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In the past decades, great progress has been made in analyzing lateral torsional buckling of slender beams. The
phenomena has been accurately described by differential equations, closed form solutions are available for
specific cases and the solution for any load and any boundary condition can be obtained by finite element
analysis. Timber and steel design standards provide a procedure based on equivalent moment factors. With this
procedure, beams can be designed straightforwardly. However, modern designers continue to push the envelope
and more irregular load patterns are found, on which the design standards do not provide solutions.
Consequently, designers are forced to determine the equivalent moment factors based on case-specific literature
and/or conservative assumptions. Unfortunately, this makes many challenging modern designs uneconomical.
Furthermore, significant inconsistencies between the different design procedures are found. For that purpose,
this paper proposes a solution in the form of a general formulation to determine equivalent moment factors for
any loading on a single-span beam for both free and restrained lateral bending and/or warping at the supports,
for both I-sections and rectangular slender sections loaded in the shear center. It is shown that the obtained
moment factors are accurate and in good agreement with design standards and literature, and a wide range of

irregular load patterns is considered.

1. Introduction

The occurrence of elastic lateral torsional buckling (abbreviated as
LTB) means a loss of structural stability and therefore, it is considered
as an ultimate limit state failure mode that has to be addressed during
the design of especially slender long-span laterally unsupported beams.
LTB is the rotation of transversely loaded beams out of plane as a result
of buckling of the compressive part of the cross-section due to bending.
According to Lindner [1], the load level for which lateral torsional
buckling takes place, called the critical load, depends on beam geo-
metry, boundary conditions (rotational and translational restraints at
the supports), distribution of the loading over the length of the beam,
location of the loading within the cross-section, material properties
and, as discussed by Pi and Trahair [2], pre-buckling deformations. This
paper focuses on the influence of the load distribution and boundary
conditions on the elastic critical load via the so-called equivalent moment
factor, also called the moment gradient correction factor, for symme-
trical beams loaded at the shear centre by uniform loads, point loads
and bending moments at the supports (e.g. as shown in Fig. 4) and
supported by fork supports, with the possibility to prevent warping as
an additional feature. The equivalent moment factor is used to transfer
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any loading situation into an equivalent simply supported beam that is
loaded by a uniform bending moment, for which the critical load can be
easily found. In this way, the critical theoretical bending moment is
calculated based on the equivalent moment factor. However, in order to
take account of material-specific phenomena like imperfections and
residual stresses, this theoretical critical bending moment is subse-
quently reduced by a material-specific reduction factor. In this study,
merely I-sections and rectangular slender sections, which are often
made from steel and timber respectively, are considered.

During the last few decades, research on lateral torsional buckling
focused on finite element formulations of advanced problems, due to
the increasing complexity of solving the governing differential equa-
tions, as described by Timoshenko and Gere [3], for non-standard
loading cases. As a result of the increasing application of computer
programs in the design of structures, a clear understanding of buckling
phenomena is becoming more relevant to make optimal use of the
structural capacity. In this study, an analytic approach based on the
principle of conservation of energy is followed, leading to analytic ex-
pressions which can be used by the designer to obtain more insight in
the structural behaviour regarding lateral torsional buckling. Although
analytic expressions might not be as accurate as numerical analyses, the
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simplicity of these expressions offers the possibility to quickly converge
to the optimal design parameters of the considered structure, which is
especially relevant for early design stages. However, the current design
codes (such as EN 1993-1-1 [4], EN 1995-1-1 [5], AS-4100 [6] and
ANSI/AISC 360-16 [7]) only offer solutions for basic load cases (e.g.
mid-span point loads, uniformly distributed loads, clamped beams) and
simplified general formulations that might lead to unnoticed significant
errors or over-conservative results, hence creating the need for a gen-
eral accurate analytic approach, considering all load combinations
within a predefined framework, to evaluate lateral torsional buckling.
At the moment, engineers are often referred to case-specific literature
and are making use of rules of thumb (e.g. taking the effective buckling
length equal to the distance between zero-moment-points, also known
as points of contraflexure). This paper describes a general closed-form
analytic approach to obtain the equivalent moment factor, which is one
of the parameters that influences the total buckling behaviour, without
over-simplifying the problem. This closed-form expression can be di-
rectly used by the designer or implemented in structural analysis soft-
ware to incorporate design check procedures for lateral torsional
buckling.

First, the current design codes are summarized to show the design
procedures, followed by a review of the relevant literature. Significant
inconsistencies between the different design codes and approaches in
literature are found. Subsequently, the theoretical framework and the
general theory are presented and applied to some specific cases. Finally,
the general formulation is compared with literature, showing good
agreement, and the limitations of the approach are discussed.

2. Design code procedures
The critical moment regarding lateral torsional buckling for double

symmetric beams loaded in the shear centre is found by Timoshenko
and Gere [3]:

7, J( k )wa (kL)*GI,

r = C1 et e B

(kL) \\ k) I 7EL, 1)
in which coefficient C, is the equivalent moment factor accounting for
the non-uniform moment distribution. The influence of the support
conditions on the length over which the beam buckles are considered by
the lateral bending coefficient k and the warping coefficient k,,. For free
lateral bending and/or warping at the supports, the values are equal to
1 and for prevented lateral bending and/or warping at the supports, the
values become 0.5 (equivalent to a column that is clamped on both
sides). It is noted that in practice, complete prevention of warping at the
supports is unrealistic and therefore, prevented warping is merely in-
terpreted as a theoretical limit case. The fork support as is shown in
Fig. 2b offers both free lateral bending and warping. For I-sections, the
moment resistance is a combination of warping and uniform (Saint-
Venant) torsion. For rectangular slender sections, the effects of warping
tend to be negligible, as discussed by Trahair [8] and Chajes [9], which
reduces Eq. (1) to

