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ABSTRACT Table 1. Traditional shear formulae for several cross-sections 
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The shear stiffness and the maximum shear stress predicted by 
commonly used formulae are accurate for thin-wall tubes but too small 
for thick-wall tubes. New formulae for the shear stiffness and the 
maximum shear stress are proposed. 
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INTRODUCION 
 
Tubular members are frequently used in offshore structures. In the 
analysis of these structures often axial forces in the members are 
dominant but also moments and shear forces can be important. 
Obviously, the values of the member stiffnesses are needed to perform 
the structural analysis and compute the force flow. The values of the 
member section moduli are needed to check the member maximum 
stresses. Formulae for shear stiffnesses and maximum shear stresses are 
provided in text books and reference books for various cross-sections 
(Table 1) (Timoshenko 1970), (Hartsuiker 2000), (Blaauwendraad 
2002). They have been derived analytically in various ways including 
the principle of minimum complementary energy. Recently, the authors 
studied tubular members using finite element analysis and found that 
the real values can be substantially larger than predicted by the formula 
(Spaan 2003). The formulae for thin-walled tubes were found to be 
accurate. However, the shear stiffness and maximum stress increase 
substantially with the wall thickness. 

 
 
TRADITIONAL DERIVATION OF SHEAR FORMULAE 
 
Traditionally, the shear stiffness of a cross-section of a prismatic beam 
is derived by setting equal the complementary energy of a slice of the 
beam to the complementary energy of a slice of the wire model of the 
beam. This method can be used for any cross-section shape. The first 
step in the derivation is assuming a statically allowable stress 
distribution. A reasonable assumption for a thin wall tube is 

 
In the next section of this paper the traditional formula for the shear 
stiffness and maximum shear stress in round tubular members are 
derived. Subsequently finite element models are used to check these 
formulae. The finite element results on the maximum shear stress and 
the shear stiffness are presented. In the conclusions new formulae are  

 

max cosxθσ = τ θ ,                  (1) 
 

proposed for the shear stiffness and maximum shear stress in round 
tubular members. where xθσ is the shear stress in the circumferential direction of the 

cross-section and maxτ is the largest shear stress (Fig. 1). In fact it can 
be shown that this is the exact distribution of the shear stress using 
cylindrical shell theory (Timoshenko 1959)(Hoefakker 2003). The 

 
 
 



resulting shear force V is the integral of the vertical component of the 
shear force  over the circumference s of the tube (Fig. 1) x t dsθσ

coxV tθ

t r π

where sGA is the wire model shear stiffness and γ is the wire model 
shear deformation. In fact the constitutive equation gives the definition 
of the shear stiffness. Substituting (8) in (7) gives  
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where t is the tube thickness and ds is part of the circumference. The complementary energy of the tube slice is equal to the 

complementary energy of the wire model slice.  
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From this (4) and 2A r t= π we solve the shear stiffness 
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Fig. 1. Shear stress distribution and decomposition in the z direction 
 
Substitution of (1) in (2) and evaluation gives 
 

maxV = τ .                    (3) 

Fig. 2. Complementary energy of a wire model part  
Therefore the maximum stress can be expressed in the beam shear  
  

max 2V
A

τ = ,                   (4) 
FINITE ELEMENT MODEL 
 
The finite element analyses are performed on a cylindrical tube with a 
length of 1000 mm and an outer radius of 100 mm. The tube ends are 
loaded by concentrated forces, which result in a constant shear force 
over the length (Fig. 3). In the middle section the moment is zero.1 The 
loading is in perfect equilibrium. 

 
where A is the cross-section area. The complementary energy of a slice 
of the tube is the shear force σ  times the displacement x t dsθ

xγ ∆ over 2, integrated over the circumference s of the tube. 
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The factor ½ needs to be included to obtain the area above the shear 
force–displacement curve. Using (1), σ = and evaluation of the 
complementary energy gives 
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The complementary energy of the wire model is the area over the load-
displacement diagram (Fig. 2). 
 

