

3
tGI

Ga t
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Appendix 5. Formulas for open thin wall cross sections [5] 
 
The place of the shear centre is indicated with O. 
 

       
 

3 31
3

3 21
24

max

max 21
6

(2 )

max( , )

= +

=

τ = =

σ =

t f w

w

t
w

t

I b t h t

C t b h

t M t t t
I

B
b ht

 

      
 

( )

3
1 1

3 3
1 1 2 2

3 3 31
1 1 2 23

3 3
21 1 1 2 2

12 3 3
1 1 2 2

max max2 21 1
2 2 1 16 6

or

=
+

= + +

=
+

= =

t w

w

b te h
b t b t

I b t b t h t

b t b tC h
b t b t
B B

b ht b ht
σ σ

 

 
 

2

3 31
3

3 21
12

max
21

6

3
6

(2 )

3 2
6

3 2
3

=
+

= +

+
=

+

=
+
+

w

t f w

w
w

w

w

w

b te
bt h t

I b t h t

b t h tC b h t
b t h t
B
bt h tb ht
b t h t

σ

 

 
 

3 31
3

2 2
3 21

12 2

(2 )

2 ( ) 3
(2 )

= +

+ + +
=

+

t f w

w
w

I bt h t

t b bh h bhtC b h
b h

 

f

1t

f

f

f
f

f

f

f

f

f
f

f

2t
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32
3

2
5 32

3

sin cos2
sin cos

(sin cos )( 6 )
sin cos

α − α α
=

α − α α

= α

α − α α
= α −

α − α α

t

w

e r

I r t

C r t

 

       
 

3 31
3

3 3 3 31
36

( )

( )

= +

= +

t f w

w f w

I b t h t

C b t h t
 

         
 

3 31
3

3 3 3 31 1
36 4

( )

( )

= +

= +

t f w

w f w

I b t h t

C b t h t
 

More cross sections are in Roark’s [2, table 21]. 

r
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Appendix 6. Maple calculation of a box girder bridge with the Vlasov theory 
 
> restart: 
> l:=60:        # [m] 
> ECw:=1183e9:  # [Nm4]  
> GIt:=2690e8:  # [Nm2] 
> mt:=0:        # [Nm/m] 
> T:=269e5:     # [Nm] 
>  
> with(DEtools): 
> ODE:=ECw*diff(phi(x),x,x,x,x)-GIt*diff(phi(x),x,x)=mt; 

 := ODE  =  − .1183 1013 







∂

∂4

x4 ( )φ x .2690 1012 







∂

∂2

x2 ( )φ x 0  

> bound_con:= phi(0)=0, (D@@2)(phi)(0)=0, GIw*D(phi)(l/2)-
ECw*(D@@3)(phi)(l/2)=T/2, D(phi)(l/2)=0; 

bound_con  = ( )φ 0 0  = ( )( )( )D
( )2

φ 0 0, , := 

 =  − .2690 1012 ( )( )D φ 30 .1183 1013 ( )( )( )D
( )3

φ 30 .1345000000 108  = ( )( )D φ 30 0,  

> evalf(dsolve({ODE,bound_con},{phi(x)})); 

( )φ x .00005000000000 x .6423299796 10-10 e
( )−.4768521749 x

 +  = 

.6423299796 10-10 e
( ).4768521749 x

 −  

> phi:=0.5000000000e-4*x-0.6423299796e-
10*exp(0.4768521749*x)+0.6423299796e-10*exp(-0.4768521749*x): 
> B:=-ECw*diff(phi,x,x): 
> Mt:=Re(GIt*diff(phi,x)+diff(B,x)): 
> plot(phi(x),x=0..l/2); 

 
> plot(Mt,x=0..l/2); 

 
> plot(B,x=0..l/2); 
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> x:=l/2: simplify(B); simplify(phi); 

.2820580643 108
 

.001395145701  
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Appendix 7. Maple calculation of a cantilever with the Vlasov theory 
 