T
M = Cio— [ELGI, @

Eq. (1) is used in steel standards and Eq. (2) is used in timber
standards, as most of the applied timber sections are rectangular and
slender. In fact, lateral torsional buckling of a slender rectangular sec-
tion follows the same expressions as an I-section with neglected
warping. Hence, this study treats rectangular slender sections as if they
are [-sections to generalize the approach. In this section, the calculation
of the critical moment for lateral torsional buckling according to several
design standards is elaborated.
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Table 1

Equivalent moment factors according to EC3 [4].
Load case G
Uniform moment (3 = 1) 1.00
Linear moment from M to 0 (i = 0) 1.75
Linear moment from M to -M (% = —1) 2.30
Mid-span point load 1.35
Point loads on 0.25L and 0.75L 1.04
Uniformly distributed load 1.13

2.1. Eurocode 3 for steel

Lateral torsional buckling of double symmetric steel beams is con-
sidered in Eurocode EN 1993-1-1 [4] for steel structures as an ultimate
limit state. For a beam loaded in the shear centre, EC3 gives for the
critical bending moment

]
M, = G- JELGL, |1 + ”—ZH“‘
Ly \ Ly Gl 3

Egs. (1) and (3) are identical when k and k,, have the same value
and the buckling length L, is set to kL. Using the approach of EC3, it is
not possible to have different values for the lateral bending and warping
coefficients. The equivalent moment factor C, is prescribed for basic
load cases based on the work of Gardner et al. [10] and Trahair [8], as
shown by Table 1. For a simply supported beam loaded at the supports
by a moment M and ¥M, with — 1 <3 < 1, EC3 gives an analytic ex-
pression: C; = 1.75 — 1L.05% + 0.3%? < 2.3. Furthermore, EC3 gives de-
sign diagrams for obtaining C, for the loading cases with support mo-
ments combined with uniformly distributed loads or mid-span point
loads, based on the work of Bijlaard and Steenbergen [11].

2.2. Eurocode 5 for timber

The Eurocode EN 1995-1-1 [5] for timber structures provides
guidelines for transversely loaded rectangular slender sections, for
which warping is neglected. The critical moment is given by

T
M,, - [EL.GI, @
in which Ly is the effective buckling length. For a lateral bending and
warping free beam, such thatk = k,, = 1, the effective length is equal to
L/Cy and hence, Eq. (4) is equal to Eq. (2). The current version of EC5
only gives the effective length for 3 cases: for uniform moments 1.00, for
uniformly distributed loads 0.90 and for mid-span point loads 0.80. For
other loadcases, the designer is referred to literature or other design
standards.

2.3. Australian steel standards

The Australian Steel Standards AS-4100 [6] make use of Eq. (1).
Instead of equivalent moment factors for specific load-cases, the AS-
4100 provides a general expression for beams that are laterally bending
and warping free:

1.7Mpax

M2+ ME + M? (5)

where M, is the maximum absolute moment within the span and M,,
My, and M. are the absolute values of the moments at respectively L/4,
L/2 and 3L/4 of the span.

Cl=

2.4. American standards

Both the American Steel Standard (ANSI/AISC 360-16 [7]) and the
Timber Standard (AFPA-TR14 [12]) give the same closed-form
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Fig. 1. C; as function of § for the different standards.

expression to calculate the equivalent moment factor for a given mo-
ment distribution, based on the work of Kirby and Nethercot [13].

_ 12.5M e
2.5Mpax + 3M, + 4M, + 3M, (6)

Cy

2.5. Canadian standards

The Canadian Steel Standard CAN-CSA S16-14 [14] provides the
following closed-form expression for C:

C = M <25
VM2 + 4MZ + TME + 4M? (7)

Fig. 1 compares the expressions of the considered design standards
for a linear moment gradient on a simply supported beam. The stan-
dards are in good correspondence with each other, although differences
can be significant. According to Sahraei et al. [15], the Australian
standard delivers, with respect to finite element analysis, the most ac-
curate solution for basic load cases.

3. Literature review

Lateral torsional buckling of beams can be studied in two ways, as
mentioned by Pi et al. [16]. Firstly, by considering the nonlinear dif-
ferential equations, as posed by Timoshenko and Gere [3], which can be
solved in closed form for a few simplistic cases. For more general cases
finite integrals, series solution, finite differences, numerical integration
and finite element methods can be used. Secondly, an energy-con-
servation based approach can be followed: the work done by the load
during buckling must be equal to the increase in strain energy. Using
approximate deformation shapes, the buckling load can be determined.
The accuracy of energy-based methods is highly depending on the ap-
plied deformation shape.

Using an energy-based approach, Chajes [9] derived expressions for
lateral-torsional buckling of simply or warping restraining supported I-
sections for two load-cases: uniform bending and mid-span point loads.
The books of Kirby and Nethercot [13] and Trahair [8] comprehend a
more elaborate collection of load cases based on both energy ap-
proaches and finite element analyses. Trahair described amongst others
simply supported and restrained beams loaded by one point load at
arbitrary location, beams loaded by mid-span point loads combined
with support bending moments and beams loaded by a uniformly dis-
tributed load combined with support bending moments. Although this
set of load-cases is quite elaborate, only basic load-cases are considered
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Table 2

S, and S, values from Lim et al. [19].
k kw Sy S»
1.0 1.0 1.00 0.16
0.5 0.5 1.00 0.18
1.0 0.5 0.80 0.10

and there is no general expression fulfilling all cases. This study aims to
find an expression that is approximately valid for all load-cases, without
over-simplifying the problem.

During the years, lots of experimental data have been obtained re-
garding the equivalent moment factor (for example by Xiao et al. [17]
and Burow et al. [18]). However, besides verification of theories, the
use of experimental data is rather limited, since information is only
obtained for specific cases. Both [17,18] show that the experimental
and theoretical values for the critical buckling moments are close to
each other for the considered cases and hence, this study will not fur-
ther consider experimentally determined equivalent moment factors.

