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The problem minimizing the number of specimens required for fatigue data analysis is considered in this
research. Assuming unknown hyperparameters described via prior distributions, a hierarchical Bayesian
model with accumulated prior information was proposed to deal with this issue. One of the main advan-
tages of hierarchical Bayesian model over the empirical Bayesian model is that the prior distributions
with hierarchical structure can incorporate structural prior and subjective prior simultaneously. The
probabilistic stress-cycle (P-S-N) curves are generated from the predictive distributions, involving both
the randomness of parameters and the scatter of observations, and calculated by an identical hierarchical
structure. The numerical calculation is done via the Gibbs sampler, which makes the whole process sim-
ple and intuitive.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The laboratory fatigue tests data, always displaying a large scat-
ter observation, are often presented in the form of a median stress-
cycle (S-N) curve in high cycle fatigue life prediction with a series
of stress amplitudes, while P-S-N curves are used for studying the
fatigue life reliability. There is no doubt that the estimation of
unknown parameters of fatigue design curves relies heavily on sta-
tistical analysis. Miner [1] suggested a cumulative damage rule in
1945, as the well-known Palmgren-Miner’s rule:

D ¼
Xn
i

ni

Ni
for i ¼ 1; . . . ;n: ð1Þ

Eq. (1) describes a linear damage rule, D is the cumulative dam-
age of ni cycles at each stress level Si, and Ni is the number of cycles
to failure. The number of stress cycles of a certain material is deter-
mined experimentally by applying constant or variable amplitude
load and recording the number of cycles to failure. Ni is usually
assumed to depend on the load amplitude Si by Basquin relation
[2]

Ni ¼ AS�B
i for i ¼ 1; . . . ;n: ð2Þ

where A > 0;B > 0 are fatigue curve coefficients. In a more complex
three parameters model [3],
Ni ¼ AðSi � S0Þ�B for i ¼ 1; . . . ;n: ð3Þ
where S0 is a material constant too, which can be the mean life of
the specimen [4] or the fatigue limit [5]. Random effects of the
mechanical properties of structure and material, and even environ-
mental factors lead to scattered fatigue life cycle data. The fatigue
lives of similar specimens or structures under the same fatigue load
can be significantly different. Some research [6,7] proposed to uti-
lize the regularized fatigue life to deal with the random nature of
the fatigue life data and to examine the continuous dependence
of the fatigue life curve on the measured data. In order to describe
material fatigue precisely, fatigue life dispersion characteristics
usually are expressed by P-S-N curves. In fatigue reliability analysis,
Eq. (2) can be extended to represent P-S-N curves at survival prob-
ability p as

Nip ¼ ApS
�Bp
i for i ¼ 1; . . . ;n: ð4Þ

Similarly, in the case of three parameters,

Nip ¼ ApðSi � S0pÞ�Bp for i ¼ 1; . . . ;n: ð5Þ
where Ap;Bp and S0p are material constants, and Nip is the life corre-
sponding to survival probability p at the stress level Si. The scatter
of material parameters can be expressed by the lognormal distribu-
tion or a three parameters Weibull distribution, stated by Weibull
[8] in 1939. A zero fatigue life of the lognormal distribution is phys-
ically impossible, so this discrepancy does not occur in the three
parameters Weibull distribution function. In fact, the lognormal dis-
tribution can fit fatigue data well at the high or low stress levels,
while Weibull distribution achieves better results at medium stress
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levels [9]. Unfortunately, the distribution function of fatigue life
hardly can be derived on the basis of physical arguments. In a rea-
son, the validation of the two above distribution functions requires
large test data [10], which is time-consuming and costly.

Research works have been carried out for P-S-N curves estima-
tion from small data sets, often involving complex data structures,
by statistical methods, such as maximum likelihood method with a
reference stress level [11], empirical Bayesian model [12], the ran-
dom fatigue limit model [5], backwards statistical inference
method [13], etc., driven by data analysis or physical models. The
notional fatigue reliability on the design curve only reflects the
observed physical uncertainty associated with the fatigue process
itself, but for the small fatigue data set the statistical uncertainties
concerning the point parameter estimates could be equally signif-
icant. Bayesian analysis has been presented for establishing design
S-N curves from small censored data sets to solve underlying sta-
tistical uncertainties [14]. Although a number of papers have
appeared which exploited Bayesian inference in the analysis of
the propagation of fatigue cracks, very few attempts have been
made in the past to use the Bayesian approach in the context of
S-N fatigue tests [12]. The Bayesian inference approach focuses
on updating the probability for a hypothesis of the parameters
on the basis on observations [15]. Bayesian linear regression has
been considered in fatigue data analysis where the posterior distri-
bution of model parameters was then used to predict the fatigue
life [16]. The empirical prior knowledge was derived from material
parameters [12], maximum likelihood estimates [17], or test series
with similar components of different geometry [16]. Different
residual stress and strain data measured from various techniques
are analyzed using a Bayesian statistical approach and then inter-
polated utilizing modified Shepard method [18], which has been
used for fatigue life measurements analysis indirectly [6]. All of
the aforementioned Bayesian inference applications of fatigue data
analysis focused on using empirical Bayesian model, while hierar-
chical Bayesian models with structural and subjective hierarchical
priors, both or one of them, have been applied to describe the fati-
gue crack growth [19] or the crack growth rate [20].