1
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Fig. 3. Tube loading, moment diagram and shear force diagram  
The constitutive equation is 

                                                  
1 This prevents any influence of the moment on the calculated shear 
stiffness. However, this might be an unnecessary precaution because 
analyses of rectangular cross-sections showed that the presence of a 
moment does not influence the shear stiffness (Van der Meer 2003). 

sV GA= γ ,                   (8) 
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τ = ,                 (16) In a tube of this length the peak stresses due to the loading applied at 
the ends will have disappeared in the middle cross-section. The tube is 
supported in the middle section such that the deformation is not 
restrained and only rigid body translations and rotations are prevented. 
Clearly all support reactions will be zero. 

 
which is 13% larger than predicted by the traditional formula (Table 1).  
 
When the tube inner diameter is very small compared to the outer 
diameter the situation resembles a cylindrical hole in an infinite 
continuum. The finite element results indicate that in this situation the 
maximum shear stress is two times the uniform shear stress at some 
distance of the hole. After all, without hole the maximum stress is 1.5 
V/A and with the small hole it is 3 V/A. Stress concentrations around 
cylindrical holes in infinite continua are studied thoroughly in the 
elasticity theory. However, for this particular situation the authors 
could not find analytical results. Nonetheless, it is expected that an 
analytical solution can be derived that will confirm the finite element 
results. 
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 Fig. 4. Tube support at the middle slice and the applied element type 
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The finite element analysis are performed with ANSYS (2004) on 
models with a wall thickness of 5, 7.5, 10, 20, 30, 40, 50, 60, 70, 80, 90 
mm and a solid model. The models consist of tetrahedron elements 
(SOLID92) with each 10 nodes (Fig. 4, 5). Young’s modulus is E = 2.1 
105 N/mm2 and Poison’s ratio is ν = 0.30. The model is supported in 
the middle section at key points 1, 2 and 3 (Fig. 4). ux1 = uy1 = ux2 = uy2 
= uz2 = ux3 = 0. 
 

 

Fig. 6. Maximum shear stress as a function of the wall thickness 
(The dots are the FEM results and the line is the design formula) 
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Fig. 5. Finite element model of the tube with 20 mm wall thickness 

 
 
MAXIMUM SHEAR STRESS 
 
In Figure 6 the maximum shear stress is plotted as a function of the 
wall thickness. It occurs around the inner surface of the tube (Fig. 7). 
This peak stress increases with the wall thickness and disappears in a 
solid section. 

 
Fig. 7. Shear stress distribution in the middle slice of the tube with 90 
mm wall thickness 

  
In this model the mesh would need to be very dense, which was not 
possible due to the maximum number of elements and restricted 
computation time. A straight line can be drawn through the results 
representing the following function. 

 
SHEAR STIFFNESS 
 
The shear deformation of the middle slide is (Fig. 4).   
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                  (17) 
  For a solid section the maximum shear stress is 
 



Where G is the material shear modulus, A is the cross-section area and 
V is the shear force. 

where x∆ is the slice thickness and u is the displacement of key point 
4 in the z direction. The shear stiffness is defined as 

4z

  It was found that these formulae are only accurate for thin walled tubes. 
For example in a 200 mm diameter tube with a wall thickness of 20 mm 
the shear stress is 10% larger than predicted by the latter formula. 
Therefore the following formulae are proposed which are also valid for 
thick walls. 

s
VGA =
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Substituting (17) in (18) we obtain  
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where V = 40 N and x∆  = 10 mm. 
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Where r is the tube outer radius and t is the wall thickness. It is noted 
that the shear stress formula is not valid for solid cross-sections (t = r) 

because than the maximum shear stress drops to 3
max 2

V
A

τ = . 

The computed shear stiffness and the maximum shear stress of solid 
round sections are 44% and 13% larger than predicted by the traditional 
formulae. 
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