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APPENDIX 0: Aeroelasticity

For the analysis of the bridge structure it will be important to describe the aeroelastic effects that
can occur and describe the possible model that can be used. A structure can undergo a motion
induced by a wind flow. The structural motion can influence the flow around the structure. As a
consequence the flow can affect the structural motions. It can be difficult to describe the interaction
between the flow and the structure. For most bluff bodies that can be susceptible for self-excited
behavior, wind tunnel testing is done. Phenomenon that reside to the self-excited behavior are,
divergence, galloping, flutter and vortex induced vibrations. Another type of motion is the dynamic
behavior due to external forces. Buffeting is an example of such a forced driven behavior.

Vortex induced oscillations

One of the possible oscillations can be due to vortexes of the wind. For a cylinder a Reynolds number
between 30 and 5000 will cause Von Karman vortexes. This asymmetrical vortex trail can cause the
object to oscillate. These oscillations can occur even when there is no turbulence, because the Von
Karman vortex trail can occur in a constant flow. Along the length of the cylinder the vortex induced
lift forces are not perfectly correlated. When the cylinder starts to oscillate, the forces along the
cylinder become more correlated with each other if the frequency of the cylinder in transverse
direction is close to the frequency of the vortex shedding. This gives that the amplitude of the
oscillations will become larger. For bluff objects the boundary layer gets separated of the object, if
very low Reynolds numbers are not considered. Reattachment of the boundary lower with the object
stabilizes the object in the flow. Oscillations that want to occur due to the vortex shedding cannot
occur because the flow holds the object into position by the reattachment of the flow. This effect of
the reattachment is only applicable for objects that have sufficient length in the direction of the wind
velocity.

The phenomenon of vortex induced oscillations can best be described on the basis of a cylinderin a
fluid and is described by Allen (Allen, 1987):

“For example, consider a fluid particle in a inviscid uniform flow-field approaching a cylinder along a
streamline. As the particle approaches the forward stagnation point, its velocity decreases while it
experience an increase in pressure (the Bernoulli effect). After the forward stagnation point, the
pressure accelerates the particle downstream around the cylinder until it reaches the widest section
of the cylinder. In this region the velocity to a maximum while the pressure is at minimum. The
increasing pressure along the back side of the cylinder decelerates the fluid particle until it reaches
the rear stagnation point (180 degrees of the forward stagnation point). The fluid particle arrives at
this point with the same velocity and pressure that it had at the forward stagnation point.”

“When the fluid is viscous, the frictional forces on the fluid particle in the boundary layer cause the
particle to diffuse much of its momentum. When the fluid particle reaches the widest region of the
cylinder, it has lost enough of its momentum such that it is unable to overcome the increasing
pressure force along the back side of the cylinder surface.”

This means that fluid particles that are in contact with the freestream will have a much higher
velocity than the particles that are not in contact with the freestream. This difference in velocity will
cause the fluid to roll up, and vortexes are formed. At low Reynolds numbers (Re<40) the vortexes on
both sides of the cylinder will be symmetric. At higher Reynolds numbers the vortexes becomes
unbalanced by pressure fluctuations and other irregularities. When this happens the vortex at one
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side of the cylinder will draw fluid form the vortex at the other side of the cylinder. Eventually the
vortex will shed and moves downstream. This vortex shedding will happen alternately. Every time a
vortex is shed from the cylinder it will have influence on the forces that act on the cylinder. This is a
result of the difference in pressure and shear stresses. The forces will cause a motion of the cylinder
in transverse direction. When the frequency of the vortex shedding would be equal to the oscillations
of the cylinder, the oscillation amplitude will grow larger. This is called Lock-on. The amplitude of the
oscillations cannot grow infinitely large. At a certain amplitude the vortex forming is suppressed and
therefore is the process limited.

In order to model the vortex induced vibrations, a mechanical model with single-degree-of-freedom
system can be assumed. For the structure a simple mass-spring-damping system can be assumed. For
the force that is generated by the Von Karman vortex trail, Scanlan developed an expression. The
equation of motion can be expressed as following:

mZ+czZ+ kz = Fyorex(t)

Where m, ¢ and k are respectively the lumped mass, the damping and the stiffness of the structure
in the direction perpendicular to the wind velocity. The functions z, Z and Z are respectively the
displacement in the direction perpendicular to the wind velocity, and the first and second derivative
with respect to time (t). This means that these functions are the velocity and the acceleration of the
structure in the same direction as the displacement. Most of the times the equation of motion is
rewritten.

F t
7+ 20wy z + wplz = —""r::l’C( )

In this equation the w,, is the natural frequency of the structure and can be written as w,, = \/k/m.

The { = ¢/2Vkm is the damping ratio. For the force introduced by the vortexes, Scanlan has written
an expression for a cylinder in a uniform smooth flow.

1 o wD z2\] z
Fvortex(t)=§pU D Yl(T) 1_£ﬁ i

p is the specific mass of the air, U is the flow velocity, D is the diameter of the cylinder, Y; is a
parameter that is dependent of the frequency w, the diameter and the velocity of the flow. € is also a
parameter that should be obtained from empirical results. The flow velocity can be a constant value,
because results of oscillations where observed in constant flow velocities. The vortex induced
vibrations are important for objects with a short cross section, e.g. pipelines or chimneys. For
concrete bridge sections, vortex induced vibrations are not common. The stay cables of a bridge are
sensitive for such behavior.

Galloping

Galloping is a phenomenon where oscillations occur due to changes in the angle of attack of the wind
flow velocity with respect to the object. Oscillations with a small amplitude can grow larger because
the angle of attack changes when the object experience the oscillations. The forces that act on the
structure are therefore self-exiting and can grow larger in time. The reason that the object will
oscillate initially, can be explained by imperfections or a small perturbation. The forces that act on
the structure will react on this motion. If the forces that act on the body will move the body even
further in the displaced direction, the amplitude of the displacement becomes larger. When the
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frequency of the forces that act on the structure is comparable with the frequency of the structure,
the system can become unstable. As a result a galloping motion can be observed.

The equation of motion for a single-degree-of-freedom mass-spring-damping system with a galloping
force can be derived. The force that causes the motion of the structure in normal direction of the
wind, is a composition of the drag and lift forces. The share and the value of the drag and lift force is
dependent of the angle of attack.

mZ+cz+kz = Fyqpi0p(@)

Fgauop(a) = Fy(a) cos(a) + Fp(a) sin(a)

The lift force and drag force are dependent of the wind velocity like is shown in equations below.

1
F(@) = 5pUq"BLC(@)

1
Fp(@) = 5 pUq*BLCy (@)

The wind velocity is in these equations the wind velocity under the angle of attack. For the wind
velocity components with an angle of attack of zero, the relation can be expressed as following.

U = Ugcos(a)

The galloping force can also be written as.

1
Fgallop(a) = EPUZBLCZ(‘X)

It follows that

_ C(a) + Cp(a)tan(a)
B cos(a)

C, ()

The expression of C,(a) can be approximated for small angles of a.

@) ~ a(52)
a)~= o
? da a=0

The angle of attack can be approximated by dividing the velocity of the structure by the wind velocity

The Taylor series can be used to get an approximation for the derivative of C, to the angle of attack.

= £ 5 _2a
Fheax Y Doy mp@ 4 - 2| 4 EDIS
n=0

2
n Xly=q 2 0x rea
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If only the first term of the Taylor series is taken into account the derivative of C, can be
approximated. With the general formulas for differentiation the first term can be written as:

(% o + dd% o tan(0) + CDSECZ(O)) cos(0) + (€,(0) + Cp(0)tan(0))sin(0)

o (cos(0))?

dc,
da

The equation can now be simplified because most of the terms have the value of 0 or 1. There are
only two terms that remain.

dc,
da

dc,

a=0 da

+ Cp

a=0

The equation of motion with galloping force can be written down.

F+cz+kz= ! UB'(dCZ)
mzZ+cz z= Ep z da) oy

"+< +1 UB(dCZ> >'+k =0
mz c Ep ) oo Z zZ =

It means that the damping can be replaced by an effective damping. This damping can be negative
since the derivative of C, to the angle of attack can be negative. If the effective damping is negative
than the amplitude of the oscillations will grow in time after a small initial displacement. That the
effective damping is negative is a necessary criterion for galloping to occur, and is known as the
Glauert-Den Hartog criterion. The system will become unstable and the amplitude of the oscillations
will grow faster than resonance because the amplitude will increase exponentially. This would mean
that the amplitude will grow infinitely large. This is however not the case, because the slope of C,
will become positive at a certain angle. As a consequence the amplitude of the oscillations will
become constant. This effect can be represented in a nonlinear equation of motion.

(dCZ

1
7+ (c+=pUB
mZ (c p Ta

) +6z‘2)z'+kz:0
2 a=0

But can be represented with even more terms. A possibility is to make use of an abbreviated power
series.
2 .03 .5 .7

o= () e ) )+ )

The coefficients of this function can be found when the drag and lift force for the different angles are
known.
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Figure 0.1 Amplitude of the displacement of a system that is sensitive for galloping. The system has a small initial

displacement and the amplitude grows exponentially

It is difficult to find a solution for the nonlinear differential equation. It is however possible to show
that the amplitude will not grow infinitely large. In order to show this, the equation is split up into

two first order differential equations. For this it is necessary to introduce x and y.

xX=z

y=z2
This gives that

X=y=2

y=1%

The nonlinear differential equation can be filled in with these functions. In vector notation the two

equations can be written as
i y
.l=1—\C +c 2 k
(}’) [—( eff T )y——x]
m m

Where ¢,y is the effective damping. It can be seen that the point (0,0) is the only critical point in the
system. To evaluate the differential equation the linear and nonlinear part of the equation is

separated.
% 0 1 X 0
= k C cy3
()-|ok _culp)+] o
m m m
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Near the origin the equation will behave as a linear equation. The eigenvalues of the linear part are:

When the system is sensitive for galloping the value of ¢, is negative. If the expression in the root
has a negative value, then the node is an unstable spiral point. The nonlinear part of the equation
can be investigated by using polar coordinates.

X =rcoséf
y =rsinf

The first equation of the vector notation is multiplied by x and the second equation is multiplied
withy. Both equations are summed up after this.

dx dy (cers+Ev%) , k
T E TV T e
x and y can be replaced by the polar coordinates.
dr k o ¢
— = (1 ——)rcos@sin@ — T in2 9 — —13 sin* 0
dt m m m

It can be seen that when r is small the first two terms dominate and the last term can be neglected.
It follows that dr/dt has a value that can be negative as positive. However when the first two terms
are plotted it can be seen that most part of dr/dt is larger than zero. It should be kept in mind that
Cerr < 0.The circle will therefore grow. When the r grows larger the last term becomes more
important. The parameter ¢ is always positive and sinus to the power four is positive as well. The last
term decreases the value of dr/dt. When the first two terms are taken into account it can be seen
that the r is rather stable. The trajectories do not have a perfect circle shape, but the circle is
deformed.

Divergence

Torsional divergence occurs on a structure when there is a twisting moment acting on the structure.
For flat shaped structures the twisting moment can result in a rotation of the structure. When this
happens the twisting moment can increase. This means that the rotation can increase even further.
Finally this can result in a situation where the condition of the structure is unstable. The unstable
condition is reached when the wind flow reaches a critical velocity. Whether or not torsional
divergence can occur is also dependent on the shape of the structure. Some structures are not
susceptible for torsional divergence at all. For civil structures torsional divergence is in most cases
not relevant because the critical velocity is too high to take into account in the design. For aerospace
engineering torsional divergence is of much greater importance, because higher velocities of the
flow.

To model torsional divergence the equation of motion can be written for a simple one-degree-of-
freedom system.