> restart: 
> l:=2540:           # [mm]  
> ECw:=207000*191e8: # [Nmm4]  
> GIt:=79300*278000: # [Nmm2] 
> mt:=0:             # [Nmm/mm] 
> T:=2.26e6:         # [Nmm] 
> 
> with(DEtools): 
> ODE:=ECw*diff(phi(x),x,x,x,x)-GIw*diff(phi(x),x,x)=mt; 

 := ODE  =  − 0.395370001016 







d

d4

x4 ( )φ x 22045400000







d

d2

x2 ( )φ x 0  

> bound_con:= phi(0)=0, D(phi)(0)=0, GIw*D(phi)(l)-
ECw*(D@@3)(phi)(l)=T, (D@@2)(phi)(l)=0; 

bound_con  = ( )φ 0 0  = ( )( )D φ 0 0, , := 

 =  − 22045400000 ( )( )D φ 2540 0.395370001016 ( )( )( )D( )3
φ 2540 0.226107,

 = ( )( )( )D( )2
φ 2540 0  

> evalf(dsolve({ODE,bound_con},{phi(x)})); 

( )φ x 0.04341381587 0.0001025157176x 0.267929963310-6 e ( )0.002361332449 x
−  +  −  = 

0.04341408381e ( )−0.002361332449 x
 +  

> phi:=-.4154442895e-1+.9810141906e-4*x-.2563929731e-
6*exp(.2361332449e-2*x)+.4154468535e-1*exp(-.2361332449e-2*x): 
> B:=-ECw*diff(phi,x,x): 
> Mt1:=GIt*diff(phi,x): 
> Mt2:=diff(B,x): 
> plot(phi,x=0..l); 

 
> plot(B,x=0..l); 
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> plot({Mt2,Mt1+Mt2},x=0..l); 
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Appendix 8. Calculation of torsion stresses in an I section 
 
 

 
      Figure. Cantilever loaded in torsion  Cross-section, IPE 200 
 
Young’s modulus E = 2.1 105 N/mm² 
Poisson’s ratio  ν = 0.35 

Shear modulus  
2(1 )

EG = =
+ ν

77777 N/mm² 

Torsion constant 3 31 2
3 3( )= − + =t f w fI h t t bt 52152 mm4 

Warping constant 2 31
24 ( )w f fC t h t b= − = 1299 107 mm6 

Characteristic length = =w
c

t

E Cl
G I

820.0 mm 

 
In general, a torsion moment causes shear stresses and it can cause normal stresses. In 
cross-sections that can warp freely only shear stresses occur. This happens in the free 
end of the cantilever. The largest shear stress is  
 

maxτ = =t f

t

M t
I

196 N/mm². 

 

The Von Mises stress is 2
max3τ = 339 N/mm². 

 
In cross-sections that cannot warp mostly normal stresses occur. This happens at the 
fixed end of the cantilever. The bi-moment is  
 

c tB l M= = 9840 105 Nmm², 
 
which is accurate if 1

3cl l< , which is fulfilled. The largest normal stress in this 

section is  
 

max 21
6 ( )f f

B
h t t b

σ = =
−

363 N/mm². 

 
This stress occurs at the left and right of the flanges both in compression and tension. 
 

1.20 kNm=tM

3400 mml =
200 mmh =

5.6 mmwt =

8.5 mmft =

100 mmb =
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The rotation at the free end is 
 

tanh 0.763 rad
 

ϕ = − = 
 

t
c

t c

M ll l
GI l

. 

 
It needs to be mentioned that from a plastic point of view the stresses due to the bi-
moment can be neglected because just the shear stresses are an equilibrium system 
that can carry the load. 
 
Check 
 
A finite element analysis was made with ANSYS 11. Applied are 20 node brick 
shaped elements (solid95). At the fixed end all degrees of freedom have zero 
displacement imposed. At the free end the torsion loading is applied by 6 forces. The 
model consists of 959820 degrees of freedom. A linear elastic analysis was performed 
(31 minutes on a Pentium 4 PC). 
 