The present research primary focuses on the fatigue curves esti-
mation method by using hierarchical Bayesian model, for both the
two parameters and three parameters methods. Then the predic-
tive distributions in the same hierarchical structure are proposed
to estimate the P-S-N curves. Moreover, one of the main advan-
tages of the hierarchical Bayesian model is that it allows the use
of both structural prior information and subjective prior informa-
tion simultaneously. As a result, the choice of noninformative prior
distributions is discussed in detail, as well as the model checking
and the convergence of Gibbs sampling. Finally, numerical exam-
ples of hierarchical Bayesian models for estimating the S-N and
P-S-N curves from the collection of real data under study are pre-
sented, along with their comparisons of the maximum likelihood
estimation (MLE).
2. Hierarchical Bayesian models for estimating S-N curves

2.1. Fundamentals of hierarchical Bayesian models

From the perspective of Bayesian statistics, the parameters
within models are regarded as random variables, and thereby hav-
ing probability distributions, which are known as prior distribu-
tions. An important type of prior distribution is a hierarchical
prior, since it is often convenient to model structural knowledge
in stages. Distinguishing feature of the hierarchical Bayesian
approach to empirical Bayesian analysis is the hierarchical nature
in which information is accumulated. As a result, the hierarchical
approach is most commonly used approach to building complex
models by specifying a series of more simple conditional distribu-
tions [21]. Generally, hierarchical models are more flexible than
the typical nonhierarchical models since a more complicated struc-
ture is accommodated in the model. After ignoring the normalizing
constant f ðyÞ, a hierarchical Bayesian model is defined by

f ðt; hjyÞ / f ðyjh; tÞf ðhjtÞf ðtÞ ð6Þ
with a first stage likelihood, f ðyjh; tÞ, and second stage density,
f ðhjtÞ. h and t represent likelihood parameters and hyperparame-
ters of prior distributions respectively, and f ð�Þ are distribution
functions.

Comparing with the empirical Bayesian model, for which the
prior distribution is fixed before any data are observed, the hierar-
chical Bayesian model offers many advantages [21–23]. Empirical
Bayesian model is failure to consider hyperparameter estimation
error and also does not indicate how to incorporate the hyperpa-
rameter estimation error in the analysis by itself, while the hierar-
chical Bayesian analysis incorporates such errors automatically.
Another advantage is that the hierarchical structure leads to a more
robust analysis, since it reduces the arbitrariness of the hyperpa-
rameter choice. Moreover, the hierarchical Bayesian model can
incorporate actual subjective prior information at the second stage,
so that it allows the use of both structural prior information and
subjective prior information simultaneously, random fatigue limit
model in fatigue data analysis (Section 2.2), for example. Finally,
empirical Bayes theory requires the solution of likelihood equations,
while the hierarchical Bayes approach requires numerical integra-
tion, Markov Chain Monte Carlo (MCMC) algorithms for instance,
and resulting in conditional distributions. The increasing applica-
tions and practical implementations of Bayesianmodels have owed
much to the development of MCMC algorithms, such as Gibbs sam-
pling [24], Metropolis-Hastings algorithm, etc. for estimation
[25,26] relatively recently. The Gibbs sampler, also called alternat-
ing conditional sampling, the proposal density of which can be gen-
erated by iteratively sampling from the full conditional posterior
distribution phjyðhjjhnj; yÞ, where hnj ¼ ðh1; . . . ; hj�1; hjþ1; . . . ; hdÞT . As a
special case of the Metropolis-Hastings algorithm, the Gibbs sam-
pler meets the detailed balance condition and leads to a stationary
distribution, but samples one random variable at a time and does
not require the check for the proposed sample acceptance.

The Bayesian approach expands the class of models to fit data,
enabling one to handle complex correlations, unbalanced or miss-
ing data, etc. In addition to the advantages described above, the
hierarchical Bayesian models, in a sense, all Bayesian models are
hierarchical [15], provide a formal framework for analysis with a
complexity of structure that matches the system being studied.

2.2. Models for estimating S-N curves

If the random error is taken into consideration, Eq. (2) can be
expressed as:

Ni ¼ AS�B
i ei ð7Þ

where ei indicates the randomness in stress level Si, comprising the
random effect of materials and random error in observations. Take
the natural logarithm transformation for Eq. (7),

log10Ni ¼ log10A� Blog10Si þ di ð8Þ
The random variables di in Eq. (8) can be a normal distribution, Wei-
bull distribution, or Gaussian mixture distribution, of which the
mixing measure, which uses a unfixed number of parameters or
accounts for uncertainty about distributional shape [27,28], can
be a Dirichlet process in a Bayesian nonparametric approach. For
the purpose of introducing the hierarchical Bayesian models in this
paper, the normal distribution is chosen in the subsequent study.
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Therefore, we assume di ¼ riei;ri is the standard deviation of the
logarithmic fatigue life under the stress level Si and ei � Nð0;1Þ.
Following Guida’s [12] suggestion, let ui ¼ log10Si and
�u ¼ ð1=nÞPn