Jad + cqd + kqa = My (a)
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J is here the mass moment of inertia, ¢, is the rotational damping and the rotational stiffness is
defined as k. The degree of freedom in this system is the rotation a.
The twisting moment is defined as;

1
Mo (@) = 5 pU2B*Cy (@)

The aerodynamic moment coefficient Cy; () is dependent of the angle of attack. The same problem
arises as for galloping force. The angle of attack will change during the motion of the system.
Because of this, the coefficients will change during the motion. It is however difficult to take this into
account. For the aerodynamic moment coefficient an approximation for a small change of the angle
of attack away from a = 0 may be given by

dCy

da ¢

a=0

Cy(a) = Cy(0) +

The evaluation of the twisting moment leads to the equation

dCy )
da lg= *

1
)a = EpUZBZCM(O)

1
Ja@ + cpt + kga = EpUZB2 (CM(O) +

1 dcC
Jéi + cpd + (ka ——pu?p2 X

2 da

a=0

The term within the brackets is denoted as the effective rotational stiffness. When this term is zero
or smaller than zero the system has no stiffness and the rotation can grow larger in time. The critical
velocity at which this can occur can be formulated as:

Ucric =

Flutter

Another mechanism that can occur for structures in a flow is flutter. There are different types of
flutter. The simplest of them is stall flutter. When the shear and pressure on a structure gives rise to
an aerodynamic moment it is possible that the structure undergoes a rotation. Stall flutter has only
one degree of freedom and this is the rotation of the structure. Classical flutter is another type of
flutter. Here the rotation and the translation are coupled. For classical flutter the equations of
motion can be written as

mZz+c,z+k,z=F,
mi + ¢, X + kyx =F,
Ja+ca+kpa=M,

Where z, x and « are the vertical displacement, the horizontal displacement and the torsional
rotation, respectively. F,, E, and M, are respectively the lift force, the drag force and the
aerodynamic moment acting on the structure. These forces are influenced by the displacements and
velocities in both x and y direction and the rotation and rotation velocity. Forces that are
proportional to the accelerations are negligible. In the equations below the forces are given
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E, = ZpUZBL(ClU+C2U+C3U+C4x+CSBU+C6a>
1
E, = 2pUZBL (675 + C8 U + C9 U + Clox + CllB T Clza)

_1
M, ==pU?B?L (C13 ot c14

U

When these forces are substituted into the equations of motion the resulting equations of motion
become

1 1 1 1 1

mZ + (CZ - EpUBLCl) zZ+ (kz - EpUBLC2>Z — EpUBLCy’c - EpUBLC4x - EpUBZLC5d

1

- EpUZBLC6a =0
. 1 . 1 1 o1
mx + (cx - EpUBLC.;) X+ (kx - EpUBLClo) X — EpUBLC}Z - EpUBLng
1 1
— EpUBZLcnoz — EpUZBLclzoz =0
5 1 3 ; 1 22 1 2 1 2
Ja + (ca - EpUB LC17> a+ (ka - E’DU B LC18> a— EpUB LCi3z — EpUB LCi4z
1 1

- EpUBZLClg,J'c — EpUBZLwa =0

These equations can be written in matrix form
Mi+Cu+Ku=0

Where

1 1
¢; —5PUBLC, —pUBLC; ——pUB LCs

1 1
—5PUBLC;  cx =5 pUBLC, ——pUB LCyy

u

[ ]
m 0 O I I
M=[0 m 0],6‘ | |
0 0 J L
[——pUBZLCB —EpUBZLC15 ca——pUB LCUJ

1 1
kZ—EpUBLCZ —EpUBLC4 —EpUZBLC6

1 1 1 T
K=| —-pUBLCg ke—5pUBLCiy —5pU?BLCy; |u=lz x a

1 2 1 2 1 2nR2
|~ 5PUB’LCyy =5 pUBLCis ko =5 pU”BLCyg

The characteristic equation can be obtained by taking the determinant of the dynamic stiffness
matrix.

det(Ms,? + Cs, + K) = s,° + a;5,° + as,* + azs,® + ays,° + ags, + ag =0

The system is only stable if and only if the real values of s,, are all smaller or equal to zero. If the real
part of one of the solutions is larger than zero, the system will be unstable. In figure 0.2 an example
is plotted of the real part of the eigenvalues of the characteristic equation. It can be seen that the
system becomes unstable when the velocity is larger than = 2.5m/s.
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Figure 0.2 In this graph the real part of the eigenvalues of the characteristic equation are plotted. For m=10kg,
J=20kgm’, ¢,=4Ns/m, ¢,=24Ns/m, ¢, =4Nms, k,=90N/m, k,=3240N/m, k,=100Nm.

The aerodynamic vibrations of galloping, vortex induced oscillations and flutter, can according to
Kubo, Hirata and Mikawa be closely related to flow patterns on the surface of the structure (Kubo, et
al., 1992). In their article, published in 1992, the heaving and torsion of an H-shaped and rectangular
shaped sections are investigated. The surface pressure on the structure causes the structure to
rotate or vibrate. How the flow develops in the flow separation determines the pressure on the
section. In figure 0.3 a figure form this article is presented to show the flow pattern and the behavior
of the structure.

Figure 0.3 Explanation of the motion of a rectangular shaped cylinder based
on the flow patterns according to Kubo et al.

0-9
E. Bosman
Stnr. 4029364



%
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De | f't

Delit University of Technology

APPENDIX I: Stationary Gaussian Process

A stationary process is a process where the mean is constant for all the points in time. When the
process is also Gaussian the process is entirely determined by the mean and the auto-covariance
function. To describe a process with the auto-covariance function is not very simple. Therefore a
Fourier transform of the auto-covariance function can be used to describe the process. The wind
velocity in time can be considered as a stationary Gaussian process. A basis element of a stationary
Gaussian process can be given with the following formula:

x(t) = Xsin(wt + @)

Where the phase angle ¢ is stochastic and has a uniform distribution between 0 and 2w and
determines the randomness of the formula. The process is stationary because the mean and
standard deviation of this function are constant in time. When a summation of N sine functions with
random phase angles is considered the following formula can be obtained.

N

x(t) = Z Xpsin(wpt + @)

n=1

The mean of this function is zero because it is a summation of multiple sine functions. The standard
deviation of this function is still constant in time.

o1
o) = ) S &
n=1

From the trigonometric functions it can be seen that:
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)

Substituting this into the formula of x(t)gives:

N
x(t) = Z Xy sin(wyt) cos(gy,) + X,cos(w,t)sin(ey,)

n=1

When the function x(t) is considered as a fourier series with X,, cos(¢,,) as A,and X, sin(¢,,) as B,
it can be written as:

N
x(t) = Z A, sin(wy,t) + Bycos(wyt)
n=1

When a period of [0, T] is considered, the coefficients A, and B,, of the Fourier series can be
formulated as:

T
A, = —f x(t) sin(w,t) dt
0
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2 T
B, = —f x(t) cos(wyt) dt
T Jy

The frequency w,, can be written as 2tn/T. The amplitude X,, of the function x(t)can be expressed
as:

%% = An® + B2

Substituting this into the equation of the standard deviation gives the following relation:
51 1
O'(X)Z = Z EAnZ + EBnZ
n=1

This value approaches a constant value for very large N.

The variance spectrum can be introduced to give the relation between the frequency and the
standard deviation.

Sxx(@)Aw = o2

1 o) 2
Sxx(w)hw = Exn

This gives that the amplitude of the sine function is equal to:

Xp = /28 (w)Aw

This would also mean that the variance spectrum can be written as:
S (m):i(A 2+ B,?)
XX 2A(1) n n

A relation between the variance spectrum and the Fourier series can be obtained. The Fourier
transform of x(t) is used:

1 T/2
Sy = —f x(t)(cos(wt) — i sin(wt))dt
TJ_1/2

With:
T — oo

Using the Fourier coefficients:

1 T/2
Alw) = —f x(t) sin(wt) dt
TJ 12

1 T/2
B(w) = —f x(t) cos(wt) dt
TJ_7/2
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This gives:

Sy =B(w) —iA(w)
S, =B(w)+iA(w)

Because m = AwT /2 and T — o, the relation between the coefficients can be written as:

T/2 . 4,
A(w) = AT _T/Zx(t) sin(wt) dt = Alal)rl}oE

oy = o B
(w) = lim -~

Substituting this into the equation of the variance spectrum gives:

Aw
Sex(@) = == (A(@)? + B(@)?)

T *
Sxx(w) = TSxSx
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Appendix II: Numerical Calculation for the Fluctuating Wind Velocity

The following numerical values are used to explain the process of modeling the wind velocity.

ho = 10m Reference Height

U(hy) =30m/s Mean wind velocity at reference height
I=0.2 Turbulence intensity

o, =6m/s Standard deviation of the wind velocity
z; = 10m Height for process 1

Z, = 20m Height for process 2

Aw = 0.005rad/s Frequency step

wo = 0.005rad/s Starting frequency

N =999 Number of steps

c,=10 Coherence constant in z-direction

First the wind spectrum is plotted. For this analysis the reduced wind spectrum of Simiu is taken into
account and can be given by:

fSw() 2 x
%" 31423
Where:
Svu(f) Variance spectrum of the wind velocity [m?/s]
x = fL/U(hy) Dimensionless frequency
f Frequency [Hz]
L =50z Characteristic length for reduced spectrum of Simiu, with z as the
height [m]
0% 020
0.8
0.16-
0.14-
0.124
0.10
0.08
0.06-
o.m—:
0.01 0.05 01 0's 1 3 '
f[Hz]
Figure 11.1 Reduced spectrum of Simiu for the height z,
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fSVZUZ (f)D_ZD—-
0,2 0.18
0.16
0.14
0.12+
0.10+
0.08
0.06
0.04+
0.02]
T T T T T T 1
0.01 0.0 0.1 0.3 1 5 -
f[Hz]
Figure 11.2 Reduced spectrum of Simiu for the height z,
The time dependent part of the wind velocity can be written as a summation of multiple sine
functions with random phase angles.
N
ut) = Z apsin(wgt + @y)
k=1
The amplitude ay is related to the variance spectrum as is shown in APPENDIX I.
A =+ 28y (wi)Aw
The cross-spectrum can be given by:
— 2
Sv,v, (f) = Coh VU, (f)Svlvl (f)szvz D)
The coherence function of the wind speed can be expressed with the following formula:
JC2(21-23)?
COhv1v2 (f) = eXp _f U(lO)
COhvlvz (f)
0.9
0.8 -
0.7
0.6 -
0.5
0.4 -
0.3
02
0.1
00— T T T T T 1
0.01 0.03 0.1 0.3 1 5
. ) f [Hz]
Figure 11.3 coherence function
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With the numerical values taken into account the fluctuating wind velocity can be calculated for
height z; and z,. The variance spectrum of the wind velocity at height z; is calculated as following:

50(1)k

5171171 ((l)k) =

5
25(1)k)3

9n<1 =+ 37

The frequency and the amplitude can be defined as:

wj = 0.005 + 0.005k

a1k = ’0.015,]11]1 ((l)k)

Finally, the fluctuating wind speed can be determined:

999

Uy (t) = Z ay g sin(wgt + @)
k=1

The variance spectrum at the height z, is given below:

100w,

5172 (%) ((l)k) =

5
SOa)k 3
3

9n<1+

Based on both spectra and the coherence the cross-spectrum for the wind (v4,v,) can be determined.

5
S’U]_UZ ((l)k) = exp (_(l) g) \/5171171 (wk)svzvz ((l)k)
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Appendix III: Approach EuroCode

The EuroCode 1991-1-4 gives calculation methods for determining the loads due to wind. A part of
the loads in the EuroCode are designed for the static approach of the wind load. The static force
acting on a structure can be calculated with the following equation.

ky = CsCaCrdp (Z)Aref

Where c; is the reduction effect, c4 is a dynamic factor, cf is the force coefficient, q,(2) is the
extreme wind pressure and A, is the reference area of the structure. The extreme wind pressure
can be calculated based on the average wind pressure multiplied with a factor for the turbulence.

1
qp = 1+ 7Iv)EpUm2

The turbulence intensity multiplied with a factor 7 gives a extreme peak value for the wind pressure.
The factor is based on the normalized variable that can be expressed as g = ,/2In(n). Where n is the
number of peaks, which can be approximated with T f,,. Where f is the central frequency and has a
value of about 0.13 Hz. This value can be regarded as the centre of gravity of the variance spectrum
of the wind velocity. Using the central frequency the number of peaks in a certain period can be
calculated. When one hour is taken into account for the period, the value \/2 In(3600-0.13) = 3.5
can be obtained. The extreme wind pressure can be given by:

Qp = UL+ go,

Where p is the mean of the wind pressure and oy, is the standard deviation of the wind pressure.
Filling in the mean and replacing the g, for pU,, g, gives:

1 _
dp = EpUmZ + gpUn 0y

This expression is equal to the expression that can be found in the Eurocode.

1
qp = 1+ Zglv)zpumz
The mean wind velocity can according to the EuroCode be expresses as:

Un(2) = cr(2)co(2)vp

Where c,.(2) is the roughness factor for the terrain, and can for heights between z,,,;;, and z;;, 4, be
given by the following equation.

0.07
Zy z
¢ (z) =0.19 (—) “In (—)
20,11 Z0
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The basic wind velocity is the wind velocity at a reference height of 10 meter and is based on the
fundamental wind velocity for a certain wind area.

Vp = CdirCseasonVb,0

In the equation for the static wind force a factor for the reduction effect is taken into account.

1+ 71,VB?
ST 1471,

With I, as the turbulence intensity and B? is the background-response factor. The dynamic factor
can be described as:

1+ 2k, [,VBZ + R?
Cq =
¢ 1+ 71,VB?

The peakfactor is given by k,,, and R? is the resonance-response factor. It is stated that the
combination of the reduction effect and the dynamic factor should not be less than 0.85. For bridges
where no dynamic response calculation is necessary, the value for c;c4 is equal to one. The values
for the resonance-response factor and the background-response factor are given in Appendix C of
EuroCode 1991-1-4. The background-response factor gives a value to take into account the
correlation for the wind pressure against the structure.

1

143 () () + ()

Where h and b are the height and width of the structure, respectively. L(z) is the turbulence length:

B? =

P )0.67+0.051n(zo)

L(z) = Lt(

Zt

2 m?
R :%SL(Z;OM)Ks(‘Ul)

In this equation w; is the first Eigen frequency of the system. K;(w1) is the dimension reduction
function and can be approximated with:

1

2 5 2\ 2
4 cybou1 1c,hw, 4 cyczbhwl
1+J(% Uy ) +( )+ AT

Ks((ul) =
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The Eigen frequency of the structure can be estimated with the formulas given in appendix F of the
Eurocode 1991-1-4. The reduced variance spectrum of the wind is in the Eurocode given by the
formula.