 
Figure. Mesh and torsion loading (red arrows) at the free end of the cantilever 

  
Figure. Torsion deformation 
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The horizontal displacement of nodes in the free ends of the flanges are –87.3 mm and 
87.3 mm. Therefore, the rotation is  
 

87.3 87.3 0.873 rad
200
+

ϕ = = . 

 
The hand calculation result is 13% smaller. This might be caused by shear 
deformation of the flanges. 
 

       
 
Figure. Horizontal and vertical shear stresses in a cross-section 300 mm from the free 
end 
 
The stresses in the re-entrant corners of the cross-section are ignored. (In theory the 
sharp corners have infinitely large stresses.) The largest shear stress in the free end 
cross-section is 200 N/mm². The hand calculation result is 2% smaller. 
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Figure. Normal stresses in a cross-section 50 mm from the fixed end 
 
The largest normal stress in the fixed end cross-section is 352 N/mm². The hand 
calculation result is 3% larger. The differences between the results of the hand 
calculation and the finite element analysis are acceptable for most purposes. 
 



 62 

Appendix 9. Stiffness matrix of a frame element 
 
In some frame programs the torsion properties have not been implemented correctly. 
To help software developers, this appendix gives the stiffness matrix consistent with 
the torsion theory of Saint-Venant. The x axis is in the direction of the beam or 
column. The y and z axis are the principal directions of the cross section. ye  and ze  
are the coordinates of the shear centre. yyI is the moment of inertia of the cross 
section in the y direction and zzI  is the moment of inertia in the z direction. Shear 
deformation has been neglected. 
 

 
 

1

1
3 3 2 3 3 2

1
3

1

1

1

2

2

2

2

2

2

0 0 0 0 0 0 0 0 0 0

. 12 0 12 0 6 0 12 0 12 0 6

. . 12

 
− 

 
 

− − 
 
 
 
 
 
 
 
 
 
 
 
 
 
  =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x

yy yy yy yy yy yyy
z z

zzz y

x

y

z

x

y

z

x

y

z

F EA EA
l l

EI EI EI EI EI EIF e e
l l l l l l

EIF e
l

M

M

M

F

F

F

M

M

M

3 2 3 3 2

2 2 2 2
3 3 2 2 3 3 3 3 2 2

2 2

12 6 0 0 0 12 12 6 0

. . . 12 12 6 6 0 12 12 12 12 6 6

. . . . 4 0 0 0 6 6 2

− − − −

+ + − − − − − − − −

zz zz zz zz zz
y

yy yy yy yy yyt tzz zz zz zz zz
z y y z z y z y y z

zz zz zz
y

EI EI EI EI EIe
l l l l l

EI EI EI EI EIGI GIEI EI EI EI EIe e e e e e e e e e
l ll l l l l l l l l l

EI EI EIe
l l l

2 2

3 3 2

3 3 2

2 2
3 3 2 2

0

. . . . . 4 0 6 0 6 0 2

. . . . . . 0 0 0 0 0

. . . sym. . . . 12 0 12 0 6

. . . . . . . . 12 12 6 0

. . . . . . . . . 12 12 6 6

. . . . . . . . . . 4

−

− −

+ +

zz

yy yy yy yy
z

yy yy yy
z

zz zz zz
y

yy yyt zz zz
z y y z

zz

EI
l

EI EI EI EI
e

l ll l
EA
l

EI EI EI
e

l l l
EI EI EIe
l l l

EI EIGI EI EIe e e e
l l l l l

EI

1

1

1

1

1

1

2

2

2

2

2

2

0

. . . . . . . . . . . 4

  
  
  
  
  
  
  
  
  
  

ϕ  
  
  
 ϕ 
  
  
   ϕ  
  
  
  
  
  
  
  
  
  
  
  
   ϕ 
 
 
ϕ 

 
 
  ϕ   

x

y

z

x

y

z

x

y

z

x

y

yy

z

u

u

u

u

u

u

l
EI

l









 
The matrix can checked in the following way. A rotation η around the shear centre at 
node 2 gives 2xϕ = η , 2y zu e= η , 2z yu e= − η . The other displacements and rotations 

are zero. Substitution in the matrix gives 1
w

x
GIM

l
= − η , 2

w
x

GIM
l

= η . The other 

forces and moments are zero. This is the correct result. 