i log10Si, then

yi ¼ aþ bxi þNð0;r2
i Þ ð9Þ

where yi ¼ log10Ni; xi ¼ ui � �u;a ¼ log10A� B�u and b ¼ �B. For sta-
tistical analysis it is convenient to rewrite the Eq. (9) to a normal
distribution with mean l ¼ aþ bxi and variance r2

i [12]. which
can be expressed as:

yij � Nðaþ bxi;r2
i Þ ð10Þ

or

yij � Nðli;r
2
i Þ for i ¼ 1; . . . ; n and j ¼ 1; . . . ;m: ð11Þ

where li ¼ aþ bxi; yij is the jth observation of the ith stress level.
The prior distributions in the second stage are assumed that
ajla;ra � Nðla;r2

aÞ;bjlb;rb � Nðlb;r2
bÞ (see Section 4.1 for more

information on the choice of prior distributions). The directed acyc-
lic graph (DAG) of the hierarchical sturcture is shown in Fig. 1. In
this representation, variables are arranged in a series of levels, with
data in the innermost and hyperparameters in the outermost. The
arrows represent dependencies of variables, which are assumed to
be independent conditional on each level. Known data are placed
in the box and unknown variables are put in the circles. Similarly,
the three parameters expression for S-N curves is assumed as

Ni ¼ AðSi � S0Þ�Bei ð12Þ
where ei is also assumed to be distributed as a log-normal random
variable, same as the two parameters method:

log10Ni ¼ log10A� Blog10ðSi � S0Þ þ riei ð13Þ
Let a ¼ log10A and b ¼ �B, then

yi ¼ aþ blog10ðxi � cÞ þ riei ð14Þ
where xi ¼ Si; c ¼ S0, and

yij � Nðaþ blog10ðxi � cÞ;r2
i Þ ð15Þ

or

yij � Nðli;r
2
i Þ for i ¼ 1; . . . ; n and j ¼ 1; . . . ;m: ð16Þ
Fig. 1. The DAG of the hierarchical Bayesian model for estimating S-N curve or P-S-
N curves. The arrows represent dependencies of variables, which are assumed to be
independent conditional on each level. These nodes with fixed quantities in the
analysis are represented by rectangles, while unobserved random variables are
represented by circles.
where li ¼ aþ blog10ðxi � cÞ; yij is the jth observation of the ith
stress level. Note that the xi in the three parameters model is very
different from the two parameters model. ajla;ra � Nðla;r2

aÞ;
bjlb;rb � Nðlb;r2

bÞ; cjlc;rc � Nðlc;r2
cÞ are still assumed in the

second stage. Suppose that, c is the fatigue limit of the specimen,
and f V ðv ;lc;rcÞ is probability density function of V by letting
V ¼ logðcÞ

f V ðv ;lc;rcÞ ¼ 1
rc

/V
v � lc

rc

� �
ð17Þ

where /Vð�Þ is either the standardized smallest extreme value or
normal probability density function. When f V ðv;lc;rcÞ is the prior
of c, that is V � f V ðv ;lc;rcÞ, then Eq. (15) can be considered as a
kind of random fatigue-limit model [5].

3. P-S-N curves estimation by using predictive distributions

The fatigue P-S-N curve with the given survival probability p is
easily generated via the parameters ap and bp. Eq. (4) can represent
P-S-N curve at survival probability p as

log10Nip ¼ log10Ap � Bplog10Si ð18Þ
The logarithm of fatigue life is assumed to normally distribute pre-
viously, so that the logarithm of fatigue life at survival probability
p; log10Nip, can be expressed as

log10Nip ¼ log10Ni � lpri ð19Þ
where lp is the standard normal deviate corresponding to survival
probability p. Substituting Eqs. (8) and (18) into Eq. (19) yields

lpri ¼ a� ap þ ðb� bpÞxi ð20Þ
where ap ¼ log10Ap � Bp�u and bp ¼ �Bp. However, the model com-
plexity and computational cost are greatly increased, therefore
another approach will be discussed to obtain the P-S-N curves using
prediction of observations y in Section 3.2 within the same hierar-
chical structure.

3.1. The predictive distributions

The predictive distributions of observations can be presented
within the same hierarchical structure. The Gibbs sampler takes
advantages of hierarchical structures [23], when a Bayesian model
can be written as

f yðypredÞ ¼
Z

f yjhðypredjhÞf hðhÞdh ð21Þ

where f yð�Þ are predictive distributions or prior predictive distribu-

tions. It is easy to generate the prediction ypred by using the predic-
tive distributions. The f yð�Þ is the stationary distribution of this
Markov chain [29], expressed as follows:

f yðypredÞ ¼
Z

KðypredjyÞf yðyÞdy ð22Þ

where KðypredjyÞ is the transition kernel for the chains of ypred, given
by:

KðypredjyÞ ¼
Z

f yjhðypredjh; yÞf hjyðhjyÞdh ð23Þ
3.2. P-S-N curves estimation by using predictive distributions