S, (z w):fsvv(f): 6.8x
Lifer ™1 0,2 (1 +10.2x)5/3

With x = fL(2)/Up(2).

The force coefficient ¢; for bridges is different than the force coefficient used for buildings. The force
coefficient is dependent of width-thickness ratio of the bridge and the angle of the wind velocity with
the bridge deck. The force coefficient in horizontal direction is given in figure Il1.1.

Crx = Crxo

Cix.0 i

20—

18 \
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W o
\
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o
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Figure lll.1 pressure coefficient in horizontal direction according to EC1

For the force coefficient in vertical direction, the angle of attack and width-thickness ratio are
important. The EuroCode does not recommend to use the vertical force coefficient for calculations
with vertical vibrations.
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Figure 111.2 Pressure coefficient in vertical direction according to EC1

The Eurocode 1991-1-4 gives a procedure to test the sensitivity of a structure for flutter and
divergence. Three criteria are mentioned for a structure that could be sensible for divergence and
flutter. When one of the criteria is not met, the structure should not be prone to flutter and
divergence. The three criteria stated in the EuroCode 1991-1-4 are:

- The structure has a flat cross section with a width-thickness ratio smaller than 0.25.

- The torsion centre is positioned at a distance of at least d/4 of the edge at the leeward
side.

- The vibration mode of the first eigenfrequency is a torsional mode. Or the first torsion
eigenfrequency is smaller than two times the first bending eigenfrequency.
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Appendix IV: Design Calculation Cable Stayed Bridge NSC

This design calculation is performed in order to determine the global dimensions of the bridge. Only
the deck, the cross beams, the main girders and the stays are calculated in this appendix.

Loads

For the life load, the governing vehicle load is taken into account. The Eurocode 1991-2 gives the
loading for bridges. The maximum possible number of lanes is 4 on both sides of the bridge.

Load model 1 (General loading due to lorries)
Lane number 1

Q4 = 2-agp,-300 = 2x300 kN

p1 = g 9.0 = 1035 kN/m?
Lane number 2

Q, = 2-agy-200 = 2x200 kN

P2 = g 2.5 = 350 kN/m?
Lane number 3

Qs = 2-ap3-100 = 2x100 kN

P2 = ag2.5 = 350 kN/m?
Lane number 4

P2 = Q2.5 = 350 kN/m?
Remaining area

P2 = Q2.5 = 350 kN/m?

Contact surface of each wheel is 400x400mm?>.

1200

500 500 500

2000 2000 1000, 2000 18500
A a i 1 1

T

Figure 1.1 Loads of load model 1

a1

2000

a2

Load model 2 (Single axle)
Qak = 2-Po-400 = 2x400 kN

Contact surface of each wheel is 600x350mm?.
Load model 4 (Crowd)

Py = = 500 kN/m?
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Overview

The cable stayed bridge is constructed from the pylon. At both sides of the pylon the deck is built in
sections. The pylon is temporary secured to the abutment. The falsework is attached to the casted
bridge sections. When the casted concrete is sufficiently hardened the stay is installed and the post
tensioning cables are tensioned. If the strength of the concrete is sufficient, the formwork and
falsework is removed and installed for the next section. At both sides of the bridge the deck should
be constructed at the same building speed, in order to make sure there is equilibrium during
construction process.

Figure IV.2 Construction of the cable stayed bridge

Material Properties

Concrete

Strength Class C35/45

Cement CEM 325N

Characteristic value of compressive strength fer = 35.00 N/mm?

Design value of compressive strength fea = 23.33 N/mm?

Mean value of axial tension strength feem = 3.20 N/mm?

Specific weight p = 2500 kg/m?3

Environmental class XD3

Young’s modulus (short term) Ecmey = 34,000 N/mm?

Strain for reaching maximum compressive strength & = 1.75-1073

Maximum strain Ecu = 3.50-1073

Post tensioning steel

Class Y186057 — 15

Number of wires in one strand 7

Diameter of one strand 15.2 mm

Cross section one strand 150 mm?

Characteristic tensile strength fok = 1860 N/mm?

Characteristic 0.1% proof stress froak = 1674 N/mm?

Design value tensile strength fra = 1456 N/mm?

Young’s modulus E, = 195,000 N/mm?

V-2
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Determination of the Global Dimensions Deck

For the bridge deck a ribbed floor is used to span between the cross beams. The ribs span over a
distance of 4.4 meter, the c.t.c. distance of the cross beams. Due to the tension in the cables, a
compressive normal force is activated in the bridge deck. The ribs gives some stiffness and strength
to the bridge deck. The axial forces a relatively high and therefore it is necessary to create a deck that
can transmit these forces to the cross girders. Based on a first indication of the global dimensions,
the cross sectional properties are determined.

2000

///)//:\\
EQ{}::%

‘ 350

‘ \§\&13/Z/
400
400 !

| 600 |
I I

Figure IV.3 Dimensions of the ribbed floor

Figure IV.4 3D view of the ribs in the bridge deck plus the cross beams in transverse direction

The thickness of the deck:

td =0.35m
Height of the rib:
h, =040m

Base width of the rib:
Wy, = 0.40m
Top width of the rib:
Wi = 0.60m
c.t.c. distance of the ribs:
c.t.c=2.00m

V-3



%
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De | f't

Delit University of Technology

Cross sectional properties of the ribbed bridge deck
The cross sectional properties of the deck can be calculated.
Cross sectional area:

A.=2.00-0.35+0.40-0.40 + 0.10 - 0.40 = 0.900 m?

Distance of the bottom fibre to the normal center:

2.00-0.35 - 0.575 + 0.40 - 0.40 - 0.20 + 0.10 - 0.40 - 2/3 - 0.40
NCy) = - = 0.4946 m
c

Moment of inertia:

1
I, = Ivh 2.00-0.35% +2.00- 0.35- (0.575 — 0.4946)?

6-040°+6-040-0.10+010% s\ 0404 (0.20 — 0.4946)>
36- (2 0.40 + 0.10) ' o '

+0.1-0.4-(2/3- 0.4 —0.4946)? = 0.030025 m*

Section moduli:

Weiop = e 0.11756 m3
P 0.75 = NC(y

I
Wc,bottom = ﬁf) = 0.06071m3
z

Determination of the Global Dimensions Cross Beams

A first assumption of the global dimensions of the cross section is done based on the rules of thumb.
In order to reduce the number of post tensioning cables and the amount of concrete, there is chosen
for an I-shaped cross section. Where the top flange is integrated into the deck floor. The cost for the
formwork will increase due to the more complicated form of the cross section, when compared with
a rectangular cross section. However the structural advantage of this type of cross section will reduce
the costs for post tensioning cables and anchorage points.

Cross sectional properties

The effective width of the top flange can be determined according to:
besri = 0.2b; + 0.11, < 0.2,
besri =02-3940.1-283=3.61m <5.66m

beff = beff,i + bW S b
beff =411m
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Figure IV.5 Effective width of the cross beam

Effective sectional area
A, =411-035+1.30-0.50+ 0.35-1.00 = 2.438 m?

Position of the normal centre from the bottom fibre.

4.11-0.35-1.825+ 1.30-0.50-1.05+ 0.35-1.00- 0.175
NC(Z) = 2 =1.382m
c

Moment of Inertia

1
I, = 17 4.11-0.353 +4.11-0.35- (1.825 — 1.382)?
1
+E- 0.50-1.30% + 0.50 - 1.30 - (1.05 — 1.382)?
1
+E- 1.00-0.35% + 1.00 - 0.35 - (0.175 — 1.382)% = 0.974 m*

Section moduli

IZZ
Wetop = ———ie— = 1.880 m?
¢toP = 190 — NCg) m

zZZ

Wc,bottom = W() = 0.705 m3
z

Position of the post tensioning cable at midspan measured from the normal centre.

ep = 1172 m
4 i #
60
400 100" 590 |
[ [ [

Figure 1.6 Anchorage of the post-tensioning cable
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In order to reduce the end moments in the girder one of the post tensioning cables has a certain

curvature.

1 curved cable

2 straight cable

Figure IV.7 Side view of the cross beam

350

1200

350

500
1000 |

Figure 1V.8 Cross section of the cross beam

Moments
The cross beam is modeled as a girder on hinged supports. The loading on the beam is based on the

c.t.c. distance of the cross beams.

650 500 500 500
%, 2000 \,/ 2000 1000, 2000 , 18500 .
LI 11 il 1 Kl 1

300 kN 300 kN
200 kN 200 kN
100 kN 100 kN

0r = 4554 kN/m H |||Hr7‘ qe=15.4 kN/m
[ EEEEEEEESSSESSESSEESSSESSESSSSESSSESESESEESESEEESSSSESSSEEESEEEEEESSEEEEEENEENEEENEEEEEENE] C|s=6.6kN/m
L PO TPTTYTYTTTITNID e s e
Figure IV.9 Loading of the cross beam due to the dead load, super dead load and the life load
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Now the dimensions of the cross beam are known, the occurring moments can be calculated. These
moments at midspan are calculated with a linear analysis in the program Matrixframe.

M; = 7458 kNm

Mg = 661 kNm

M,y = 4329 kNm

Required post tensioning steel

The required value of the post tensioning force can be determined based on the minimum and
maximum allowable stresses in the cross section.

The calculation of the stresses is performed for t = 0 and t = oo at midspan.

t=0
Bottom fibre compression
Pmo Proép Mg
o =——— - + > —0.6f,
ebottom Ac Wc,bottom Wc,bottom cd
Pno Ppno-1172 7458
=m0 ™ + > —14000 kN /m?
Gebottom = =538~ " 0705 ' 0.705 — /m
Ppo < 11859 kN
t=0

Top fibre tension
Pm,O Pm.Oep _ MG

Octop = —
Ac Wc,top Wc,top

< 0.5fcem

Ppo Pmo-1.172 7458
=0 ' - < 1600 kN /m?
Tctor = 75438 1.880 1.880 — /m

Pmo < 26108 kN

t = o

Bottom fibre tension

P Bro€p Mg + Mg + M,

Oc,bottom — — A - +
Cc

o T < 0.5fcem
c,bottom c,bottom

. Pm,oo Pm,oo +1.172 + 12448 < 1600
Oc,bottom = 2438 0.705 0.705 —

P = 7747 kN

If the prestressing losses are estimated on 20% the ratio between the prestressing force at
t = 0andt = oois known.

P :>ZZfz——9684kN
mo0 =080
9684 - 103
Ap=—o—
1395

#strands =

= 6942 mm?

BT = 47 strands
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The maximum number of strands is (22x3) 66.
With 3 cables with 18 strands the prestressing force is:
Ppo=18-3-150-1395 = 11300- 103 N

Elastic losses

A certain deformation of the concrete, due to stressing of a cable, leads to a loss of stress in the
cables that where already tensioned. The strain of the concrete can be calculated based on the linear
stress-strain relation.

Ae, = Ao, _ 1 (Pm,o N Mpep)
Ecm Ecm AC IZZ
The strain of the cable can also be determined.
AO'p APel
Agy = ——=——
Ey, E, A,
Compatibility requires:
Ae. = Ag,
E A e, %A
AP, ==-"Lp (1+2—
7 EcmAc ’""’( I,

The number of post tensioning cables can be included in the formula. The first applied cable will
experience the highest elastic losses.
n—1 E,A, epA,
AP, = 2n B A Pno (1 + L )
3—1 195,000-8100
23 34,000-2.438-10°
=318.5-103N
This gives a mean loss of stress in the cables of:
AP,, 318.5-103
A, 8100
The first cable has a loss of 78.6 N/mm? the second cable 39.3 N/mm? and the third cable has no
elastic loss.

APel =

11300-10% - {1+ 1,172%-2.438-10°
0.974 - 1012

Ao, = = 39.3 N/mm?

Losses due to friction
Because the beam consist of two types of cables, two straight cables and one curved cable, the
friction losses for these cables are not the same.
Apu(x) = Pnax(1 — e—u(9+kx))
Where
u=0.16
k =0.010rad/m

Straight cables
6, =0
AP, (x) = 3767 - 103(1 — e~00016%)
APﬂ(28.3) =3767-103(1 — ¢700016283) — 166,8- 103N
Curved cable
6, = 0.2098 rad
Apu(x) = 3767 - 103(1 _ e—0.16(0.2098+0.010x))
AP,(28.3) = 3767 - 103(1 — ¢~016(02098+0.01028.3)) — 2856 - 103N
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The average friction loss as a change in stress per unit length is for the straight cable:
166.8-103

Ao, = ———" " _0.002183 N/mm?
%m = 58300 - 2700 fmm” /mm
And for the curved cable:
pg = 2B56°10° o aas N fmm?
%pm = 58300-2700 fmm® /mm

Due to the settlement of the wedges a certain length of the cable experience a reduction in stress.
The average friction loss is taken into account to calculate the length of the cable that experience the
decrease of stress after the strands are released. It is assumed that the wedges will have on average
a settlement of 6 mm. The length that is influenced by the settlement can be given by:

| [BwseE, _ f6:195000
set Aoy, 0.002183
AW B, [6+195,000
Lot = = = 17692
= [ TAoym 0.003738 mm

The loss due to wedge settlement is at the location of the anchorage point where the strands are
tensioned is:

Abser = 2AUprnlset

Agser = 2-0.002183 - 23151 = 101 N/mm?