Using both the Bubnov-Galerkin method and the finite element
method, Lim et al. [19] found an expression to capture the equivalent
moment factor for linear moment gradients, as defined in Fig. 1, for
elastic lateral torsional buckling of I-sections:

2
SO+ + 8.0 — 9P 8

in which S; and S, are coefficients depending on the support conditions,
as given in Table 2 for different lateral bending and warping restraints k
and k,, respectively.

Serna et al. [20] studied C; more in depth with the aid of a finite
difference approach. Design tables and graphs were determined for a
wide variety of cases (linear moments and uniformly distributed load or
a concentrated load together with one or two support moments), loaded
in the shear centre. They found that coefficient C, is slightly dependent
on the length of span, in line with the observations of Nethercot and
Rockey [21]. Based on this elaborate analysis, Serna et al. proposed an
improved expression for k = k,, = 1 which governs the studied load
cases accurately and conservatively, without taking into account the
length dependency:

ClLim =

c \/ 35M
1.Serna =
TN M2, + 9ME + 16ME + 9M2 ©)

Also following the finite difference approach, Suryoatmono and Ho
[22] found equivalent moment factors for beams under uniform loading
and one or two support moments. Furthermore, they showed that sig-
nificant differences occur when using the general formulas from design
standards, leading to over-conservative designs. Sahraei et al. [15]
considered elastic lateral torsional buckling of rectangular slender
wooden beams and presented a simplified expression to find the
equivalent moment factor for a wide variety of load cases:

Mcr,b'ahmﬂ = Crcb CLCp EIZGIt (10)

in which

e C, accounts for partial twist restraint at beam-ends, meaning that
the rotation out of plane is not fully fixed at the supports.

e (, is the equivalent moment factor accounting for non-uniform
moment distributions, defined as C; in the Eurocode 3 for steel [4].

e (; considers the influence of the load-location within the cross-
section with reference to the shear centre.

¢ C, is a coefficient that accounts for pre-buckling deformations (the
so-called second order effects).

In their study, Sahraei et al. derived detailed expressions for C,, C;,
and C,. For Cp, the equivalent moment factor, the expression of the
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Fig. 2. (a) Definitions of the coordinate-systems in undeformed (x, y and z) and deformed configuration (post-buckling, %, y and Z) with displacements u, w and ¢;

(b) Side view of fork support; (¢) Top view of fork support.

Australian Standard (Eq. (5)) is adopted, as this expression compared
best to finite element analyses of standard load cases. However, it is not
known whether Eq. (5) performs sufficiently accurate for more irregular
loading cases. Furthermore, the strength of a simplistic expression be-
comes questionable when more complex cases are studied, since these
expressions are most likely over-simplifications of the physical problem
and might not be accurate. The aim of this study is to find a more
generally applicable closed-form expression for the equivalent moment
factor, which subsequently can be implemented in the study of Sahraei
et al. to further improve the accuracy of Eq. (10). Furthermore, this
closed-form expression can be used in the design to consider irregular
load patterns, without the need to perform an elaborate finite element
analysis or study case-specific literature.

4, Theoretical framework

The beam is considered in two configurations: the undeformed
configuration (x, y and z) and the deformed configuration (%, y and Z)
just after the occurrence of lateral torsional buckling with displace-
ments i, w and ¢. Both of the configurations are defined in Fig. 2a. For
the purpose of this paper, the following key assumptions are made:

1. The beam is prismatic with an I-section. The theory also holds for
slender rectangular sections, by implementing I, =~ 0 in Eq. (1).
Because only double symmetric sections are studied, bending mo-
ments around the different axes are uncoupled.

2. The Euler-Bernoulli beam theory is applied, meaning that plane
sections remain plane and shear deformations are not considered.

3. The loading acts transversely in the shear centre of the beam, not
causing any additional torsional loading on the beam. No lateral
loading is included.

4. Displacements are assumed to be small such that first order ap-
proximations of the deformed configuration are valid and pre-
buckling deformations can be neglected.

5. Elastic material behaviour is assumed, meaning that no energy
dissipation can take place.

6. The considered beam is supported on both sides by fork supports, as
shown in Fig. 2b and c¢. The fork supports prevent lateral displace-
ments u and twisting ¢ and allow for lateral bending. In this study,
the possibility to prevent warping (¢ = 0) at the supports is also
included. However, both of the supports should either have warping
restrained or allowed. In the span, the beam is laterally un-
supported.

7. The beam is not loaded in axial direction.

In the derivation of Section 5, an energy-based approach is followed: the
work done by the loading must be equal to the change in strain energy.
Prior to lateral torsional buckling, the beam deforms merely within the
(vertical) plane of loading, causing transverse displacements w. Just after
the occurrence of lateral torsional buckling, an out of plane rotation ¢ is
found. The beam is transversely loaded, following key assumption 3, and
therefore, work can only be done within this considered plane. To this end,
the transverse displacements during lateral torsional buckling w; 5, which
are directly related to the rotation ¢ and merely take place as a result of this
rotation, are required for this energy-based approach.

5. Derivation of general formulation

The derivation of a general formulation for the equivalent moment
factor C; is based on the energy approach of the American Wood
Council [12]. C, describes the ratio between the critical load of a beam
loaded by a uniform bending moment (Fig. 3) and a beam loaded by
arbitrary loading and hence, both must be considered. For the purpose
of simplicity, the arbitrary loading is first simplified to a single point
load and two end-moments (Fig. 4). Later on, arbitrary loading is
considered as a superposition of multiple point loads and a general
theory is formulated. In this way, any loading can be simulated by re-
presenting it as a collection of point loads.
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Fig. 3. Simply supported beam loaded by a uniform bending moment M, with
deformations due to LTB in plane of loading.