The fatigue life cycles ypred of all the stress levels can be easily
generated from the posterior predictive distributions by adding a
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single simple step within the Gibbs sampler, that is the expected
life values in all stress levels Eðypredjy; xÞ can be estimated by using
the predictive distributions

f ðypredjyÞ ¼
Z

f ðypredjl;r; yÞf ðl;rjyÞdldr ð24Þ

where r is the standard deviation, l ¼ aþ bx, the same as previ-
ously mentioned, ypred denotes the future data for predicting, and
y is the complete test data. When the observations of some stress
levels is insufficient, the observations of fatigue life can be treated
as incomplete data, and the insufficient data is considered as miss-
ing data. That is, the complementary data y include the observa-
tions and the missing data ymiss in this case. The survival function
SðyiÞ ¼ 1� FðyiÞ ¼ 1� PðYi 6 yiÞ, the probability of surviving at the
fatigue life yi at stress level Si, can be expressed using the predictive
distributions naturally, so that the P-S-N curves can be obtained by
using prediction of observations y easily.

Follow the discussion in Section 2.2, the same effect as Ling’s
maximum likelihood method [11] can be achieved by making
ri ¼ rr in Eqs. (11) and (15) at each stress level Si, where rr is
the various standard deviations of fatigue life at reference stress,
i.e., choosing a stress level Sr as a reference stress level and a group
of specimens are tested. Note that the reference stress used here is
very different from the reference prior in the objective Bayesian. It
will greatly reduce the number of test samples when the reference
stress is used, consistent with the maximum likelihood method, of
course, the same limitation too. It is based on the assumption that
the statistical nature of the life data is the same at all applied stress
levels of interest. In the Bayesian hierarchical model, an unknown
r can be assumed to characterize the dispersion of fatigue life at
each stress level, that is ri ¼ r, without providing a reference
stress level. It might be more reasonable because the fatigue life
cycle scattered nature of the stress levels of all available data are
taken into account.

All of the above discussions are based on the assumptions that
there are similarities in the distributions of fatigue life at different
stress levels. An assumption of ‘‘similarity” here is not equivalent
to the assumption of ‘‘exchangeability”, which was shown to be
equivalent to assuming that the observations of each stress level
were independent and identically distributed from one distribu-
tion with the hyperparameters unknown, and the priors of those
hyperparameters are given. These hyperparameters should arise
from a common ‘‘population” distribution whose parameters are
unknown and assigned appropriate prior distributions [30]. Hierar-
chical models tend to recognize that it is unlikely that all stress
levels have the same underlying survival rate by giving different
distribution parameter ri, with the same prior distribution, for
the various stress levels.

In addition, in dealing with the S-N or P-S-N estimate problem,
the fatigue measured data often have missing data problems or
there are not as many observations at different stress levels. Less
data means less expense and test time, especially at lower stress
levels. The hierarchical Bayesian model can easily deal with these
situations by using the predictive distributions since the missing
ymiss
i of xi can be considered as an additional parameter under esti-

mation. Obviously, more missing data also means more uncer-
tainty in the estimation and therefore results in more
conservative estimates.
4. Prior choice and model checking

4.1. The choice of prior distributions

The first step of Bayesian inference is to determine the prior dis-
tributions of parameters h. Undoubtedly, one of the most critical
and most criticized points of Bayesian analysis is that it deals with
the choice of the prior distribution, so that the prior distribution is
the key to Bayesian inference and its determination is, therefore,
the most important step in drawing this inference. There are two
kinds of prior, the informative prior and the noninformative prior.
The informative prior could be based upon some or all of the follow-
ing: (1) mathematical or physical models, (2) engineering, physics,
etc. information, (3) expert’s judgements, (4) historical data of the
same or similar circumstances, and other reasonable information.

The noninformative prior can be directly derived from the sam-
pling distribution. Jeffreys [31] described a method to derive the
prior distribution directly from the sampling distribution. For nor-
mal distribution, consider y � Nðl;r2Þ, with l;r unknown. In the
Jeffreys noninformative prior case, the corresponding noninforma-
tive prior distribution is p / 1=r2. Gð�; �Þ, with � small and positive,
is ‘just proper’ form of Jeffreys prior [32]. In the particular case of
conjugate distributions in the usual exponential families, the pos-
terior expectations of the natural parameters can obviously be
expressed analytically. The normal distribution, for example, the
conjugate prior of its mean is still normal distribution, while
the variance of it has an inverse gamma conjugate prior [23]. If
the prior information is weak, hi � Nðlhi

;r2
hi
Þ, in which lhi

;rhi

are hyperparameters, can be chosen, and lhi
is often set to 0, while

rhi is often set to 10k with a sufficiently large k in Bayesian model
[33]. However, hi � Nðlhi

;r2
hi
Þ is set in hierarchical Bayesian

model, and the hyperparameter hi are assumed to have noninfor-
mative or weakly-informative prior distributions. In addition, to
assess sensitivity to prior assumptions, the analysis may be
repeated over a limited range of alternative priors. Some research-
ers [34,35] suggested a gamma prior on inverse variance, 1=r2,
governing random walk effects (e.g., baseline hazard rates in sur-
vival analysis), namely, 1=r2 � Gða; bÞ, where a is set at 1, but b
is varied over choices such as 0:05 or 0:0005. Unfortunately, Gel-
man [32] shows that inferences become very sensitive to a; b, espe-
cially for problems where the group-level variance rhi is close to
zero and is crucially affected by the choice the scale of rhi . Thus
a; b must be set to a reasonable value, so that the prior distribution
hardly looks noninformative. Gelman also recommended starting
with a noninformative uniform prior density Uð0;uÞ on a wide
range of standard deviation parameters in fitting hierarchical mod-
els. As a result, uniform distributions and the inverse gamma dis-
tributions are selected as a prior distribution in Section 5.