Aoger = 2-0.003738- 17692 = 132 N/mm?

This means that the post tensioning force is lower at the side where the post tensioning cable is
tensioned. At the side of the blind anchor the resulting stress in the cable is higher. This also means
that tensioning of the cable at both anchorage points does not influence the stress in the cable
positively.

It is possible to overstress the prestressing steel. The maximum allowable stress during prestressing
is:
Opmax = 0.8+-1860 = 1488 N/mm?

First the two straight cables are tensioned. These cables will experience the elastic losses. The cables
can be overstresses with 93 N/mm?. This would mean that only a part of the loss of stress due to
wedge settlement can be compensated. For the straight cable there is a loss of stress of:

Ao =101 + 78.6 — 93 = 86.6 N/mm?
For the curved cable there is a loss of:

Ao = 132 — 93 = 39.0 N/mm?

The average stress in the cables at t = 0 is 1359 N/mm?. With this stress taken into account the
average prestressing force in the cables is 11008 kN.
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5149 | 5459 , 12543 | 5149

1410

1348

1309

1445

1384

1345

1461

1355

1329

STRESS IN CURVED CABLE

1370
1348 18 1354
1341

AVERAGE STRESS

Figure IV.10 Stresses in cables with elastic losses, friction losses and wedge settlement included

Losses due to creep
For the prestressing losses due to creep Trost method is used.
o.(0) Ao.(t
PR TOW20

! 144
Ecm Ecm

The initial stress at the location of the post tensioning cable is based on the post tensioning force at
t = 0 and the moment due to the dead load.

o (0) — _Pm,O _ Pm,Oep MG
¢ Ac Wc,bottom Wc,bottom
0) = 11008 11008-1.172 N 7458 12236 kN /m?
9\ = 75438 0.705 0.705 /m
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The additional stress is based on the super dead weight (asphalt layer) and the life load.

M M
poy(0) = + 5 ¥2Me
Wc,bottom Wc,bottom

hoy(t) = + ok 045236 2508 kv m?

0\ =T 0705 " 0705 /m

The Young’s modulus is adapted based on the creep coefficient.

Eo’ = —m = 22099 _ 9189 N jmm?

m Ty 1+27 fmim

E 34,000
i CLLP = 16038 N/mm?

E = =
M 1+yp 1+08-14

The creep coefficient is determined based on the fictive thickness of the cross section hy and on the
time of loading. The cables are post-tensioned after 3 days. It is assumed that the asphalt layer is

applied after a 100 days. And that the life load is activated after 100 days as well.

" _ZAC_2-2.438_0389
L -V R
[a
1_
e N b R
2_,_5 \ \\ l\
1 SR
5 \X ::\"-H_
’ N\ \ﬁ\ N e T — c2028
10 X - e
E::ﬁ_ CAMDD yeims
- =: o
o 5
0 CB0RE ~ oo,
50 \,
i’ N
60 50 40 30 20 10 100 300 500 700 900 1100 1300 1500

@ (o, te) h e {mm)

Figure IV.11 Determination of the creep coefficient

The strain due to creep can now be calculated. The initial stress at the location of the post tensioning
cable has a negative value. The additional stress due to the super dead load and the life load has a

positive value.

(t)_—12.24+ 3.90 — _1089-10-3
feert™ = 79189 T16038
A
Strain
Creep recovery
| T —>
to . time

Figure IV.12 Schematic figure of the development of the creep in time

E. Bosman
Stnr. 4029364

IV-11



%
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De | f't

Delit University of Technology

Losses due to shrinkage
According to the Eurocode 1992 art. 3.1.4, the shrinkage strain can be calculated as a combination of
drying shrinkage and autogenous shrinkage.

Ecsh = €cd,0 + Ecq,00

The drying shrinkage (&.4 o) is based on Eurocode 1992 art. 3.1.4 table 3.2. Concrete class C35/45
combined with a relative humidity of 80%. kj, is based on table 3.3 with hy = 388mm.
Ecdo0 = Kncao = 0.728-0.26-1073 = 0.189-1073

For autogenous shrinkage at t = oo the EC2 gives:
€cao = 2.5(fer —10) - 1076 = 0.0625 - 1073

The amount of autogenous shrinkage is for this concrete class not very high. For higher concrete
classes the autogenous shrinkage becomes more important due to the lower water-cement ratio.
The total strain in the concrete that causes losses in the prestressing steel is the sum of the
deformation due to creep and shrinkage.

ec(t) = ecer(t) + ecsn(t) = —1.089-1073 — 0.189- 1073 + 0.0625- 1073 = 1.341- 1073

This results in a decrease of stress in the prestressing steel of:
Aoy = €.(t)E, = 1.341-1073 - 195,000 = 261 N/mm?

Losses due to relaxation
For the loss of stress due to relaxation of the post tensioning steel the following formula is used.
£ \075(1-p)

AGy, = gy 0.66 * pyggoe” (1000) -107°

0pi is the initial peak stress value in the cables. After wedge settlement the peak stress in the cable is

1395 N/mm?.

P1o00 1S the relaxation loss in percentage after a 1000 hours of stressing at a mean temperature of

20°C. Low relaxation steel is applied which results in p100 = 2.5%.

t is the time after tensioning in hours. For the total service life of the structure it can be said that

t = 500000 hours.

W is the ratio between the initial peak stress and the yielding stress of the steel.

_1395_
H=T1860

-107° = 67.9 N/mm?

500000, %75(1-0.75)
1000 )

Ay, = 1395-0.66 - 2.5 - e®107> (

Because of the influences of creep and shrinkage, the value for relaxation will in practice be a bit
lower. According to Eurocode 2 a reduction factor of 0.8 can be taken into account.
Ao, =0.8:67.9 = 54.4 N/mm?

Actual stresses
Now the prestressing losses are known the actual stresses at midspan can now be calculated.
opi = 1359 N/mm?
Aoy, = —261 N/mm?
Aoy, = —54.4 N/mm?
Opoo = 1044 N /mm?

This results in a prestressing force at t = oo of
Ppo =1044-18-3-150- 1073 = 8456 kN > 7747 kN

IV-12
E. Bosman
Stnr. 4029364



%
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De | f't

Delit University of Technology

Required amount of reinforcing steel
For the maximum occurring moment in the ULS it is allowable that the concrete cracks. Internal
equilibrium should be reached by applying reinforcement steel.

P = 8456 kN Working prestressing force

h =1900 mm Height of the girder

d, =h—210=1790 mm Distance from the top fibre to the
prestressing cable

dgy = h—65=1935mm Distance from the top fibre to the outer
reinforcement

ds; = h—285=1615mm Distance from the top fibre to the second
layer of reinforcement

E, = 200,000 N/mm? Young’s modulus of the reinforcement steel

E, = 195,000 N /mm? Young’s modulus of the prestressing steel

A, = 8100 mm? Area of the prestressing steel

fea = 23.33 N/mm? Design value compressive strength concrete

&§=0.5 Factor for the prestressing steel

X Height compressive zone

& Maximum occurring concrete strain

M, = 1.32(7458 + 660.7) + Design value maximum moment

1.65-4329 — 8456-1.172 =

7949 kNm

Agy = 3927 mm? Area outer reinforcement 8925

Agp = 2945 mm? Area second layer of reinforcement 6025

Assume that x > 350mm
There should be equilibrium of forces and moments

”'\'\h S ‘_
Ap Acpe———
Asi-Os1 ¢

Figure 1V.13 Internal forces in the midspan section

The internal force of the compression zone of the concrete can be expressed with the following
formula:

1 & 1 (x —350)¢,
NC = E . be (_175 -10-3 fcd) - E ) (bf - bw)(x - 350) <_x .1.75 - 10-3 de

There should be horizontal equilibrium in the cross section.
JE, =0

de; — x)E dey —x)E d, —x)e
ZFx:—NC+Pm,m+A51—( Slx )CES+A52—( Szx )CES+§A,,—( — )CEpzo
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A second condition is that there should be equilibrium of moments in the cross section.
M =0
1 & 1
EM = My — - xby (—1.75 : 10_3fcd) (518 - §x) +
! (b — by, (x — 350) (x —350)e 168 1( 350)
2 \or T hw)lX x-175-103/ 3
(dsl - 518)(dsl - x)gc A (dsz - 518)(d52 - x)gc E

s1 s~ As2 s

Figure 1V.14 Compressive zone of the concrete

This results in:
x =621mm
& =0.818-1073

For this calculation some assumptions where made. These assumption should be checked afterwards
in order to judge the correctness of the calculated values.

x > 350mm

x =621mm

& <1.75-1073
e, =0.818-1073

Ao, < 1395 — 1044 = 351 N/mm?

d, —x)e
Aoy = f%EP =137 N/mm?
dg1 — x)g
Oy = #ES = 320 N/mm? < 435 N/mm?
dg; —x)g
Oy = #ES = 262 N/mm? < 435 N /mm?

It can be seen that the cross section is able to carry the ULS design moment.

IV-14
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Determination of the Global Dimensions Stay Cables and Main girders

For the stay cables a Parallel Wire Strand (PWS) system is used. The maximum tensile strength of the
cables is 1770 N/mm?. The strands that are used have a diameter of 15.7mm. During the execution of
the bridge deck, the stay cables should be able to carry the weight from two bridge section plus the
formwork and falsework. When the load is equally divided per stay, the stay with the lowest angle
will experience the highest force. The weight of each bridge section can be determined based on the
dimensions of the deck and cross beams. For the weight of a main girder a value of 122.6 kN/m* is
taken into account.

The weight per section of the bridge is divided into the dead weight, the super dead weight, the life
load and the axle load. In the building phase it is necessary to take the weight of the false- and
formwork into account. The load of the falsework is assumed to be 4.00 kN/m?. For the formwork an
additional temporary loading due to people and material a load of 2.00 kN/m? is taken into account.

W; =25-(1.00-283-2+0.45-8.8-24.1+ 2-4.905-8.8) = 5959kN

Ws = 1.50-28.3-8.8 = 374kN

W, =8.8-(10.35-3 + 25.3-3.5) = 1052kN

Wp = 600 + 400 + 200 = 1200kN

Wy = (4.00 + 2.00) - 28.3- 8.8 = 1494kN

For the building phase each stay should be able to carry the weight of two bridge sections. The load

factors are for this phase equal to 1.0.
Z(WG+W5+WB)

2+ sin(a;)

Ns,i =

For the final phase (ULS) each stay will carry one bridge section and should be able to transfer the
axle loading.
N = Yekri(We + W) + yokp(Wo + Wp)

St 2 sin(a;)

[T TR I

Wi
Figure IV.15 Determination of the cable force

The horizontal force is determined based on the final phase with the axle load positioned at the first
stay. In table IV.1 the axial force is shown for the different stay cables. This table also shows the
minimum and applied cross sectional area of the stays.
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Table IV.1 Overview of the forces in the stay cables

Stay Angle of | Axial Force Stay | Axial Force Horizontal Minimum Applied
the Stay | Cable Stay Cable Force Required Stay Area
Cable Building Phase Final Phase Final Phase | Area
[kN] [kN] [kN] [mm?] [mm?]
1 28.64° 16325 12594 11052 | 2x17976 2x22800
2 30.62° 15367 11855 9188 | 2x16593 2x21600
3 32.86° 14430 11132 8422 | 2x15210 2x20250
4 35.40° 13517 10428 7657 | 2x13827 2x18900
5 38.27° 12635 9747 6891 | 2x12445 2x17250
6 41.62° 11789 9095 6125 | 2x11062 2x16500
7 45.39° 10990 8478 5360 | 2x9679 2x15750
8 49.82° 10246 7904 4594 | 2x8296 2x14250
9 54.89° 9572 7384 3828 | 2x6914 2x13500
10 60.66° 8983 6930 3063 | 2x5531 2x12750
11 67.19° 8497 6555 2297 | 2x4148 2x12000
12 74.37° 8131 6273 1531 | 2x2765 2x12000

When the bending stiffness of the pylon is neglected. The back stay cables should be able to carry the
resulting horizontal forces. The stays connected to the end support should be able to transfer the
horizontal forces from the first, the second and the third cable. This results in an axial load of
34117kN for each of the stay cables. This gives a required area of 2x43500mm?>.

To insure that fatigue is not governing, the maximum stress in the stay should be limited to 45% of
the ultimate stress.

gt = 0.45f,, = 797 N/mm?

This would mean that a minimum cable area of 17976mm? is needed for the cables with the lowest

angle.

For the first analysis of the bridge the stay cables will be modeled as constrained supports for the
dead load. For the life load the stays will be modeled as vertical springs. The spring stiffness is based
on the vertical displacement of the stay under a unit load.