5.1. General considerations

In this derivation, an energy-based approach is followed. The energy
prior to buckling is equaled with the energy just after buckling, fol-
lowing assumption 5. Since the total amount of energy in the system
stays constant, the increase in energy

AE =AU+ AV =0 an

with U the strain energy and V' the potential energy. For the considered
I-section and following the key assumptions, strain energy can be the
result of bending (around both y- and z-axes), torsion and warping. For
a beam loaded in bending around a certain axis, the strain energy U,
taken by the beam is found by integrating the internal work over the
complete volume.

1
Ub— 5 -]:/ crbsde (12)

Combining Eq. (12) with Hooke's law (g, = Eg;), the kinematic relation
&, = x-z/EI and the moment of inertia I, = j/'l z2dA, leads to

1 pL M
U= f, rox (13)

In the same manner the strain energy taken by warping U, and
torion U, are derived (see [23,9] for complete derivations).

1 pL M2
U, =— Y dx
w .]O. EI, (]4)

1 pL M7
U== [ Ztdx
! j; GI, (15)

The potential energy is obtained by the position of the loading with
respect to a certain reference state. For the considered problem, the
change in potential energy AV is equal but opposite to the work done
by the loading in the considered interval. Since the deformations are
assumed to be small (assumption 4), the bending moments in the un-
deformed and deformed configuration can be related by My ~ M, and
M, = ¢M,,.

5.2. Uniform moment over beam

A simply supported beam loaded by a uniform bending moment M,

F
aF L " BFL
o L o
—
¥ = 1
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is shown in Fig. 3. Prior to lateral torsional buckling, only bending
around the y-axis takes place.

L M?
Ui=Uy=2 [ ax
2 (16)

Just after lateral torsional buckling, bending around both j and
z-axes, warping and torsion are considered in the deformed config-
uration, leading to

1 opr [Mp o M2 M2 M2
Ui=Uy+ Uz + Us + Uy = = — + — + =+ —Frdx
T Ty e T T 2‘[‘; {EI,, EL, Gl = EL,
(17)

Using the relations between the deformed and undeformed config-
urations and assuming small deformations do not influence warping
and torsional behaviour, Eq. (17) can be elaborated to

1 pL (M M) M2 M2
A My M M Myl
o |EL EL GL ' EIL,

(18)

Next, the change in strain energy is found by AU = Uy — U, giving
with Egs. (16) and (18)

L[(¢My)* M2 M2
AU:lf G Me | Ml
2 | EL TG EL

19

The change in potential energy AV is equal and opposite to the work
done by the loading. For the considered beam, the only work is done by
the end moments, giving

AV = —(BLrpa + Brisp)-My = —26,13.4- Mg (20)

in which 6,434 and 8,434 are defined in Fig. 3. The transverse dis-
placement w; g due to only lateral torsional buckling is related to the
lateral displacement u; 5 via wyyp = @uprp. Furthermore, uppp is found
with the moment-area theorem, whilst applying M; = ¢M,, leading to

p? M,
WL]"B(xp) = Xp6r1B.4 — fﬂ‘ ’ ¢‘%'(Xp — x)dx @1
Z

From Eq. (21), 8,734 can be solved by considering the transverse
displacement wyy5(x, = L) = 0, giving

L ¢2M, (L — x)
Bripa = ——dx
LrEA -/0‘ EL, L (22)

Following the same approach, an expression for 6,145 is found:

L $*M, x
BLips = Y dx
ks = J, EI, L (23)

For a uniform bending moment M, = M, and assuming a buckling
shape ¢ that is symmetric around x = L/2, Eq. (22) further reduces to

M, L
BLrpa = —o ']; @dx

2EI, (24)

Substitution of 8.7 4 in Eq. (20) results in

—aFL
—BFL

+

FL(y(L=7) —a(l —v) = 57)

Fig. 4. Simply supported beam loaded by a point load and end-moments with the corresponding bending moment line M,.
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ME pro
AV =——+ 2dx
EL -/; ¢

(25)
Inserting Eqgs. (19) and (25) in Eq. (11) leads to
: M2OM?
AE:lfL —@LO)+—X+ Y ldx =0
2 Jo EIL GI,  EI, (26)

5.3. Point load and support-moments on beam

A simply supported beam loaded by a point load F at yL (with
0 <y < 1) and two end moments M, = aFL and My = SFL is shown in
Fig. 4 together with the corresponding bending moment line. Since the
point load acts in the same plane as the support-moments, the change in
strain energy AU is found by Eq. (19). Furthermore, the change in
potential energy AV is found in a similar way as Eq. (20), adding the
change in potential of the point load:

AV = —Fwp(yL) — Errg.aMa — ErpsMp (27)

in which wyrs, 6,154 and 8,73 are given by Egs. (21)—(23) respectively.
The total energy change in the system is now found by

1 pt [(@M)?2 M2 M2
A @M M Ml av=o
2 Jo EI GI, EI,

(28)

Considering the constitutive relations M, = GI,(d¢/dx) and
M,, = —EL,(d*$/dx?), and applying the same buckling shape ¢(x) for
the uniform loading and the considered case, the torsion and warping
terms in Egs. (26) and (28) work out to be equal and hence, the other
terms in these expressions should be equal as well. The accuracy of this
approach depends on the similarity of the buckling shapes of the con-
sidered and uniform load cases, as will be discussed later on. Combining
Egs. (26) and (28) gives

L {(¢My)2 L @Mo)
0

dx — Fw L) — 6 My — € Mp =0
3 7L FL, } L8(YL) — BLrB,AMa — BL78,8MB

(29)
which can be solved to obtain the equivalent uniform moment Mg,
once a certain buckling shape ¢ (x) is specified. The equivalent moment
factor C; is now found by

G = Minax
Mﬂ,eq (30)