x
y

z

1xF

1yF

1yu 2xF

2zF
2yF

2xu

2zu2yu
1xu

1zu

1zF

1xM

1yM

1yϕ 2xM

2zM
2yM

2zϕ2yϕ
1zϕ

1zM

2xϕ1xϕ
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The latter stiffness matrix can be extended with shear deformation and constrained 
warping. In addition, the y and z axes do not need to point in the principal directions 
and the element can be translated over distances ys  and zs  compared to the nodes. 
Moreover, linearly distributed loads xq , yq  and zq  can be applied and a linearly 
distributed torsion moment xm  can be applied. The result is not shown here because it 
does not fit on one page. The Maple script below produces the 14×14 elements of the 
stiffness matrix. These can be copied to Fortran or another language in which a frame 
program is writen. 
 

 
 

1 1,1 1,2 1,141
1 2,22
1 3 3,3
1 4
1 5

1 6

1 7

2 8

2 9

102
112
122
132
14 14,142

.

                                 = +                                  

x

y

z

x

y

z

x

y

z

x

y

z

F K K KN
F KN
F N K
M N
M N
M N
B N

F N
F N

N symF
NM
NM
NM
N KB

1

1

1

1

1

1

1

2

2

2

2

2

2

2

 
 
 
  
  

ϕ  
   ϕ  
   ϕ
  
  
  
  
  
  
  
   ϕ
  
ϕ  

   ϕ  
    

x

y

z

x

y

z

x

y

z

x

y

z

u
u

u

w
u
u

u

w
 
 

1xF

1yF

1yu 2xF

2zF
2yF

2xu

2zu2yu
1xu

1zu

1zF

1xM

1yM

1yϕ 2xM

2zM

2yM 2zϕ2yϕ
1zϕ

1zM

2xϕ1xϕ

2B1B
2w1w

xy

z

zs
ys
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Note that there is a restriction to connecting elements. The warping can only be 
connected when elements have the same cross section and are in line with each other. 
If not, one must choose for no warping (w = 0) or no bi moment (B = 0). 
 