The vertical displacement of the stay cable can be expressed as:

2 Nunit z 2
Vyer,i = l; (1 + ﬁ) —b"—h
i

Where b; is the horizontal distance from the pylon to the anchorage point of the considered stay
cable. And h is the height of the pylon.

This gives a vertical spring stiffness of:

E. Bosman

ki — Nunit

vver,i

IV-16

Stnr. 4029364



]
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De If't

Delft University of Technology

Table IV.2 Vertical spring stiffness for the different stay cables

Stay Applied | Modulus of Horizontal Distance Vertical Vertical Spring

Stay Elasticity from the Pylon to the Displacement Stiffness

Area Anchorage Point under Unit Load

[mm?] | [N/mm?] [mm] [mm] [N /mm]

1 2x22800 | 205000 114400 374 26704
2 2x21600 | 205000 105600 253 39513
3 2x20250 | 205000 96800 212 47182
4 2x18900 | 205000 88000 178 56315
5 2x17250 | 205000 79200 245 40756
6 2x16500 | 205000 70400 149 67293
7 2x15750 | 205000 61600 255 39235
8 2x14250 | 205000 52800 160 62346
9 2x13500 | 205000 44000 126 79093
10 2x12750 | 205000 35200 122 81846
11 2x12000 | 205000 26400 99 101415
12 2x12000 | 205000 17600 105 95214
Dead load

For the dead load the anchorage points of the stay cables are considered as fixed supports. The
internal forces can be determined based on this assumption. The representative line load for the
dead weight and the super dead weight is:

drep = 719.7 kN /m

The moment distribution can be approached based on a continuous concrete beam over multiple
fixed supports. The values for the field moment and the moment above the supports are estimated
with:

MG,rep = iEQG,replz
1
Mg rep = J_rﬁ- 719.7 - 17.6% = +22292kNm

The normal force in the bridge deck is dependent of the horizontal component from the stay cables.
The maximum normal force can be found at the location of the pylon and has a value of 80252kN.

J\/\/\/\/\/\/\/xj\ /\ /\-’\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\Fj\ /\ /\-’\/\/\/\/\/\/\A
57 V) E =

80252 s
Figure 1V.16 Global indication of the moment distribution and the normal force distribution in the bridge deck
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Table IV.3 Horizontal forces due to the dead load and the life load

Stay Angle of | Horizontal Force | Horizontal Force Horizontal Force Horizontal Force

the Stay | Final Phase Final Phase Final Phase Final Phase

Cable Dead Load Life Load (distr.) Life Load (axial) Life Load (axial)

[kN] [kN] [kN] [kN]

1 28.64° 11592 1342 - 236
2 30.62° 10700 1781 - 275
3 32.86° 9809 1854 - 226
4 35.40° 8917 1892 - 165
5 38.27° 8025 1149 - 63
6 41.62° 7133 1556 3 45
7 45.39° 6242 720 6 7
8 49.82° 5350 863 14 -
9 54.89° 4458 765 25 -
10 60.66° 3567 496 30 -
11 67.19° 2675 321 34 -
12 74.37° 1783 111 22 -
SUM 80252 12851 135 1018
Life load

For the life load the end supports and the supports at the pylons are modeled as fixed supports. The
supports that represent the stay cables are modeled as vertical springs with a spring stiffness equal
to the value calculated in table IV.2. The maximum moment for the distributed load can be found
when the complete deck is loaded. The moment above the support without load factor is equal to
-33153 kNm. The normal force has a value of -12851kN. For the axle load, two load cases can be
considered. When the axle load is applied near the pylon, the occurring moment above the support
will have the largest value (-3117kNm). In this case the normal force has a value of -135kN. Another
possibility is when the axle load is positioned at midspan. In this case the normal force will have the
largest value (-1018kN) and the moment above support has a value of 164kNm.

Cross sectional properties of the main girders and total bridge deck

The properties of the main girders can be determined. Based on the occurring moments and normal
forces it should be checked whether or not the cross section complies with the requirements. The
properties of the total cross section of the bridge are given.

Cross sectional area single main girder
— 2
Acmain = 4.965m

Distance of the bottom fibre of the main girder to the normal centre
NC(z)main = 1.168m

Moment of inertia of a single main girder
Iz main = 2.333 m*

Cross sectional area of the total bridge deck
Actor = 24965+ 24.1-0.45 = 20.775 m?

Distance of the bottom fibre of the main girders to the normal centre
2:4965-1.168 + 0.45-24.1-1.745

= 1469 m
Ac,tot

NC(Z) =

E. Bosman
Stnr. 4029364
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Moment of inertia
I,, =2-2333+2-4.965"(1.168 — 1.469)?
+0.0150 - 24.1 + 0.45 - 24.1 - (1.745 — 1.469)? = 6.753 m*

Section moduli

We top = 8.647 m?
Wc,bottom = 4597 m3

4200

250
350

250

800
1745

2600

Figure IV.17 Cross section main girder

N-M-kappa diagram
A moment-kappa diagram can be determined with the occurring normal force at the support. For this
N-M-kappa diagram the ultimate limit state is taken into account.
The design value for the normal force at the supports can be calculated based on the values found
for the dead load and the life load.

Ng =132 Nz + 1.65- (Ny + Np)

Ny =1.32-80252 + 1.65- (12851 + 135) = 127360 kN

This gives a design moment with a value of:
Mg =1.32-M; + 1.65- (Mg + Mp)
My =1.32-22292 + 1.65- (33153 + 3117) = 89271 kNm

The normal force gives rise to a normal stress in the cross section.

—&—6130kN 2
aN—A = /m

Cc

1 1

25 i

Figure IV.18 Simplification of the cross section of the bridge

The maximum additional compressive stress at the bottom fibre of the cross section has a value of
17202 kN /m?. This means that there can be an additional moment applied on the cross section of
79125 kNm before the bottom fibre reaches the design compressive strength of the concrete. The

IV-19
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structure behaves as a linear elastic cross section when the moment is smaller than 79125 kNm. The

curvature that belongs to this moment is:
x, = 0.879-10 3

If the moment is increased the stress at the bottom fibres will not increase any further. See also
figure 1.19. The stress at the top fibres can increase until the design tensile strength is reached. In
order to calculate the value of the moment, horizontal equilibrium should be obtained. This gives

due to the moment a compressive zone of:
x, =1.470m

Where over a height of 0.080m the fibres has reached their maximum compressive strength. With

these values the internal moment can have a value of:
M, = 80285 kNm

The curvature is based on the strains occurring at this moment.
k, = 0.897-10 3

The maximum strain of the concrete before reaching the design compressive strength is 1.75%0. The
normal force will cause a strain of 0.460%o. For the moment remains a maximum resulting strain of
1.290%0 before the concrete reaches the design compressive strength. This also means that the
ultimate strain of the concrete caused by a moment is reduced with 0.460%o. This gives that a

maximum moment can be applied that causes a strain of 3.040%o

+3.01N/mm*  -6.13N/mm* +9.14N/mm* £c=0.686 %00

@

.

*=1.470m
Stress
-23.3N/mm? A7.2N/mm? &= 1.290%0
-17.2N/mm?
+3.20N/mm?  -6.13N/mm?® +9.33N/mm? £c=0.700%50
@ - £~
%=1.470m
| £c=1.290
-23.3N/mm? -17.2N/mm?
-6.13M,/mm*
Azoe £c=2.746% 00
@ _ —— £c=0.700%0
%¥==1.025m
£e= 1.290%0
-23 3N/mm? mm? £o= 2.696%0
-6.13N,/mm*
Asgs E £c=3.362%0
: _ ——— £c= 0.700%50
— o
x=0.883m| oo 1:230%e0
- £c= 3.040%0

-23.3N/mm*
Figure IV.20 The four different phases in the N-M-kappa diagram
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‘ i

Ec= 1.2900/00 Ecu = 3.0400/00

Figure IV.19 Assumed stress-strain relation
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The third point in the N-M-kappa diagram is reached when the reinforcement starts to yield. The
tension zone of the concrete is in this phase neglected. The compression zone of the concrete should
make horizontal equilibrium with the force form the reinforcement. A reinforcement area of 0.14m?
is assumed in this calculation. This gives a compression zone of:

xg = 1.025m

This gives a moment and curvature of
M, = 104536 kNm
kg = 2.629-10 73

The ultimate limit moment is based on the compression zone where the strain in the bottom fibre
has reached its maximum value of 3.025%o.

M, = 104689 kNm

K, = 2.787-10 73
When these four points of the N-M-kappa diagram are taken into account figure IV.21 can be drawn.
It can be seen that the design moment above the support has a value that occurs in the branch

between the second and the third point. This means that the yield stress of the reinforcement is not
reached, but most of the cracks are formed.

100000
M [kNm]

30000

G0000 -

400040

20000

L e L e e o e e s e e e

0 00003 0.0010 00013 0.0020 00023
Figure IV.21 N-M-kappa diagram
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FE-model

The hand calculation can be verified with a finite element analysis. The bridge is modeled with the
FE-program Matrixframe. The stay cables are tensioned during the construction process. After all the
bridge sections are in place, the cables are tensioned again. Therefore the dead weight of the bridge
is not incorporated in the model. The internal forces and moments due to the dead load are added
by using fixed supports at the location of the stays. In the FE-model the stay cables have a modulus of
elasticity that is reduced. The stay cables experience a certain deflection due to the dead weight of
the stay cable. This means that the deflection determines partly the equivalent modulus of elasticity.
With the formula of Ernst the equivalent modulus of elasticity can be calculated for all the individual
stay cables.

E
p2L2E
AR Ve

Eeq =

Where p is the specific weigth of the stay cable, L is the length of the cable and gy is the axial stress
in the cable. The length and the stress differs for the stay cables. Therefore it would be necessary to
give each stay cable a different modulus of elasticity. Applying this in the model gives a redistribution
of forces. As a result the stress in the cables, and the equivalent modulus of elasticity will change as
well. Some iterations will be necessary to create the correct modulus of elasticity of the stay cables.
In this analysis the modulus of elasticity is kept constant. Only one reference cable is taken into
account in order to calculate a modified modulus of elasticity.

205,000

1+ (7.8-1075)2-878002 - 205,000
12-2503

= 195,000N /mm?

Eeq =

The analysis is elaborated upon the dead load, the super dead load and the life load. For the life load
four different load models are considered; the main span is fully loaded, the side spans are fully
loaded, all spans are fully loaded and one side span and half of the main span fully loaded. The
following properties are used in the FE-model.

Bridge deck

Concrete Strength Class C35/45

Area A, = 20.775 m?

Moment of Inertia I, = 6.753 m*

Young’s modulus E. = 34,000 N/mm?

Stay cables

Young’s modulus E. = 195,000 N/mm?

Pylons (assumed 2x2.0x2.5m?>)

Area A, = 10.00 m?

Moment of Inertia I, = 5.208 m*

Young’s modulus E. = 34,000 N/mm?
IV-22
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Dead load

For the determination of the internal forces due to the dead load of the structure, the bridge deck is
modeled as a beam over 46 supports. The reaction forces from this model are used to determine the
normal force in the structure. The normal force in the bridge deck at the position of the pylon is
—76442 kN. The moment at this position is —19968 kNm.

Figure 1V.23 Normal force distribution due to dead load

639633 6396.32
5574.76 557475

4135 64 4195 65

3315.14 3315.08

3625.24

B985 A I 789.90

17898

-3315.08 -3316.14

-3625.24

-4195.65 -4195 64
-5574.75 -5574 76
Figure IV.22 Shear force distribution of the bridge deck due to dead load
3
-19867 53 =19867 .53
-12737.71 -12737.88 <12737 69 -13737.72
|
enaa 488921 I 103078 -4988.78 -4938.21 Sanng
152.44
‘ﬂn"mnm,m:{._,:\\ A | T A KA A A R A M M A MM A A W M M A M Ik Sfun riacs mEwp A M M W A T AN
4095.28 3089.70 | 3089.83 3085983 3089.70 4095.28
10107.80 1010781 10107.81 1D107.80
Figure 1V.24 Moment distribution of the bridge deck due to dead load
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Super dead load
For the determination of internal forces due to the super dead load and the life load a two-
dimensional FE-model is used. The maximum normal force in the bridge deck is —4541 kN. The

maximum negative moment can be found in the bridge deck at the position of the pylon, ad has a
value of —9510 kNm.

5

llllllillllulllllllilélilllillllll,lililllllillllulllllllllllllllililllllll%llllllllllllllllllull

Figure IV.25 Loading super dead load

Figure IV.26 Normal force distribution due to the super dead load

90476 909.58

-909 59

Figure IV.28 Shear force distribution of the bridge deck due to super dead load

Figure IV.27 Moment distribution of the bridge deck due to super dead load

IV-24
E. Bosman
Stnr. 4029364



]
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De If't

Delft University of Technology

Life load: main span fully loaded

In this load case the main span of the bridge is fully loaded and the axle force is applied at midspan.
The side spans of the bridge are partly loaded. This results in a maximum normal force of

—13826 kN and a negative moment at the position of the pylon of —19958 kNm.

s LTI ¥ LT

= T
e Fr

944093
1889.58

-13825.80

Figure IV.32 Normal force distribution due to the life load

221713

1458 41

-1458 41

221713

Figure 1V.31 Shear force distribution due to the life load

22289 B4

Figure IV.30 Moment distribution due to life load

IV-25
E. Bosman
Stnr. 4029364



]
TUDelft

Delft University of Technology

MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks

Life load: side spans fully loaded
In this load case the side spans of the bridge are fully loaded and the main span has a reduced life

load. The normal force has a value of =5590kN and the moment has a value of —19122 kNm at the

location of the pylon.