5.4. Arbitrary point loading on a beam

In this study, arbitrary loading is defined as a random collection of
N point loads §;F, in which F is the unit load and &; the collection of
multipliers with i = 1. .N, on a beam with support-moments «FL and
BFL on both sides. The loads are applied on locations . Intermediate
moment loads are not considered but can be implemented by the reader
by considering the loss of potential energy by this moment load during
buckling in the same manner as the support-moments. Taking multiple
point loads into account, Eq. (29) changes to

M, )2 Mo oq ) N
%f;L {% + @ ;I)Zq) }dx - E SiFwrrp(yL) — 6Lrp.aMa — 6L 8Mp = 0
(31)

and the moment M, is found by

N

§Fx(1—9y) 0<x<yL

My (x) = —aF (L — x) — fFx + Y. { (=) 0<x<y

= SiFyp(L—x) yL<x<L (32)

Different sizes of point loads can be included in two ways: either by
the multipliers §; or by manipulating the location collection ¥ such that
multiple unit loads F on the same location represent a certain relative
size. In the remainder of this paper, the latter approach is used in order
to reduce the number of different input parameters. By implementing
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Egs. (31) and (32) in Eq. (30), a general expression has been derived to
determine the equivalent moment factor C; once a certain buckling
shape ¢(x) is assumed. For a fork support that allows for warping
(k = k,, = 1), many authors (e.g. [3,8,9]) assume a sinusoidal buckling
shape according to
. 7IX
P(x) = asmT (33)
with a being an unknown scaling variable. Eq. (33) fulfills the boundary
conditions: twisting is prevented on both sides, so ¢(0) = ¢(L) = 0, and
warping is allowed meaning M, (0)=M,(L)=0 and hence
¢"(0) = ¢"(L) = 0. Substitution of the assumed buckling shape ¢(x) in
Eq. (31), solving to Mg 4 using the moment distribution as defined in
Eq. (32) and inserting the obtained M, in Eq. (30) results in a general
expression for the equivalent moment factor C;:

FLD\(a® + %) + Dyaff + Dsat + Dsff + Ds (34)

In which coefficients D, to Ds, given in Appendix A, are fully defined
by the collection of locations of point loads y. Appendix A also gives an
expression to calculate the maximum bending moment in the beam. For
example, when a beam is loaded by point loads of 15 kN at L/2 and 10
kN at3L/4, y = [0.5, 0.5, 0.5, 0.75, 0.75] with a unit point load F of 5 kN.
In this manner, it is possible to include different sizes of point loads,
although it is not possible to include point loads with different direc-
tions in this formulation. These can be included by elaborating Eq. (31)
with an adjusted moment distribution. The coefficients D, to Ds have a
physical meaning.

e D, and D, are constant values, respectively 0.2827 and 0.4347, taking
account of the influence of the support-moments on the equivalent
moment factor. These factors are constant as only the magnitude of
the support-moments is susceptible to change.

Ds considers the influence of the point loads on C; by the moment
distribution and the work done by the point loads. For « = 8 = 0,
Eq. (34) reduces to Mmﬂx/(FL\/D_s).

D; and Dy are interaction factors for the point loads and the support-
moments. The vertical displacements wy(y.L) are influenced by the
size of the support-moments and the support rotations 8, ;5 are in-
fluenced by the point loads, hence creating cross-terms.

Using the same formulations, it is possible to prevent warping at the
supports while allowing for lateral bending (k = 1 and k,, = 0.5) by
assuming a different buckling shape for both the uniform moment load
case and the arbitrary loading

27mx
P(x) = a(l - COST) (35)

which fulfills the boundary conditions: ¢(0)=¢(L)=0 and
¢'(0) = ¢'(L) = 0, in which the latter condition describes prevented
warping at the supports. As discussed by Trahair [8], the influence of
warping-restraints at the supports on the critical moment depends on
the torsional stiffness GI,, the warping stiffness EI, and the length L of
the beam. However, these effects are completely neglected by assuming
that Eq. (35) holds for both the uniform moment and the arbitrary
loading. Restrained warping at the supports has a favourable influence
on lateral torsional buckling, leading to larger C, values. Tables 3 and 4
give coefficients Dj, D, and Ds for a single point load and multiple point
loads respectively for both free and restrained warping at the supports.
For prevented warping, coefficients D, and D, are constants: 0.2700 and
0.4600 respectively.

5.5. Uniformly distributed loading

Uniformly distributed loads g are handled in the same manner. The
force-related term in the potential energy change AV is replaced by an
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Table 3
Coefficients D;, D, and Ds for 1 point load at yL with and without warping allowed at the supports.
¥ 0.1 0.2 0.25 0.33 0.4 0.5 0.6 0.67 0.75 0.8 0.9
kw=1
D3 —0.0562 —0.1087 —0.1312 —0.1592 —0.1735 —0.1757 —0.1581 —0.1369 —0.1069 —0.0864 —0.0434
Dy —0.0434 —0.0864 —0.1069 —0.1369 —0.1581 —0.1757 —0.1735 —0.1592 —0.1312 —0.1087 —0.0562
Ds 0.0028 0.0106 0.0158 0.0241 0.0300 0.0335 0.0300 0.0241 0.0158 0.0106 0.0028
kw = 0.5
Dy —0.0540 —0.1072 —0.1322 —0.1664 —0.1863 —0.1925 —0.1730 —0.1483 —0.1144 —0.0919 —0.0460
Dy —0.0460 —0.0919 —0.1144 —0.1483 —0.1730 —0.1925 —0.1863 —0.1664 —0.1322 —0.1072 —0.0540
Ds 0.0027 0.0107 0.0163 0.0263 0.0340 0.0388 0.0340 0.0263 0.0163 0.0107 0.0027
integral over the complete length of the beam: steel beam with length L = 8m are elaborated, with parameters chosen
N to represent practical usual cases (although differences with other
L
E 8 Fwy g (yL) = ‘[0' q-wyen(yL)dy lengths and profiles are small).
-1 (36) For a beam loaded by two equal end-moments or one end-moment

and My = agl? and My = BgL? are implemented in Eq. (31), leading to

Cl — mec
qL2/Di(a® + %) + Dyoff + Dsax + Daff + Ds

(37)

The coefficients D, and D, remain unchanged and coefficients Ds, D,
and Ds are given in Table 4. For the combination of point loads and
uniformly distributed loads, one should represent the UDL as a collec-
tion of equivalent equally-spaced point loads, such that the expressions
in Appendix A together with Eq. (34) can be applied. This approach is
further elaborated in Section 7.