> restart: # Frame element stiffness matrix including constrained warping 
> # The element has 3 lines: 1) structure line, 2) normal force centre line, 3) shear 
> force centre line. The normal force centre line is offset by sy, sz to the structure 
> centre line. The shear centre line is offset by ey, ez to the normal force centre 
line 
> qx:=qx1*(1-x/l)+qx2*x/l:        # load on the normal force centre line 
> qy:=qy1*(1-x/l)+qy2*x/l: 
> qz:=qz1*(1-x/l)+qz2*x/l: 
> mx:=mx1*(1-x/l)+mx2*x/l: 
> e:=diff(ux(x),x):               # axial strain of the structure centre line 
> phiy:=gy(x)-diff(uy(x),x):      # rotations of a section. g is the shear deformation 
> phiz:=gz(x)-diff(uz(x),x): 
> Ky:=diff(phiy,x):               # curvatures 
> Kz:=diff(phiz,x): 
> N:=EA*e+EA*sy*Ky+EA*sz*Kz:      # normal force and moments 
> My:=EA*sy*e+EIyy*Ky+EIyz*Kz: 
> Mz:=EA*sz*e+EIyz*Ky+EIzz*Kz: 
> Vy:=GAy*gy(x):                  # shear forces 
> Vz:=GAz*gz(x): 
> B:=-ECw*diff(phi(x),x,x):       # bi moment 
>                                 # phi is the rotation around the shear centre line 
> Mx:=GIw*diff(phi(x),x)+diff(B,x)+Vz*ey-Vy*ez: # torsion moment 
> DE1:= diff(N,x)+qx=0: 
> DE2:= diff(Vy,x)+qy=0: 
> DE3:= diff(Vz,x)+qz=0: 
> DE4:= diff(Mx,x)+mx=0: 
> DE5:= diff(My,x)-Vy=0: 
> DE6:= diff(Mz,x)-Vz=0: 
> BC1:= ux1=ux(0), ux2=ux(l): 
> BC2:= uy1=uy(0)+phi(0)*(sz+ez), uy2=uy(l)+phi(l)*(sz+ez), phiz1=-gy(0)+D(uy)(0), 
phiz2=-gy(l)+D(uy)(l): 
> BC3:= uz1=uz(0)-phi(0)*(sy+ey), uz2=uz(l)-phi(l)*(sy+ey), phiy1= gz(0)-D(uz)(0), 
phiy2= gz(l)-D(uz)(l): 
> BC4:= phix1=phi(0), phix2=phi(l), w1=D(phi)(0), w2=D(phi)(l): 
> Opl:=dsolve({DE1,DE2,DE3,DE4,DE5,DE6, 
BC1,BC2,BC3,BC4},{ux(x),uy(x),uz(x),phi(x),gy(x),gz(x)}): assign(Opl): 
> e:=diff(ux(x),x): 
> phiy:=gy(x)-diff(uy(x),x): 
> phiz:=gz(x)-diff(uz(x),x): 
> Ky:=diff(phiy,x): 
> Kz:=diff(phiz,x): 
> N:=EA*e+EA*sy*Ky+EA*sz*Kz: 
> My:=EA*sy*e+EIyy*Ky+EIyz*Kz: 
> Mz:=EA*sz*e+EIyz*Ky+EIzz*Kz: 
> Vy:=GAy*gy(x): 
> Vz:=GAz*gz(x): 
> B:=-ECw*diff(phi(x),x,x): 
> Mx:=GIw*diff(phi(x),x)+diff(B,x)+Vz*ey-Vy*ez: 
> x:=0: Fx1:=-N: Fy1:=-Vy: Fz1:=-Vz: Mx1:=-Mx: My1:=-Mz: Mz1:=My:  B1:=B:  x:='x': 
> x:=l: Fx2:=N:  Fy2:=Vy:  Fz2:=Vz:  Mx2:= Mx: My2:=Mz:  Mz2:=-My: B2:=-B: x:='x': 
> K[1,1]:=simplify(diff(Fx1,ux1)): 
> K[1,2]:=simplify(diff(Fx1,uy1)): 
> K[2,2]:=simplify(diff(Fy1,uy1)): 
> K[14,14]:=simplify(diff(B2,w2)): 
> # etc. 
> ux1:=0: uy1:=0: uz1:=0: phix1:=0: phiy1:=0: phiz1:=0: w1:=0: 
> ux2:=0: uy2:=0: uz2:=0: phix2:=0: phiy2:=0: phiz2:=0: w2:=0: 
> N[1]:=simplify(Fx1): 
> N[2]:=simplify(Fy1): 
> # etc. 
> 
> 

x

y
z

1yq

2zq

2yq
2xq

2xm1zq
1xq 1xm
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Appendix 10. Derivation of Vlasov’s theory 
 
In this appendix the equations of the torsion theory of Vlasov are derived. 
 
Ingredients 
 
The following definitions are used. 
 

strain   ∂
ε =

∂
x

xx
u
x

   [4]   (1) 

warping  = Ψ θxu    (p. 5)   (2) 

torsion deformation ϕ
θ =

d
dx

   (p. 5)   (3)  

shear stresses    
τ = τ + τ

τ = τ + τ
xy xyS xyV

xz xzS xzV
     (4) 

( )

( )

∂ψ
τ = − θ

∂
∂ψ

τ = + θ
∂

xyS

xzS

G z
y

G y
z

   (p. 6)   (5) 

boundary condition 0τ − τ =xy xz
dz dy
dS dS

  [4]   (6) 

torsion moment ( )= τ − τ∫tS xzS xyS
A

M y z dA  (p. 6)   (7) 

( )= τ − τ∫tV xzV xyV
A

M y z dA     (8) 

= +t tS tVM M M      (9) 

0t
t

dMm
dx

+ =       (10) 