-
-
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g
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-
-
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1169.49

-5589.65

Figure IV.35 Normal force distribution due to the life load

279977

2133 40

1369.03
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-1907.54
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Figure 1V.34 Shear force distribution due to the life load

18940 74
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Figure IV.33 Moment distribution due to the life load
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Life load: all spans fully loaded

In this load model the main span and the side spans are both fully loaded with the distributed life
load and the axle load is applied at midspan. This results in a normal force of —13779 kN and a
moment of —26870 kNm above the support.

Figure IV.40 Loading life load all spans fully loaded

5328.11 . 200162

-13778.52

Figure 1V.39 Normal force due to the life load

255925 257390

257391 -2559.27

Figure 1V.38 Shear force distribution due to the life load

POSTO.AY 26870.47

Figure IV.37 Moment distribution due to the life load
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Life load: one side span + half main span fully loaded

\ WL I T UL T LT

e e

Figure IV.41 Loading life load one side span + half main span fully loaded

 6168.86

-7609.50 -9816 20

Figure IV.42 Normal force due to the life load

1643 50

1580.03
1411.51 1499 84

-2108.62 2152 80

Figure 1V.43 Shear force distribution due to the life load

-18900.06 ; -18650.07
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Figure IV.44 Moment distribution due to the life load
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Conclusion
From the FE-analysis the maximum normal force, shear force and moment above the support at the
location of the pylon can be determined.

Table IV.4 Normal force in the bridge deck at the location of the pylon for the different load cases

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -76442 kN 1.35 | -4541 kN - - -109327 kN
ULS2 | 1.32 | -76442 kN 1.32 | -4541 kN 1.65 -13826 kN -129710 kN
ULS3 | 1.32 | -76442 kN 1.32 | -4541 kN 1.65 -5590 kN -116121 kN
ULS4 | 1.32 | -76442 kN 1.32 | -4541 kN 1.65 -13779 kN -129633 kN
ULS5 | 1.32 | -76442 kN 1.32 | -4541 kN 1.65 -7610 kN -119454 kN
SLS1 | 1.00 | -76442 kN 1.00 | -4541 kN 1.00 -13826 kN -94809 kN
SLS 2 1.00 -76442 kN 1.00 -4541 kN 1.00 -5590 kN -86573 kN
SLS 3 1.00 -76442 kN 1.00 -4541 kN 1.00 -13779 kN -94762 kN
SLS 4 1.00 -76442 kN 1.00 -4541 kN 1.00 -7610 kN -88593 kN

Table IV.5 Shear force in the bridge deck at the location of the pylon for the different load cases

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -6396 kN 1.35 | -910 kN - - -9863 kN
ULS2 | 1.32 | -6396 kN 1.32 | -910 kN 1.65 -2217 kN -13302 kN
ULS3 | 1.32 | -6396 kN 1.32 | -910 kN 1.65 -2090 kN -13092 kN
ULS4 | 1.32 | -6396 kN 1.32 | -910 kN 1.65 -2574 kN -13891 kN
ULS5 | 1.32 | -6396 kN 1.32 | -910 kN 1.65 -2153 kN -13196 kN
SLIS1 | 1.00 | -6396 kN 1.00 | -910kN 1.00 -2217 kN -9523 kN
SLS2 | 1.00 | -6396 kN 1.00 | -910kN 1.00 -2090 kN -9396 kN
SLS3 | 1.00 | -6396 kN 1.00 | -910kN 1.00 -2574 kN -9880 kN
SLS4 | 1.00 | -6396 kN 1.00 | -910kN 1.00 -2153 kN -9459 kN

Table IV.6 Moments in the bridge deck at the location of the pylon for the different load cases

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -19668 kNm | 1.35 | -9510 kNm - - -39390 kNm
ULS2 | 1.32 | -19668 kNm | 1.32 | -9510 kNm 1.65 -19958 kNm -71446 kNm
ULS3 | 1.32 | -19668 kNm | 1.32 | -9510 kNm 1.65 -19122 kNm -70066 kNm
ULS4 | 1.32 | -19668 kNm | 1.32 | -9510 kNm 1.65 -26870 kNm -82850 kNm
ULS5 | 1.32 | -19668 kNm | 1.32 | -9510 kNm 1.65 -18900 kNm -69700 kNm
SLIS1 | 1.00 | -19668 kNm | 1.00 | -9510 kNm 1.00 -19958 kNm -49136 kNm
SLS2 | 1.00 | -19668 kNm | 1.00 | -9510 kNm 1.00 -19122 kNm -48300 kNm
SLS3 | 1.00 | -19668 kNm | 1.00 | -9510 kNm 1.00 -26870 kNm -56048 kNm
SLS4 | 1.00 | -19668 kNm | 1.00 | -9510 kNm 1.00 -18900 kNm -48078 kNm

From table IV.4 it can be seen that the load model ULS 2 gives the highest normal force of
—129710 kN . The largest value for the moment above the support can be found with load model
ULS 4 and this moment has a value of —82850 kNm .

Elastic beam on springs FE-model with stays

Normal force 127360 kN -129710 kN
Shear force - -13891 kN
Moment 89271 kN -82850 kNm
IV-29
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The design value for the shear force should not be larger than the maximum shear force capacity of

the cross section. The maximum design value of the shear force is equal to:
Vgq = 13891 kN

The maximum shear force capacity of the bridge deck can be calculated with:
VRd,max = acwbwzvlfcd - cot(0) /(1 + COt(@)Z)

Where:
Aoy = 1.25
b, = 2400mm
z=2070mm
v, = 0.6

fea = 23.33N/mm?

This gives that:
Vramax = 86928103 - cot(8) /(1 + cot(8)?)

The angle 0 of the compressive strut should have a value between:
0.380 rad < 6 < 0.785 rad

Filling in the minimum and maximum value for 8 gives:
43464kN < Vpgmax < 62084kN
Both values are higher than the occurring shear forces in the structure.

Alternative system

Another possible system that is applied in recent bridge decks is a combination of prefabricated box
girders and in situ casted concrete main girders. The prefabricated box girders transfer the load to
the main girders of the bridge. The main girders have a L-shaped cross section. The box girder have
to be connected with the main girder to give the bridge deck sufficient robustness. To see whether or
not this type of bridge deck can be applied for this particular bridge, some basic design calculations
are made. The rule of thumb for the height of the box girder is:
1
hpox = %lspan

The span of the bridge is around 30 meter, this gives a required height of the box girder of 1.0 meter.
There are many types of box girders of different companies. For this calculation the values of a type
of box girder of Spanbeton b.v. are used. The dead weight of the girders is 18.9 kN /m. The c.t.c.
distance of the girders is 1.5 meter. This means that the main girders have to carry a dead weight of
378kN /m of the box girders alone. The total dead weight of the bridge deck calculated in the first

part of appendix | is 677.16
f:i:;ce)r‘(‘:‘::f:nhti" laver+ kN/m. The main girders can

therefore have an additional

PhéSE?ZO part weight of 299.16kN/m
e ereee (677.16-378). This coincides
with a cross section of the
main girders of 11.97m. The
available area that can be
used for the normal force is
therefore smaller compared
with the value found in the
first calculation.

Phase 1 Bottom part
main girders

Figure IV.45 Alternative system with prefabricated box girders IV-30
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Appendix V: Design Calculation Cable Stayed Bridge frUHSC

In this second design calculation the cable stayed bridge is designed with fibre reinforced ultra-high
strength concrete (frUHSC). The concrete class C170/200 is used for this calculation. Research is still
being done to the properties of the UHSC classes. The properties that are used for frUHSC are based
on the information given at www.uhsb.nl.

The loads that where applied in APPENDIX 1V, are also legitimate for this calculation.

Material Properties

Concrete

Strength Class C170/200

Cement CEM 52.5R
Characteristic value of compressive strength fek = 170.00 N/mm?
Design value of compressive strength fead = 113.33 N/mm?
Mean value of axial tension strength fetm = 6.22 N/mm?
Specific weight p = 2900 kg/m?3
Environmental class XD3

Young’s modulus (short term) Ecmoy = 52,185 N/mm?
Strain for reaching maximum compressive strength ¢, = 2.3-1073

Maximum strain Ecu = 2.6-1073

Post tensioning steel

Class Y186057 — 15

Number of wires in one strand 7

Diameter of one strand 15.2 mm
Cross section one strand 150 mm?
Characteristic tensile strength fok = 1860 N/mm?
Characteristic 0.1% proof stress froak = 1674 N/mm?
Design value tensile strength fpa = 1456 N/mm?
Young’s modulus E, = 195,000 N/mm?

Determination of the Global Dimensions Bridge Deck

In comparison with the calculation in APPENDIX IV the cross section of the bridge deck can be
reduced. Based on a first indication of the global dimensions the cross sectional properties are
determined.

The thickness of the deck:

t; =0.18m
Height of the rib:
h.=032m

Base width of the rib:
Wy = 0.20m
Top width of the rib:
Wi = 0.60m
c.t.c. distance of the ribs:
c.t.c=2.00m

V-1
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Figure V.1 Dimensions of the ribs in the deck floor

Cross sectional properties
The cross sectional properties can be calculated.
Cross sectional area:
A.=2.00-0.18+0.20-0.32 + 0.20- 0.32 = 0.488 m?

Distance of the bottom fibre to the normal center:
2.00-0.18-0.41+0.20-0.32-0.16 + 0.20-0.32-2/3-0.32

Ac

NC( = =0.3514m

Moment of inertia:

1
I, = vl 2.00-0.18% +2.00-0.18 - (0.41 — 0.3514)2

6-020°+6:020-020+ 0.20° 15, 25029 (0.16 — 0.3514)°
36-(2-0.20 + 0.20) ' o '

+0.20-0.32-(2/3-0.32 — 0.3514)? = 0.006562 m*

Section moduli:

IZZ
W = ——>—— =0.04416 m3
“tP = 0,50 — NC) m
I
Wc,bottom = ﬁf) =0.01867 m?3
4

Determination of the Global Dimensions Cross Beams

The cross beams have a I-shaped cross section. The top flange is integrated into the bridge deck. In
order to reduce the self-weight of the girders, the web has a relatively small width and increases near
the flanges.

Cross sectional properties

The effective width of the top flange can be determined according to:
besri = 0.2b; + 0.11, < 0.2[,
besri =02-3.74+0.1-283 =3.57m < 5.66m

beff = beff,i + bw < b

V-2
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Figure V.2 Effective width of the cross beam

Effective sectional area
A, =4.37-0.18+0.80-0.25+ 0.30-0.80 + (0.275 - 2)? — 0.275%m = 1.2915 m?

Position of the normal centre from the bottom fibre.

NC

(2)

_4.37-0.18-1.19+0.80-0.25-0.70 + 0.30- 0.80 - 0.15 + 0.03245 - (0.3614 + 1.0386)
= 7

= 0.896m

Moment of Inertia
1
—-4.37-0.18% 4+ 4.37-0.18 - (1.19 - 0.896)2

Izzlz 12
177025+ 0.80% +0.25- 080 (0.70 — 0.896)?
i
17080+ 0.30% + 0.80- 030 (0.15 — 0.896)?
1 = T
o 4, . —__). 2, _ 2
+ <3 16) 0.275% -4 + 2 (1 4) 0.2752 - (0.30 — 0.896)

T
+2- (1 - Z) £0.2752 - (1.10 — 0.896)2 = 0.2398 m*

Section moduli

IZZ
=—=— _ =0.6246m3
Weror =128 —ne,, - 00#40™

1
We bottom = ﬁf) =0.2677 m3
V4

Position of the post tensioning cable at midspan from the normal centre.
e, =0.716 m

V-3
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Figure V.3 Cross section of the cross beams

Moments
Now the dimensions of the cross beam are known, the occurring moments can be calculated. Only
the moment due to the self-weight of the girder deviates from the moments found in APPENDIX IV.
M; = 3951 kNm
Mg = 661 kNm
Mgy = 4329 kNm

Required post tensioning steel

The required value of the post tensioning force can be determined based on the minimum and
maximum allowable stresses in the cross section.

The calculation of the stresses is performed for t = 0 and t = oo at midspan.

t=0
Bottom fibre compression
Pino Pmoep Mg
o _ _mo . > —0.6f,
c,bottom A Wepottom  Webottom e
Ppo Pno-0.716 3951
= — A —_L > —68000 kN /m?

O¢,bottom 1.2915 0.2677 + 0.2677 /m

Ppo < 23996 kN
t=0

Top fibre tension
_ Pm,O Pm.Oep MG
Jc,top - A -

< 0.5f;tm
c Wc,top Wc.top

_ Ppy  Ppoy0.716 3951
%etor = 712915 T 0.6246  0.6246

< 3110 kN/m?