6. Validation

In this section, the derived general formulations for point loads (Eq.
(34)) and uniformly distributed loads (Eq. (37)) are compared with the
available literature. In Table 5, equivalent moment factors are given for
practical load-cases like a moment gradient from M to M, uniformly
distributed loads (UDL) and point loads (PL) for simply supported,
single clamped (SC) and double clamped (DC) beams based on Egs. (34)
and (37), Eurocode 3 [4], the Australian Steel Standard AS-4100 [6],
the American Steel Standard ANSI/AISC 360-17 [7], being equal to the
American Timber Standard AFPA-TR14 [12], the collection of Trahair
[8] and the general formulation from Serna et al. [20] as given by Eq.
(9). Only supports with k = k,, = 1 are considered in Table 5 since most
design standards do not offer expressions to include support restraints.
The average ratio between the found general formulations and litera-
ture lies between 1.04 and 1.09, with the lowest ratio for AS-4100,
meaning that this study results in a non-conservative equivalent mo-
ment factor with respect to literature, which could be the result of the
conservative nature of general simplified design expressions. For 3 < 0,
the ratio increases significantly as a result of the assumed symmetric
sinusoidal buckling shape not being accurate for very asymmetric
loading. This discrepancy for asymmetric load patterns is shown by
Fig. 5, in which the finite difference results of Serna et al. for an IPE500

Table 4

and a concentrated mid-span load (Figs. 6 and 7), the general for-
mulation shows strong similarity with the finite difference results of
Serna et al. for both free and restrained warping. For the case with one
end-moment differences up to 13.8% are obtained, following from the
introduced asymmetry of the loading for large a, causing deviations
from the assumed symmetric buckling shapes. Figs. 8 and 9 compare
the general formulation with literature for an uniformly distributed
load with one or two (equal) end-moments and it is found that, for this
load cases, both the Australian Standard AS-4100 and Eq. (37) show
good correspondence with the finite difference results of Serna et al.
[20] and Suryoatmono and Ho [22] with differences up to 6.7% and
12.7% respectively. The available design standards and literature are
captured with reasonably accuracy with the aid of Egs. (34) and (37),
depending on the complexity and asymmetry of the considered loading
pattern. Hence, when making use of the general formulation, it is im-
portant to verify whether the assumed buckling shapes (Egs. (33) and
(35)) are sufficiently accurate for the purpose of the analysis. Instead of
case-specific (possibly more accurate) analysis, this study offers a
general formulation that can be used to consider all loading cases
within the formulated theoretical framework with no significant loss of
accuracy.

7. Application

With the aid of the general formulations for point loads (Eq. (34))
and uniformly distributed loads (Eq. (37)), some specific cases are
analyzed and compared with the design standards to show the appli-
cation of the theory.

7.1. Elaboration of example

A simply supported beam with length L = 8m without warping re-
straints (k = k,, = 1), loaded at 1/2 of the span by a point load
F = 12.5kN is considered. The beam is loaded by support-moments
M, = My = 17.5kNm, leading to a = 8 = M4/FL = 0.175. For a beam

Coefficients D3, Dy and Ds multiple point loads at L with and without warping allowed at the supports.

¥ UDL [0.25, 0.75] [0.33, 0.67] [0.25, 0.50] [0.25, 0.50, 0.75] [0.33, 0.50, 0.67] [0.33, 0.33, 0.67]
kw=1