= θtS tM GI    (p. 3)   (11) 
 
bi moment  = − σ Ψ∫ xx

A
B dA   (p. 24)   (12) 

warping constant 2= Ψ∫w
A

C dA    (p. 24)   (13) 

 
One of the equilibrium equations of linear elastic material is 
 

0
∂τ∂σ ∂τ

+ + =
∂ ∂ ∂

xyxx xz
x y z

    [4]   (14) 

 
One of the constitutive equations of linear elastic materials is 
 

σσ σ
ε = − ν − νyyxx zz

xx E E E
.     [4] 
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In beams the stresses perpendicular to the surface are small and neglegible. 
So 0σ = σ =yy zz . Substitution in the previous equation gives 
 
σ = εxx xxE .         (15) 
 
 
Approximation 

It is assumed that 1 ( )τ τ + τ τ
θ ∫ xyS xyV xzS xzV

A
dA

G
 is much smaller than the torsion 

moment in a beam cross section. 
 

1 ( )τ τ + τ τ
θ ∫ xyS xyV xzS xzV t

A
dA M

G
      (16) 

 
This is fulfilled for thin wall open cross sections. This follows from figure 40: the 
Saint-Venant stress flows partially with the Vlasov stress and partially against the 
Vlasov stress. The with and against contribution to the integral cancel each other out.  
 
For other cross-sections the accuracy of this approximation is not clear. Note that the 
Vlasov theory shows that constrained warping for closed and solid cross sections is 
often neglegeble. However, the unclearness above makes the conclusion less hard. 
More research is needed. 
 
Derivation 
 
Substitution of equation 1, 2 and 3 in 15 gives 
 

2

2
ϕ

σ = Ψxx
dE
dx

.        (17) 

 
Substitution of this in equation 12 using equation 13 gives 
 

2

2
ϕ

= − w
dB EC
dx

        (18) 

 
Substitution of this in equation 17 gives 
 

Ψ
σ = −xx

w

B
C

         (19) 

 
Substitution of this in equation 14 gives 
 
∂τ ∂τ ∂ Ψ

+ =
∂ ∂ ∂
xyV xzV

w

B
y z x C

. 
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2

( )
∂τ ∂τ Ψ

+ Ψ =
∂ ∂∫ ∫xyV xzV

wA A

dBdA dA
y z dx C

. 

Application of the product rule 
∂τ Ψ ∂τ∂Ψ

= τ + Ψ
∂ ∂ ∂
xyV xyV

xyVy y y
and equation 13 gives 

 

( )
∂τ Ψ ∂τ Ψ∂Ψ ∂Ψ

− τ + − τ =
∂ ∂ ∂ ∂∫ xyV xzV

xyV xzV
A

dBdA
y y z z dx

. 

Green theorem is ( ) ( )
∂τ Ψ ∂τ Ψ

+ = τ Ψ − τ Ψ
∂ ∂∫ ∫xyV xzV

xyV xzV
A S

dz dydA dS
y z dS dS

 

which is equal to zero because of equation 6. (The Saint-Venant stresses already 
comply with the boundary condition therefore the Vlasov stresses must also comply.) 
Application of this gives 
 

( )∂Ψ ∂Ψ
− τ + τ =

∂ ∂∫ xyV xzV
A

dBdA
y z dx

. 

 
Substitution of equation 5 gives 
 

( ( ) ( ))
τ τ

− τ + + τ − =
θ θ∫ xyS xzS

xyV xzV
A

dBz y dA
G G dx

. 

 
This can be written as 
 

1( ) ( )τ − τ = τ τ + τ τ +
θ∫ ∫xzV xyV xyV xyS xzV xzS

A A

dBy z dA dA
G dx

. 

 
Application of equation 8 and 17 gives 
 

=tV
dBM
dx

. 

 
Substitution of this and equation 11 in equation 9 gives 
 

ϕ
= +t t

d dBM GI
dx dx

        (20) 

 
Substitution of equation 18 in 20 and the result in equation 10 gives 
 

4 2

4 2w t t
d dEC GI m
dx dx

ϕ ϕ
− =        (21) 

 
Q.E.D. 
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