The physical model can not only be expressed as a likelihood
function, but also, as described in Section 2.2, can be incorporated
into a hierarchical Bayesian model as an informative prior conve-
niently. Moreover, Statistical uncertainties of historical data can
also be easily added to the hierarchical Bayesian model as an infor-
mative prior. In fact, for a large sample size, MLE of a scalar param-
eter h, say ĥ, is approximately normally distributed with mean h
and variance equal to the negative reciprocal of the observed infor-
mation, IðhÞ. Similarly, because the weight given to the prior mean
decreases to 0 as the number of experimental becomes large, the
posterior distribution will converge to a normal distribution cen-
tered on the MLE, and the variance of the posterior distribution
converges to the inverse of the IðhÞ. Therefore the asymptotic (large
sample) properties of the MLE and the posterior distribution are
similar in this sense [33]. As a result, it is reasonable that the
asymptotic distribution is selected as an informative prior
distribution.
4.2. Convergence of the MCMC algorithm and model checking

As discussed in Section 2.1, the target posterior distributions
and the hyperparameters noninformative prior distributions are
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easily obtained by Gibbs sampling. MCMC methods broadly appli-
cable, but require care in parametrization and convergence diagno-
sis. In order to obtain correct target posterior distributions, there
are many ways to monitor convergence, including the MC error
(the simplest way), the trace plots, the ergodic mean, plotting auto-
correlations etc. Multiple-chain comparisons with different initial
values are also efficient in practice, and BrooksGelmanRubin
(BGR) diagnostics [36] also can be employed in this case.

The deviance information criterion (DIC), which can be applied
to compare the fatigue estimation models, is obtainable as the
expected deviance plus the effective model dimension, and was
introduced by Spiegelhalter et al. [37]. The DIC can be seen as a
Bayesian version of Akaike information criterion (AIC),

DIC ¼ 2D� Dð�hÞ ¼ Dð�hÞ þ 2pD ð25Þ
where Dð�hÞ is the usual deviance measure, which is equal to minus
twice the log-likelihood Dð�hÞ ¼ �2 log f ðyjhÞ and D is its posterior
mean, pD can be interpreted as the number of effective parameters
given by pD ¼ D� Dð�hÞ and �h is the posteriormean of the parameters.
A probability density f ðyjhÞ can be greater than 1 for a small standard
deviation, hence a deviance can be negative, and then generate a neg-
ative DIC. In any case, smaller DIC values always indicate a better-
fitting model. In fact, Kelly proposed using BIC of non-hierarchical
models while prefering DIC if hierarchical models are used [38].

For hierarchical models, expectation posterior predictive p-
values can be calculated [39,40] under current posterior distribution
bynewdata ynew. Equivalently, thep-values canbeestimatedbypos-
terior probability that Pðypred < ynewÞ; ypred is the predictive observa-
tion, which was described in detail in Section 3. However, it is
questionable formodel checking because of the repeated use of data.
As a result, several researchers [41–44] have proposed the use of
cross-validation predictive densities [22]. Geisser et al. [45] pro-
posed using the leave-one-out cross-validation predictive density

f ðyijyniÞ ¼
Z

f ðyijhÞf ðhjyniÞdh ð26Þ

where yni is y after omitting yi.

5. Numerical examples

In order to verify the hierarchical Bayesian model in the fatigue
data analysis, two numerical examples are carried out to assess
hierarchical Bayesian model performances with respect to the
MLE, and each example is discussed in two cases: the variances of
different stress levels are same in Case 1 and the variances are dif-
ferent but they distribute from a same prior in Case 2, as described
Fig. 2. QQ plot of parameters to be estimated versus standard normal, the asymptotic di
vertical axis.
in Section 3.2. The data used in these examples are from the pub-
lished literature [13,46]. For Example 1, fatigue test was conducted
with standard plate specimens of alloy 2524-T3 under four stress
levels with about 15 observations each by Xie et al. [13], see
Table B.1. Since the sequence of the selected specimen’s life data
randomly, the asymptotic result of the parameters can be calcu-
lated, as shown in Fig. 2(a) and (b). The asymptotic distributions
of parameters can be seen as normal distributions due to the
small-scale of vertical axis, so that it is reasonable to choose normal
distributions as prior distributions for parameters a and b. For
Example 2, durability data for flat specimens cut from the
S420MC steel plate is given by Klemenc et al. [46], and these stan-
dard specimens had a standard shape in accordance with the ASTM
E606-92 standard. In these fatigue tests, 65 specimens were broken
before 2 million load cycles but 15 specimens survived. These bro-
ken specimens were used to estimate the S-N curve and its scatter,
see Table B.2, and they are also employed for cross-validation here.