Ppo < 25362 kN

V-4
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t =
Bottom fibre tension

Prnoo Py | Mg+ Ms+ Mg

. - _ < 0.5f,
c.bottom A, We pottom We bottom e
3 P Pno " 0.716 N 8941 <3110
Oc¢,bottom = 1.2915 0.2677 0.2677 —

P = 8724 kN

If the prestressing losses are estimated on 20% the ratio between the prestressing force at
t = 0andt = o is known.

8724
mo = 080 = 10905 kN
10905 - 103 )
p = W = 7817 mm
7817
#strands = oo = 52 strands

The maximum number of strands is (22x3) 66.
When in each of the cables 18 strands are applied the prestressing force is equal to:
Ppo=18-3-150-1395 = 11300 - 103 N

Elastic losses
The strain of the concrete due to the post tensioning force reduces the stress in the post tensioning
cable. The strain of the concrete at the location of the post tensioning cable can be determined.

Ae, = Ao, _ 1 (Pm,O N Mpep)
Ecm Ecm AC IZZ
The strain of the cable is equal to
Ao, AP
Aey = ——=—

v =
Ep  Epdyp
Compatibility requires:
Ae. = Ag,

Ac

E A e, 2
AP, =P p [1+2
T EcmAc ’""’( I,

The number of post tensioning cables can be included in the formula. The first applied cable will
experience the highest elastic losses.

n—1EA e 2A
AP, = PP poof1+2—
e 2n E.A, m"’( 1,,

Ap, 31 195000-8100 o os (. 716%-1.2915 - 10°
¢ 2-352185-1.2915-10¢ 0.2398 - 1012
=332-10°N

This gives a mean loss of stress in the cables of:
AP, 332 103
A, 8100

Ao, = = 41.0 N/mm?

p
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The first cable will experience a loss of 82.0 N/mm? the second cable has a loss of 41.0 N/mm? and
the third cable has no loss of stress.

Losses due to friction
The friction of the strands with the duct of the cable gives rise to certain stress losses. For these
straight cables only the Wobble effect is taken into account.
APu(x) = Pnax(1— e—u(9+kx))
Where
u=0.16
k =0.010 rad/m

Straight cables
6, =0
AP, (x) = 3767 - 103(1 — ¢ ~0-0016x)
Apu(28-3) = 3767 103(1 — e—0-0016-28,3) — 166.8- 103N

Assume wedge settlement of 6 mm.

The average friction loss as a change in stress per unit length is:
166.8- 103

Ao, = ——" " _0.002182 N/mm?
%m = 283002700 fmm?fmm

The length over which the settlement occurs is estimated with:
Awgei Ep 6-195,000
set I AGym 0.002182 mm

The loss due to wedge settlement is :
AOger = 2AUprnlset
Ao = 2-0.002182 - 23156 = 101 N/mm?

It is possible to overstress the prestressing steel. The maximum allowable stress during prestressing
is:
Opmax = 0.8+ 1860 = 1488 N/mm?

The average stress in the cables at t = 0 is 1361 N/mm?. The average prestressing force in the
cables is equal to 11020 kN.

V-6
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5144 , 18012 , 5144

1406

1305

STRESS IN STRAIGHT CABLE 2

1369

1358 1356
1345

AVERAGE STRESS

Figure V.1 Stresses in cables with elastic losses, friction losses and wedge settlement included

Losses due to creep
Trost method is used to determine the creep losses.

a.(0) 4 Ao (t)

! 144
Ecm Ecm

Ecer (t) =

The initial stress in the cross section at the location of the post tensioning cable is based on the initial
post tensioning force and the moment due to the dead load.

2
Pro 3 Ppoep Mge,

0.(0) = —

AC IC IC
) = 11020 11020-0.7162 N 3951-0.716 20295 KN /2
9t = " 12915 0.2398 0.2398 /m

The additional stress can be calculated by taking the moments due to the super dead load and the

life load into account.
Mge, N Y,Mye,

Ao (t) =+

I I
por(6) — + 6610716 0443290716 _ . .
et = T 02398 02398 /m
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The adapted Young’s modulus is based on the creep coefficient. There is no definitive value available
for the creep coefficient for this UHSC class. However from the information at www.uhsb.nl it seems
that a creep coefficient of 0.8 is representable for this concrete class.

E. = Eem _ 52,185 28992 N 2
m Ty 1+08 fmim
v Eem 52,185

E." = = = 31820 N 2
m T iy 1+08-08 fmm

The strain due to the creep of the concrete can be calculated with these values.

(0 = 03 T 0476107
eerlt) = 58992 T 31820

Losses due to shrinkage
According to the Eurocode 1992 art. 3.1.4, the shrinkage strain can be calculated as a combination of
drying shrinkage and autogenous shrinkage.

Ecsh = Ecd,o0 T Eca,0
Ecaom = 2.5(fz —10) - 107¢ = 0.258- 1073

Because there is no data of drying shrinkage available for frUHSC, concrete class C90/105 combined
with a relative humidity of 80% is used to determine the drying strain. kj, is based on table 3.3 with
hy = 223mm.

Ecdo0 = kp€cqo = 0.827-0.11- 1073 =0.091-1073
The total strain in the concrete that causes losses in the prestressing steel is the sum of the
deformation due to creep and shrinkage.

ec(t) = ecer(t) + ecsp(8) = —0.476-1073 — 0.091- 1073 4+ 0.258- 1073 = 0.825- 1073
This results in a decrease of stress in the prestressing steel of:

Aoy = e.(t)E, = 0.825 1073+ 195,000 = 160.8 N/mm?

Losses due to relaxation

£ £\075(1-p)

Ay = 0p; * 0.66 * pyggpe®tH (1000) 1075
0pi is the initial peak stress value in the cables. After wedge settlement the peak stress in the cable is
1395 N/mm?.

P1o00 is the relaxation loss in percentage after a 1000 hours at a mean temperature of 20°C. Low
relaxation steel is applied which results in p1g90 = 2.5%.

t is the time after tensioning in hours. For the total service life of the structure it can be said that

t = 500000 hours.

W is the ratio between the initial peak stress and the yielding stress of the steel.

1395 075
H=1860
500000 0.75(1-0.75)
—) -107° = 67.9 N/mm?

— ) .9 E. 591075
Ao,y =1395:0.66-2.5-¢ ( 1000

The relaxation losses can be reduced with 20% due to the influences of creep and shrinkage.
Ao, =0.8:67.9 = 54.4 N/mm?
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Actual stresses
The actual stresses at midspan can now be calculated.
opi = 1361 N/mm?
Ao, = —160.8 N/mm?
Aoy, = —54.4 N/mm?
Opoo = 1146 N /mm?

This results in a prestressing force at t = oo of
Pno =1146-18-3-150- 1073 = 9283 kN > 8724 kN

Required amount of reinforcing steel
For the maximum occurring moment in the ULS it is allowable that the concrete cracks. Internal
equilibrium should be reached by applying reinforcement steel.

P = 9283 kN Working prestressing force

h = 1280 mm Height of the girder

d, = h—180 = 1100 mm Distance from the top fibre to the
prestressing cable

dgy = h—65=1215mm Distance from the top fibre to the outer
reinforcement

dg; = h — 235 =1045mm Distance from the top fibre to the second
layer of reinforcement

E, = 200,000 N/mm? Young’s modulus of the reinforcement steel

E, = 195,000 N /mm? Young’s modulus of the prestressing steel

A, = 8100 mm? Area of the prestressing steel

fea = 113.3 N/mm? Design value compressive strength concrete

&§=0.5 Factor for the prestressing steel

X Height compressive zone

& Maximum occurring concrete strain

M, = 1.32(3951 + 660.7) + Design value maximum moment

1.65-4329 —9283-0.716 =

6584 kNm

Ag; = 2199 mm? Area outer reinforcement 7020

Agp = 1571 mm? Area second layer of reinforcement 5020

Assume that x > 180mm
There should be equilibrium of forces and moments

4

As::Qs
Ap-Aop$——F==-=== s

ASl' g1 4———m—m—m—————Fr—————

Figure V.5 Internal forces in the midspan section
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Force equilibrium:

1 & 1 (x —200)e,
NC = E . be (_175 .10-3 de) - E ) (bf — bw)(x - 200) <_X .1.75 - 10-3 de
2E. =0
(ds1 — x)&¢ (dsz — x)&, (dp - x)gc

Fy = —Ne+ Py + Ay~ Eg + Ay = E + §Ay—"———E, =0

Moment equilibrium:
SM =0
1 & 1
EM = Mg = - xby (—1_75 _ 10_3fcd> (443 - §x) +
! (b — by, (x — 200) (x ~ 200 243 1( 200)
2\ T Bw)lX x-175-10-3/< 3

(dsl - 443)(d51 - X)SC (dsz - 443)(d52 - X)SC
s1 s Asz Es
X X
d, —443)(d, — x)e
o, o

This results in:
x =232mm
&, = 0.407 - 1073

For this calculation some assumptions where made. These assumption should be checked afterwards
in order to judge the correctness of the calculated values.

x > 180mm

x = 232mm

£, <2.3-1073
€, = 0.407 - 1073

Ao, < 1395 — 1146 = 249 N /mm?

d, —x)e
Aoy, = f%@, = 154 N/mm?
dg1 — x)€
Oy = #ES = 345 N/mm? < 435 N/mm?
dgs; — x)€
05 = %ES = 285 N/mm? < 435 N /mm?
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Determination of the Global Dimensions Stay Cables and Main girders

For the determination of the dimensions of the stays and the main girders the same approach as in
APPENDIX IV is used. The weight of each bridge section can be determined based on the dimensions
of the deck and cross beams. For the weight of the main girders a value of 67.7kN/m" is taken into
account.

The weight per section of the bridge is divided into the dead weight, the super dead weight, the life
load and the axle load. In the building phase it is necessary to take the weight of the false- and
formwork into account. The load of the falsework is assumed to be 4.00 kN/m?. For the formwork
and additional temporary loading due to people and material a load of 2.00 kN/m? is taken into
account.

W; =29-(0.505-28.3-2+0.244-8.8-28.3+2-2.709-8.8) = 3974kN

Ws = 1.50-28.3-8.8 = 374kN

Wy, =8.8:(10.35-3 + 25.3-3.5) = 1052kN

Wp = 600 + 400 + 200 = 1200kN

Wy = (4.00 + 2.00) - 28.3- 8.8 = 1494kN

For the building phase each stay should be able to carry the weight of two bridge sections. The load
factors are for this phase equal to 1.0.
Z(WG+W5+WB)

2+ sin(a;)

Ns,i =

For the final phase each stay will carry a bridge section and should be able to transfer the axle
loading.
_ Yekri(We + Ws) +vorp(Wo + Wp)

N..
St 2 sin(a;)

The horizontal force is determined based on the final phase with the axle load positioned at the first
stay.

Table V.1 Overview of the forces in the stay cables

Stay Angle of | Axial Force Axial Force Stay | Horizontal | Minimum Applied
the Stay | Stay Cable Cable Force Required Stay Area
Cable Building Phase | Final Phase Final Phase | Area
[kN] [kN] [kN] [mm?] [mm?]
1 28.64° 12185 9861 8654 | 2x12373 2x14250
2 30.62° 11470 9283 6316 | 2x11647 2x13500
3 32.86° 10770 8716 5789 | 2x10937 2x12750
4 35.40° 10089 8165 5263 | 2x10245 2x12000
5 38.27° 9430 7632 4737 | 2x9576 2x11250
6 41.62° 8799 7122 4210 | 2x8935 2x10500
7 45.39° 8203 6638 3684 | 2x8329 2x9750
8 49.82° 7648 6189 3158 | 2x7766 2x9000
9 54.89° 7144 5782 2632 | 2x7255 2x9000
10 60.66° 6705 5426 2105 | 2x6808 2x9000
11 67.19° 6342 5132 1579 | 2x6440 2x9000
12 74.37° 6069 4912 1053 | 2x6163 2x9000
V-11
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When the bending stiffness of the pylon is neglected, the back stay cables should be able to carry the
resulting horizontal forces. The stays connected to the end support should be able to transfer the
horizontal forces from the first, the second and the third cable. The force in these cables is equal to
20759kN. This gives a required area of 2x26046mm>.

To insure that fatigue is not governing, the maximum stress in the stay should be limited to 45% of
the ultimate stress.
05t = 0.45f,,, = 797 N/mm?

This would mean that the minimum cable area of 12373mm? is needed.

For the moment distribution due to the dead load, the stay cables will be modeled as constrained
supports. For the life load the stays will be modeled as vertical springs. The spring stiffness is based
on the vertical displacement of the stay under a unit load.

The vertical displacement of the stay cable can be expressed as:

2 Nunit z 2
Uver’i = li (1 + EA. ) - bi - h
i

Where b; is the horizontal distance from the pylon to the anchorage point of the considered stay
cable. And h is the height of the pylon.