D3 —0.1086 —0.2382 —0.2962 —0.3069 —0.4138 —0.4718 —0.4554

Dy —0.1086 —0.2382 —0.2962 —0.2826 —0.4138 —0.4718 —0.4331

Ds 0.0122 0.0578 0.0912 0.0923 0.1774 0.2341 0.2066

kw =05

D3 —0.1150 —0.2466 —0.3147 —0.3247 —0.4733 —0.5073 —0.4811

Dy —0.1150 —0.2466 —0.3147 —0.3069 —0.4733 —0.5073 —0.4630

Ds 0.0134 0.0611 0.1004 0.1029 0.2279 0.2628 0.2270
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Table 5
Comparison of the equivalent moment factors C, with the general formulation of this study for several standard load cases and free warping (k = k,, = 1).
Load case Present EC3 AS-4100 ANSI Trahair Serna (1)/(2) (W/(3) 1)/(4) M/(5) (1)/(6)
1) (2) (€] () (6)
Pp=1 1.000 1.000 0.982 1.000 1.000 1.000 1.00 1.02 1.00 1.00 1.00
P =0.75 1.141 1.131 1.120 1.111 1.131 1.137 1.01 1.02 1.03 1.01 1.00
Pp=05 1.324 1.300 1.297 1.250 1.300 1.310 1.02 1.02 1.06 1.02 1.01
P =025 1.564 1.506 1.525 1.429 1.506 1.532 1.04 1.03 1.09 1.04 1.02
P=0 1.881 1.750 1.818 1.667 1.750 1.815 1.07 1.03 1.13 1.07 1.04
P =—025 2.284 2.031 2.164 2.000 2.031 2.155 1.12 1.06 1.14 1.12 1.06
P =-05 2.712 2.300 2.483 2.174 2.350 2.488 1.18 1.09 1.25 1.15 1.09
P = —0.75 2.940 2.300 2.594 2.222 2.500 2.652 1.28 1.13 1.32 1.18 1.11
P=-1 2.766 2.300 2.404 2.273 2.500 2.523 1.20 1.15 1.22 111 110
UDL 1.133 1.130 1.166 1.136 1.130 1.136 1.00 0.97 1.00 1.00 1.00
Mid PL 1.366 1.350 1.388 1.316 1.350 1.276 1.01 0.98 1.04 1.01 1.07
Quarter PL 1.494 1.450 1.363 1.364 1.450 1.390 1.03 1.10 1.10 1.03 1.07
2 PL (0.25, 0.75) 1.040 1.040 0.982 1.000 1.088 1.000 1.00 1.06 1.04 0.96 1.04
Mid PL SC 1.830 1.700 1.817 1.705 1.800 1.596 1.08 1.01 1.07 1.02 1L.15
Mid PL DC 1.732 1.640 1.700 1.923 1.710 1.435 1.06 1.02 0.90 1.01 1.21
UDL SC 2.276 2.200 2.404 2.083 2.250 2.197 1.03 0.95 1.09 1.01 1.04
UDL DC 2,613 2.300 2.500 2.381 2.420 2.574 1.14 1.05 1.10 1.08 1.02
Average 1.07 1.04 1.09 1.05 1.06
Standard dev. 0.08 0.05 0.10 0.06 0.06
4
3
3
2
—
@) -
S Furocode 3 © 2
AS-4100
1 et al :
--- Lim et al. 1 H--- Lim et al.
—— Present study —— Present study
--—-Serna et al. - Serna et al.
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Fig. 5. () as function of the ratio a/f (or coefficient ¢ in Eurocode 3) for (a) unrestrained warping with k,, = 1 and (b) restrained warping with k,, = 0.5.
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Fig. 6. (| for a beam loaded by two equal end-moments and a concentrated mid-span load for (a) unrestrained warping with k,, = 1 and (b) restrained warping with

k= 0.5.
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Fig. 7. C, for a beam loaded by one end-moment (8 = 0) and a concentrated mid-span load for (a) unrestrained warping with k,, = 1 and (b) restrained warping with

kw = 0.5.

loaded at 1/2 of the span, Table 3 gives D; = —0.1757, Dy = —0.1757 and
Ds = 0.0335 and from Appendix A follows D, = 0.2827 and D, = 0.4347.
The maximum moment Mg, = 17.5kNm is found at the supports. From
Eq. (34), the equivalent moment factor C; = 3.405. From the diagrams
of Eurocode 3 for concentrated loading and support-moments follows
Cl,b‘(‘} = 2.30. Furthermore, Cl,ANSI = 2.886 and Cl,/lb'—4l()0 = 2.108 are
found based on Egs. (6) and (5). Using the numerical finite difference
approach, Serna et al. found Cy gmq = 3.354 for this case, which is as-
sumed to be (close to) the exact value. Hence, when using the design
standards, the structure is over-conservative by a factor 1.18 for ANSI
and even 1.62 for AS-4100, leading to inefficient use of the cross-sec-
tion.

When considering the same beam loaded at L/3 with o = 0.175 and
B = 0.035, the general formulation for point loads results in C; = 3.083.
For non-midspan loadings, Eurocode 3 does not provide a solution.
Assuming that a mid-span load is a proper representation of the con-
sidered case, Eurocode 3 provides () jc3 = 1.60. The American Steel
Standard gives C; 4ns; = 2.720 and the Australian Steel Standard pro-
vides Cy_as_a100 = 4.344, which is 1.6 times larger than C) 4ns. The in-
consistency between different design standards is the result of the non-
physical nature of simplified expressions created by curve-fitting,
causing specific cases, with for example M, = M, = 0, to deviate sig-
nificantly from the physical reality. The general formulation of Eq. (34)
is based on physical considerations and is therefore less likely to show
these inconsistencies.

—— Present study
o Suryoatmono | s
e Serna et al. ]

--- AS-4100

-------- ANSI/AISC

o)
=

Lo

0 0.05

0.1

coeflicient oo = f3

(a)

0.15 0.2

7.2. Combination of PL and UDL

General formulations are given for cases with only point loads or
UDL. However, it is also possible to consider the combination of PL and
UDL by representing the UDL by a set of n equivalent equally-spaced
point loads and add these locations to ¥ to make use of Eq. (37) (al-
though it is also possible to solve Eq. (31) including the work done by
the UDL and the corresponding M, instead of using the general for-
mulation). Consider a simply supported beam loaded by a mid-span
point load F and an UDL g = 6F/L. The UDL is represented by n
equivalent unit loads F; = gL/n, where it is advised to use n > 10 to
obtain a proper representation of the UDL. The concentrated load is
represented by n/€ unit point loads F. The collection of locations ¥, is
now found by

¥ = [ZJ — lL; Vr‘.k] for j=1..n

2n (38)

with k = n/6 and ¥, ; = ¥,., where i is chosen such that k is an integer.
Following this approach, it has been found that the equivalent moment
factor for the combination of a mid-span point load and an UDL can be
accurately described by

B {1.27-6*0-“34 for 6 <25

s for 8> 25 (39)

Using the general formulations of this study, design figures and
diagrams can be straightforwardly created. For this purpose, it is

—— Present study
g|| ® Sernaetal

Cy

0 0.05 0.1

coeflicient oo = f3

(b)

0.15 0.2

Fig. 8. C; for a beam loaded by two end-moments and a uniformly distributed load for (a) unrestrained warping with k,, = 1 and (b) restrained warping with k,, = 0.5.
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Fig. 9. C, for a beam loaded by one end-moment (5 = 0) and a uniformly distributed load for (a) unrestrained warping with k,, = 1 and (b) restrained warping with

k, = 0.5.

advised to program the general formulations and expressions of
Appendix A. Furthermore, it is also possible to consider multiple uni-
formly distributed loads over parts of a span by changing the distance
between the equivalent point loads for each UDL.