5.1. Technical details

Gibbs sampling is employed to simulate previously mentioned
distributions. WinBUGS [47] is used to achieve the purpose of
Gibbs sampling in this paper, and all computations are done on a
desktop PC. Note that the initial values given in these numerical
examples, for both cases of the hierarchical Bayesian model and
the MLE, are identical. The Gibbs sampling of two parameters case
steps for the distributions are as follows:

(1) Specifying the likelihood yij � Nðli;r2
i Þ, where li ¼ aþ bxi;

(2) Sample a; b, given the other parameters, from Nðla;r2
aÞ and

Nðlb;r2
bÞ respectively;

(3) Sample la;lb from Nð0;106Þ and sample sa; sb from
Gð0:001;0:001Þ, Sample s and si from Gð0:001;0:001Þ in Case
1 and Case 2 respectively;

(4) For prediction or P-S-N curves estimation, sample ypredi from
predictive distribution Nðlypred

i
;r2

ypred
i

Þ, where

lypred
i

¼ âþ b̂xi;rypred
i

¼ r̂ in Case 1 and rypred
i

¼ r̂i in Case 2.

where s� ¼ 1=r2
� for using inverse gamma distributions, and �

denotes subscripts. Table 1 shows the settings of prior distribu-
tions which are used for hierarchical Bayesian model to estimate
the curves in these examples. In order to verify the convergence
of MCMC, two chains with different initial values are used in the
examples, both of which burnin period are 1000 iterations and
then sample 10,000 times for each chain. Recalling the material
stributions of parameters can be seen as normal distributions for the small-scale of



Table 1
The settings of prior distributions in Case 1.

Second stage Third stage

lja;b ajla ; sa � Nðla;r2
aÞ la � Nð0;106Þ

sa � Gð0:001;0:001Þ
bjlb ; sb � Nðlb;r2

bÞ lb � Nð0;106Þ
sb � Gð0:001;0:001Þ

s; si � Gð0:001;0:001Þ –
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parameter B > 0, for the two parameters model, the initial values
of one of the chains are set as follows: lb ¼ b ¼ �B ¼ �1; si and
ypredi are given a value close to the observed values yij, and the
remaining variables are set to 1. The other group of initial values
is completely arbitrary and all of which are set to 1 here. Concern-
ing the sensitivity of the prior of hyperparameter rhi to inferences,

the hierarchical model is calculated by setting shi � Uð0;104Þ, and
obtain a consistent result.

Since Example 2 is also employed for cross-validation, so that
fatigue test data is divided into two parts as shown in Fig. 4. The
data used for model estimation are divided into 5 groups, by put-
ting the data of close stress levels together. Finally, Example 1 con-
tains four sets of data, each 15, while Example 2 contains five sets,
each 12, in both of which the lack of data is set as missing data.

5.2. Results and discussions

The convergence of MCMC in Example 1 is monitored as shown
in Fig. A.1. Fig. A.1(a) and (d) give smooth density curves of the
material parameters a and b. A low degree of autocorrelation in
the sample as shown in Fig. fig:MCMC-convergence(b) and (e),
BGR diagnostics are shown in Fig. fig:MCMC-convergence(c) and
(f), in which the dashed line denotes the reference value of one,
and as the number of iterations increase, the evolution of the pooled
posterior variance (in green) and the mean of the variances within
each sample tends to stabilization, and their ratio (in red) tends to
one. All of these monitors, including the MC error results in Table 2,
indicate the good convergence of the algorithm in Example 1.

For Case 1, with common variance, the results of Example 1 and
Example 2 are given in Tables 2 and 3 respectively, while the MLE
Table 3
Estimation results of hierarchical Bayesian model Example 2 Case 1.

Node Posterior

Mean SD MC erro

a 5.582 0.02203 1.701E-4
b �7.925 0.5109 0.00655
r 0.1602 0.01636 1.542E-4

ra 1212.0 59100.0 417.4
la 3.357 302.9 2.074
rb 1546.0 76900.0 547.6
lb �9.968 310.6 1.848

Table 2
Estimation results of hierarchical Bayesian model in Example 1 Case 1.

Node Posterior

Mean SD MC erro

a 4.983 0.01263 9.77E-
b �3.387 0.1102 9.123E-
r 0.09617 0.009221 6.866E-

la 8.369 320.2 2.125
ra 1098.0 28920.0 206.8
lb �4.047 294.4 2.069
rb 5006.0 605100.0 4289.0
is calculated with results a ¼ 4:9740; b ¼ �3:4708 of Example 1
and a ¼ 5:5723; b ¼ �8:0075, of Example 2. The hierarchical Baye-
sian model fitting results of the examples are shown in Figs. 3 and
4, with 97:5% survival probability or 95% prediction intervals. Cred-
ible intervals, which are used for interval estimation, are intervals in
the domain of the posterior probability distribution in Bayesian
statistics, and they are analogous to confidence intervals in frequen-
tist statistics. Although the predictive distribution is a kind of poste-
rior distribution, but the prediction intervals here refers the
predictive distribution domain of observations specifically. Obvi-
ously, the infimum of the 95% prediction interval corresponds to
the97:5% survival probability. Thehierarchical Bayesianmodelwith
commonvariance (Case1) results arealso comparedwith theMLE, as
shown in Figs. 7 and 8, and the hierarchical Bayesian model with
independent variance (Case 2), as shown in Figs. 5 and 6, respec-
tively. Figs. 5 and 6 illustrate that there is little difference between
the estimation results of the one with common variance r2 and the
onewith several different variancesr2

i , so itmeans that goodenough
results are obtained by the model of Case 1. The cross-validation is
used formodel checking inExample2, the results show that thehier-
archical Bayesian model used for fatigue data estimation is credible.

Table 4 shows a model comparison of between Case 1 and Case
2 via DIC values, for Example 1 and 2 respectively. The negative DIC
values is easy to understand for the logarithm of the data narrow
the scale, resulting in a small variance. As Section 4.2 discussed,
smaller DIC values indicate a better-fitting model. Case 2 in Exam-
ple 1 and Case 1 in Example 2 have smaller DIC and achieve better
fitting models. Corresponding to the distributed characteristics of
the data, the different variances r2

i settings prefer to suit large dif-
ferences in distribution of life in different stress levels, while a
common variance r2 setting for small difference is recommended.

Compared with theMLE, the advantage of the hierarchical Baye-
sianmodel for the S-N curve fitting is inconspicuous, while the hier-
archical Bayesian approach highlight the advantages in the P-S-N
curves estimation, see Figs. 7 and 8. Moreover, consistent with the
results inTables5 and6, aswell as our expectations, theP-S-N curves
estimating results of the hierarchical Bayesianmodel are more con-
servative than theMLE results. This is because hierarchical Bayesian
model incorporates parameters and hyperparameter estimation
error into the analysis and thenmeetsmore reasonable results, even
Posterior percentiles

r 2.5% Median 97.5%

5.538 5.582 5.626
5 �8.917 �7.93 �6.916

0.1319 0.1588 0.1963

0.04438 10.13 4016.0
�690.1 5.584 670.6
0.0437 9.57 3712.0
�733.3 �7.952 687.0

Posterior percentiles

r 2.5% Median 97.5%

5 4.958 4.983 5.008
4 �3.603 �3.387 �3.171
5 0.08028 0.09547 0.1162

�697.1 4.983 769.0
0.04523 11.2 3941.0
�661.8 �3.381 624.2
0.0418 7.023 3199.0



Fig. 3. The S-N curve fitting and P-S-N curves estimation, with 97:5% survival probability or 95% prediction intervals, in Example 1.

Fig. 4. The S-N curve fitting and P-S-N curves estimation, with 97:5% survival probability or 95% prediction intervals, in Example 2.

Fig. 5. A comparison of the hierarchical Bayesian model Case 1 and Case 2 in Example 1.
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for a common variance setting. Its performance for the variances is
that rypred

i
> ri > rMLE

i always happened, as shown in Tables 5 and

6. Additionally, the calculation of the missing data contained in
the hierarchical Bayesian model is another influencing factor for
its conservative results. To summarize, the hierarchical Bayesian
model shows a significant advantage for the P-S-N curves estima-



Fig. 6. A comparison of the hierarchical Bayesian model Case 1 and Case 2 in Example 2.

Table 4
The DIC values of examples.

Examples Modle D bD pD DIC

Example 1 Case 1 �105.665 �108.670 3.005 �102.660
Case 2 �145.930 �152.139 6.209 �139.721

Example 2 Case 1 �41.812 �44.867 3.055 �38.757
Case 2 �40.804 �48.004 7.200 �33.603

Fig. 7. A comparison of the hierarchical Bayesian model (Case 1) and MLE to estimate S-N curve and P-S-N curves in Example 1.
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tion, while the likelihood-based methods are considerably faster in
computational efficiency than the hierarchical Bayesianmodel with
the MCMC algorithm involved.

Due to the limitations of the regression models, both the MLE
and the hierarchical Bayesian model do not have very good perfor-
mance at the highest stress levels for the S-N curve fitting in Exam-
ple 1. In fact, the scatter is less at high-stress amplitudes, while
larger at low-stress amplitudes [10]. Considering that the logarith-
mic coordinate display is non-linear, the display magnifies the
error at high-stress levels (low lifetime) is understandable
(Fig. 5). Furthermore, it seems that there is a knee point between
stress levels 350 and 400 in Example 1. Thus, it is hard to obtain
a better fitting result without a more complex model than Basquins
relation, Kohout and Vechet function [48], for example. Since
model selection is not the main focus of this paper, it will not be
presented a detailed analysis here.
The three parameters model with structural noninformative
prior also has been attempted to estimate the fatigue curves, as an
extra trial. The prior of the third parameter, c, is set to
c � Nðlc; scÞ, and the prior of hyperparameters are set as conjugate

priors, that islc � Nð0;106Þ; sc � Gð0:001;0:001Þ. Because there is a
logarithm scale of the parameter c, the three parameters model is
difficult to set a reasonable initial value for avoiding numerical over-
flow. This problem has been solved by setting sc � Gð1;1Þ, limiting
the variance of c to a smaller range. Since the estimate of c is very
close to zero, the result of the three parameters model is close to
the two parameters model. The smooth density curves, good BGR
diagnostics result are obtained by theMCMC convergencemonitors
of the three parameters model, but a high autocorrelation. High
autocorrelation leads to smaller effective sample size, it means that
a subjective prior of cwith informative prior must be given.