Lastly, a rather complex but academic example is considered, as
depicted by Fig. 10, in order to exemplify the application of the general
formulation to combined point loads and uniformly distributed loads
and illustrate the wide range of possible load conditions that can be
captured within the general formulation. The beam is simply supported
without warping restraints (k = k,, = 1) and the uniformly distributed
load only works over a minor part of the beam. Following the proposed
method, C; = 2.378 is obtained. As the general formulation is based on
physical considerations, the obtained equivalent moment factor is
probably more physically justified compared to general simplified de-
sign equations. For example the Australian Standard results in
Cias—a100 = 2.822, which is 18.6% larger than the equivalent moment
factor following from the proposed general formulation. Due to it's
complexity, this example can not be analyzed using the Eurocode.

7.3. Intermediate torsional/lateral supports

This study considers single-span beams without intermediate sup-
ports. To increase the resistance to lateral torsional buckling, inter-
mediate torsional and/or lateral supports can be added. A first indica-
tion of the equivalent moment factor can be achieved by assuming that
each segment, defined as the part between two supports, behaves as an
independent individual segment. This assumption holds for similar
segments that have similar resistances. For non-similar segments how-
ever, the assumption of negligible interaction does not hold anymore
since the stronger segments restrain the weaker ones and a more ela-
borate analysis should be performed. The same effects are obtained for

3 kN
9 kN 2 kN/m
4 kNm l 6 kNm

Y v r Y ¢ Y ;
Z T

p dm o dm o dm o 2m p Im

1 1 1 7

L 6m L

1 7

Fig. 10. Simply supported beam loaded by point loads, uniformly distributed
load and end-moments.

10

multi-span beams over multiple supports. These effects are not further
elaborated in this study.

7.4. Approach within context of design procedure

With the aid of the derived general formulation, the equivalent
moment factor for single span beams without intermediate restraints is
determined for both I-section (often steel) and rectangular slender
sections (often timber). The determination of the critical theoretical
(Euler) buckling load is a general physical problem, which does not
depend on the considered material. In the regular design procedures,
the theoretical buckling load, as determined with the equivalent mo-
ment factor (Eqs. (1) and (2)), is reduced in order to incorporate effects
of material imperfections, geometric imperfections, internal stresses
etc. The reduction of the theoretical buckling load is a material de-
pendent procedure and is therefore not further considered in this study,
but is mentioned here to capture the complete design procedure. Fur-
thermore, for general application of the derived general formulation,
the influence of the loading location within the cross-section on the
buckling load should be studied in more detail.

8. Conclusions

Lateral torsional buckling is considered as an ultimate limit state
failure mode during the design of beam structures. This study focused
on the influence of the moment distribution via the equivalent moment
factor C; on the critical elastic moment for both I-sections (often steel)
and slender rectangular sections (often timber). The considered design
standards offer different simplified general solutions and some practical
case-specific solutions. The advantage of simplicity comes with the
disadvantage of loss of accuracy. Furthermore, the goal of design
standards is to be conservative rather than to be accurate. On the other
side, literature offers many case-specific studies that go in depth on a
certain load case, mostly leading to an accurate, but complex, solution.

This paper has presented a general formulation that is in between
the simplicity of the design standards and the specific complex solution
procedures as can be found in literature. This general formulation is
derived based on the principle of conservation of energy and can be
used for support-moments, point loads (Eq. (34)), uniformly distributed
loads (Eq. (37)) and a combination of those, for free warping
(k = k,, = 1) and restrained warping (k = 1 and k,, = 0.5) at the sup-
ports. For the case of free warping, coefficients D, to Ds are defined in
Appendix A. The results of this paper have been compared with design
standards (EC3 [4], AS-4100 [6], ANSI/AISC 360-17 [7]) as well as
literature (Trahair [8], Serna et al. [20], Lim et al. [19] and Sur-
yoatmono and Ho [22]) and it is found that this paper is in good
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correspondence with design standards and literature. On average, the
ratio between the results of this study and literature lies between 1.04
and 1.09. The expected accuracy of the general formulation decreases
for asymmetric loading as a result of the assumed symmetric buckling
shapes (Egs. (33) and (35)) not representing the physical reality. Fur-
thermore, it is noted that the general formulation of this study is not
exact as it is based on approximate buckling shapes. However, the
quality of the obtained equivalent moment factors has been properly
assessed through comparisons with other studies and design standards.
The influence of length, warping and torsion stiffness on C, for re-
strained warping (k,, = 0.5) is neglected in this study, inducing a po-
tential loss of accuracy.

The application of the general formulations has been shown with
the aid of practical examples, pointing out possible drawbacks of using
design standards. By manipulating the collection of locations y, it is
possible to represent complex load-cases of multiple UDL and point
loads combined. Instead of using the general formulation, it is also
possible to make use of Eq. (31). The general formulation presented in

Appendix A. . Expressions D, to Ds fork =k, = 1
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this paper is limited to elastic material behaviour, in plane loading,
loading in the shear center and double-symmetric cross-sections and
can not consider the influence of axial loading. In order to work with
the general formulation, one must be aware of these limitations.

In a more general picture, this paper contributes to the solution of
Sahraei et al. [15], which takes account of partial twist restraints, load
height, moment distribution and pre-buckling deformations. In their
study, Sahraei et al. made use of the Australian Steel Standards to
consider the influence of the moment distribution. With the contribu-
tion of this paper, the theory of Sahraei et al. is improved and more
physical background is obtained.
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