Fig. 8. A comparison of the hierarchical Bayesian model (Case 1) and MLE to estimate S-N curve and P-S-N curves in Example 2.

Table 5
The comparison of the standard deviations in Example 1.

Cases SD log10N1 log10N2 log10N3 log10N4

Case 1 r 0.09617
rypred

i
0.0996 0.09588 0.09891 0.09777

Case 2 ri 0.05881 0.06053 0.04056 0.1939
rypred

i
0.06243 0.06239 0.04202 0.1983

MLE rMLE
i

0.05395 0.05485 0.03676 0.08711

Table 6
The comparison of the standard deviations in Example 2.

Cases SD log10N1 log10N2 log10N3 log10N4 log10N5

Case 1 r 0.1602
rypred

i
0.1664 0.1622 0.1607 0.1629 0.1643

Case 2 ri 0.1519 0.2106 0.1794 0.1413 0.1472
rypred

i
0.1635 0.2188 0.1846 0.1483 0.1557

MLE rMLE
i

0.1323 0.1968 0.1731 0.1339 0.1352
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6. Conclusions

The hierarchical Bayesian model for estimating S-N curve have
been presented in order that the test time and the number of spec-
imens can be minimized, getting benefit from the hierarchical
structure robustifies the usual Bayesian analysis. Following this, a
P-S-N curves estimation method is proposed by using the predic-
tive distributions, with the same hierarchical structure. The follow-
ing conclusions can be drawn by numerical examples:

(1) Compared with the MLE, the hierarchical Bayesian model
obtains more conservative results for P-S-N curves estima-
tion, because the parameters and hyperparameter estima-
tion errors are incorporated into the analysis, as well as
the uncertainty effects of missing data. As a result, the hier-
archical Bayesian model meets a safer design curve from
small censored data sets.

(2) Benefit from the advantage of the hierarchical Bayesian
model that can incorporate actual subjective prior informa-
tion at the second stage, the physical models, such as ran-
dom fatigue limit model, can be incorporated into a
hierarchical Bayesian model conveniently for reducing the
uncertainties. Besides, it allows the use of both structural
prior information and subjective prior information
simultaneously in fatigue data analysis. In addition, the
physical model also can be set as a likelihood function for
updating.

(3) Missing data can be easily handled in the hierarchical Baye-
sian model, it is helpful when the data is insufficient.
Because of the more missing data means more uncertainties,
and the results will achieve in larger prediction intervals.

(4) MCMC methods are broadly applicable, but require care in
parametrization and convergence diagnosis.
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Appendix A. Figures of MCMC convergence monitoring

See Fig. A.1.
Fig. A.1. Results of MCMC convergence monitoring in Example

Table B.1
Fatigue life test data of aluminum alloy 2524-T3 [13].

Si (MPa)

200

300

350

400

Table B.2
List of experimental durability data for the S420MC steel [46].

Si (MPa) Ni Si (MPa)

204 946200 229
207 1851500 232
210 1281700 232
211 1215000 232
214 628100 232
214 1307600 232
214 1316000 232
214 1410600 248
214 851900 248
214 1566600 248
214 959900 248
214 1159400 248
219 1095800 248
219 1499200 250
221 1926800 250
224 1999500 250
224 997600 250
229 690600 250
229 730500 250
229 1009600 267
229 1555800 267
229 1358000 267
Appendix B. The original data

See Tables B.1 and B.2.
1, where sub-graph (a), (b), (c) for a and (d), (e), (f) for b.

log10Ni

5.603, 5.544, 5.528, 5.630, 5.594, 5.540, 5.581, 5.548,
5.426, 5.567, 5.554, 5.627, 5.630, 5.596, 5.626

5.028, 5.074, 5.016, 4.894, 4.993, 5.071, 5.024, 5.035,
4.954, 5.039, 5.098, 5.057, 5.092, 5.082, 5.005

4.784, 4.842, 4.776, 4.813, 4.813, 4.860, 4.798, 4.776,
4.758, 4.770, 4.755, 4.837, 4.736, 4.842, 4.796

4.477, 4.400, 4.426, 4.462, 4.592, 4.411, 4.447,
4.402, 4.665, 4.475, 4.458, 4.551, 4.525, 4.641

Ni Si (MPa) Ni

1447200 268 120800
488400 268 139800
380500 268 159100
567000 268 187100
701800 268 219600
553000 268 238600
630000 271 259500
286700 271 313000
376900 271 346100
488300 286 61600
650100 286 119400
585900 286 81600
698500 286 132000
313700 286 130000
256900 286 104300
238800 286 97400
323500 286 175600
213700 286 136500
389000 295 136800
199400 295 129900
194000 295 151400
224800
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