The vertical spring stiffness of the stays can be approximated with:
N, -
kl' — unit

vver,i

Table V.2 Vertical spring stiffness for the different stay cables

Stay Applied | Modulus of Horizontal Distance Vertical Vertical Spring

Stay Elasticity from the Pylon to the Displacement Stiffness

Area Anchorage Point under Unit Load

[mm?] [N /mm?] [mm] [mm] [N /mm]

1 2x16500 | 205000 114400 485 20619
2 2x15750 | 205000 105600 354 28268
3 2x14250 | 205000 96800 319 31316
4 2x13500 | 205000 88000 274 36559
5 2x12750 | 205000 79200 326 30636
6 2x12000 | 205000 70400 227 44045
7 2x11250 | 205000 61600 331 30206
8 2x10500 | 205000 52800 226 44293
9 2x9750 | 205000 44000 191 52273
10 2x9000 | 205000 35200 188 53268
11 2x9000 | 205000 26400 148 67361
12 2x9000 | 205000 17600 151 66357
Dead load

For the dead load the anchorage points of the stay cables are considered as fixed supports. The
internal forces can be determined based on this assumption. The representative line load for the
dead weight and the super dead weight is equal to:

derep = 494.1 kN /m
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The moment distribution can be approached based on a continuous concrete beam over multiple
fixed supports. The field moment and the moment above the supports is estimated with:

MG,rep == EqG,repl2

1
Mg rep = 75 494.1+17.6° = +15305kNm

The normal force in the bridge deck is dependent of the horizontal component from the stay cables.
The maximum normal force can be found at the location of the pylon and has a value of 54971kN.

Table V.3 Horizontal forces due to the dead load and the life load

Stay Angle of | Horizontal Force | Horizontal Force Horizontal Force Horizontal Force

the Stay | Final Phase Final Phase Final Phase Final Phase

Cable Dead Load Life Load (distr.) Life Load (axial) Life Load (axial)

[kN] [kN] [kN] [kN]

1 28.64° 7940 1614 - 494
2 30.62° 7329 1894 - 400
3 32.86° 6719 1823 - 178
4 35.40° 6108 1569 - 41
5 38.27° 5497 1491 - -
6 41.62° 4886 1036 - -
7 45.39° 4276 1231 - -
8 49.82° 3665 689 - -
9 54.89° 3054 769 - -
10 60.66° 2443 588 20 -
11 67.19° 1832 476 62 -
12 74.37° 1222 233 75 -
SUM 54971 13415 156 1114
Life load

In the analysis of the life load, the end supports and the supports at the pylons are modeled as fixed.
The supports that represent the stay cables are modeled as vertical springs with a spring stiffness
equal to the values from table V.2. The maximum moment due to the distributed load can be found
when the deck is fully loaded. The moment above the support without load factor is equal to -10043
kNm. The normal force is equal to -13415kN. For the axle load, two load cases can be considered.
When the axle load is applied near the pylon, the occurring moment above the support will have the
largest value (-2097kNm). In this case the normal force has a value of -156kN. Another possibility is
when the axle load is positioned at midspan. In this case the normal force will have the largest value
(1114kN) and the moment above support has a value of -1.5kNm.

Cross sectional properties of the main girders

The properties of the main girders can be determined. Based on the occurring moments and normal
forces it should be checked whether or not the cross section complies with the requirements. The
properties of the total cross section of the bridge is taken into account.

Cross sectional area single main girder
A¢main = 2.475 m?

V-13
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Distance of the bottom fibre of the main girder to the normal centre
NC(z),main =0.8308m

Moment of inertia of a single main girder
Ly main = 0.2148 m*

Cross sectional area of the total bridge deck
Acror =2+ 2475+ 24.1-0.244 = 10.830 m?

Distance of the bottom fibre of the main girders to the normal centre

2:2475-0.8308 +0.244-24.1-1.1514
NC,, = = 1.0049m
@ Ac tot

Moment of inertia
I,, =2-0.2148+ 2-2.475-(1.0049 — 0.8308)2
+0.00328-24.1 + 0.244 - 24.1 - (1.0049 — 1.1514)2 = 0.7849 m*

Section moduli
We top = 2.6598 m?
We pottom = 0.7811m3

180 |

250

|
[LLCCAAFRRRRRFEPARMPRERFFPCARMEEFRRFEEONE o | 2
831
|

1151

870

Figure V.6 Cross section main girder

N-M-kappa diagram
A moment-kappa diagram of the cross section, can be determined with the occurring normal force at
the support. The design value for the normal force at the supports can be calculated based on the
values found for the dead load and the life load.

Ng =132 Nz + 1.65- (N + Np)

N4y = 1.32-54971 + 1.65 - (13415 + 156) = 94954 kN

This gives a design moment with a value of:
Mg =132-M; + 1.65- (Mg + Mp)
My =1.32-15305+ 1.65- (10043 + 2097) = 40234 kNm

The normal stress in the cross section is equal to.

—&—8768](1\/ 2
oy = 2 = /771

Cc

At the bottom fibre an additional compressive stress can be formed before the bearing stress of the
concrete is reached. The maximum additional tensile stress at the top fibre of the cross section has a

V-14
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value of 14988 kN /m?. This means that there can be an additional moment applied on the cross
section of 39864 kNm before the top fibre reaches the mean tensile strength of the concrete. The
structure behaves as a linear elastic cross section when the moment is smaller than 39864 kNm. The
curvature that belongs to this moment is:

Ko = 0973103

In reality the tensile strain can increase even further. This plastic part of the stress-strain diagram for
the tensile strength is for simplicity not taken into account. This has the consequence that when the
moment is increased it is assumed that the concrete cracks at the top and the reinforcement is
supposed to take over the tensile stress. For the calculation it is assumed that 160 bars with a
diameter of 32mm are applied in the top flange. The stress at the bottom fibres can increase until the
design compressive strength is reached. It is assumed that the reinforcement yield first before the
bottom fibres reach the design compressive strength. This gives result in a compressive zone of:

xs = 0.535m

With these values the internal moment can have a value of:
M, =59715 kNm

The curvature is based on the strains occurring at this moment.
kg =3.312-10 73

The moment can be increased even further. This would mean that the concrete will reach the
compressive design strength. Because the reinforcement steel already yields, the internal force
equilibrium can only be reached when the height of the compressive zone is reduced. As a
consequence the internal level arm will increase and the internal moment can increase as well. This
gives a compressive zone of:

xgt = 0.446m

The moment and curvature can be calculated:
M = 61366 kNm
Kg = 4.757-10 73

At this point the compressive strength of the bottom fibres cannot be increased. The ultimate limit
moment is reached when the bottom fibres will reach the ultimate strain. This gives a compressive
zone with a height of:

x, =0.419m

With a corresponding moment and curvature of:
M, = 61768kNm
K, = 5.783-10 3

When these values of the N-M-kappa diagram are taken into account figure V.9 can be drawn. After
the ultimate limit moment the figure will experience a material softening curve. This means that
when the curvature is increased the moment capacity of the cross section will decrease. It can be
seen that the design moment is lower than the moment that is necessary to reach yield stress of the
steel. Therefore it seems that the cross section of the main girders meet the requirements. Locally,
where the moments are larger than the elastic moment, cracks appear in the concrete. These cracks
will reduce the Young’s modulus of the concrete. This means that the stiffness of the bridge deck will
be reduced as well.
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Figure V.8 The four different phases in the N-M-kappa diagram
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FE-model

For the FE-model the same boundary conditions as for the NSC model are taken into account. The
dead load, super dead load and the life loads are split up in different load cases.

Dead load
The analysis of the self-weight of the bridge is based on a beam with the properties of the bridge
deck over multiple stiff supports.

Figure V.10 Normal force distribution due to the dead load
3431.87

343187

2991.07 2441 07

225112 R 225113

1778.70 e

-1845.08 b

+225113 -2251.12

-2991.07 -2991.07

Figure V.11 Shear force distribution due to the dead load
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Figure V.12 Moment distribution due to the dead load
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Super dead load
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Figure V.13 Loading super dead load

2086.32
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Figure V.14 Normal force distribution due to the super dead load
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Figure V.15 Shear force distribution due to the super dead load
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Figure V.16 Moment distribution due to super dead load
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Life load: main span fully loaded
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Figure V.17 loading life load

10916.89
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Figure V.18 Normal force distribution due to the life load
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-1071.78 -1676.45

Figure V.19 Shear force distribution due to the life load

Figure V.20 Moment distribution due to the life load
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Life load: side spans fully loaded
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Figure V.21 Loading life load
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Figure V.22 Normal force distribution due to life load
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Figure V.23 Shear force distribution due to life load

Figure V.24 Moment distribution due to the life load

V-20

E. Bosman
Stnr. 4029364



]
MSc Thesis: Wind Induced Vibrations of frUHSC Bridge Decks TU De If't

Delft University of Technology

Life load: all spans fully loaded

Figure V.25 Loading life load

6861.42

-14144.53

Figure V.26 Normal force distribution due to life load
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Figure V.27 Shear force distribution due to life load

Figure V.28 Moment distribution due to the life load
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Life load: one side span + half main span fully loaded
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_ 2696.12
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Figure V.30 Normal force distribution due to life load
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Figure V.31 Shear force distribution due to life load
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Figure V.32 Moment force distribution due to life load
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Conclusion
The internal forces calculated with the FE-model for the cross section of the bridge deck at the
position of the pylon are listed in the tables V.4, V.5 and V.6. It can be seen that for the Ultimate
Limit State (ULS) the normal forces calculated in the FE-model with stays are lower compared with
the values found in the model of the beam on elastic supports. The moments are for both calculation
methods about the same.

Table V.4 Normal force in the bridge deck at the location of the p

ylon for the different load cases

5
TUDelft

Delit University of Technology

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -41014 kN 1.35 | -4655 kN - - -61653 kN
ULS2 | 1.32 | -41014 kN 1.32 | -4655 kN 1.65 -14102 kN -83551 kN
ULS3 | 1.32 | -41014 kN 1.32 | -4655 kN 1.65 -6130 kN -70398 kN
US4 | 1.32 | -41014 kN 1.32 | -4655 kN 1.65 -14135 kN -83606 kN
ULS5 | 1.32 | -41014 kN 1.32 | -4655 kN 1.65 -7620 kN -72856 kN
SLS1 | 1.00 | -41014 kN 1.00 | -4655 kN 1.00 -14102 kN -59771 kN
SLS2 | 1.00 | -41014 kN 1.00 | -4655 kN 1.00 -6130 kN -51799 kN
SLS3 | 1.00 | -41014 kN 1.00 | -4655 kN 1.00 -14135 kN -59804 kN
SLS4 | 1.00 | -41014 kN 1.00 | -4655 kN 1.00 -7620 kN -53289 kN

Table V.5 Shear force in the bridge deck at the location of the pylon for the different load cases

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -3431kN 1.35 | -655 kN - - -5516 kN
ULS2 | 1.32 | -3431kN 1.32 | -655 kN 1.65 -1663 kN -8137 kN
ULS3 | 1.32 | -3431 kN 1.32 | -655 kN 1.65 -1581 kN -8002 kN
ULS4 | 1.32 | -3431kN 1.32 | -655 kN 1.65 -1851 kN -8448 kN
ULS5 | 1.32 | -3431kN 1.32 | -655 kN 1.65 -1631 kN -8085 kN
SLIS1 | 1.00 | -3431kN 1.00 | -655kN 1.00 -1663 kN -5749 kN
SLS2 | 1.00 | -3431kN 1.00 | -655kN 1.00 -1581 kN -5667 kN
SLS3 | 1.00 | -3431kN 1.00 | -655kN 1.00 -1851 kN -5937 kN
SLS4 | 1.00 | -3431kN 1.00 | -655kN 1.00 -1631 kN -5717 kN

Table V.6 Moments in the bridge deck at the location of the pylon for the different load cases

Load | Dead load Load | Super dead load | Load Life load Total

factor factor factor
ULS1 | 1.35 | -10713kNm | 1.35 | -4560 kNm - - -20619 kNm
ULS2 | 1.32 | -10713kNm | 1.32 | -4560 kNm 1.65 -9429 kNm -35718 kNm
ULS3 | 1.32 | -10713kNm | 1.32 | -4560 kNm 1.65 -8546 kNm -34261 kNm
US4 | 1.32 | -10713kNm | 1.32 | -4560 kNm 1.65 -12934 kNm -41501 kNm
ULS5 | 1.32 | -10713kNm | 1.32 | -4560 kNm 1.65 -8709 kNm -34530 kNm
SLS1 | 1.00 | -10713 kNm | 1.00 | -4560 kNm 1.00 -9429 kNm -24702 kNm
SLS2 | 1.00 | -10713 kNm | 1.00 | -4560 kNm 1.00 -8546 kNm -23819 kNm
SLS3 | 1.00 | -10713 kNm | 1.00 | -4560 kNm 1.00 -12934 kNm -28207 kNm
SLS4 | 1.00 | -10713 kNm | 1.00 | -4560 kNm 1.00 -8709 kNm -23982 kNm

Normal force
Shear force

Moment

E. Bosman
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Elastic beam on springs
94954 kN

40234 kNm

FE-model with stays
-83606 kN
-8448 kN
-41501 kNm
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The design value for the shear force should not be larger than the maximum shear force capacity of

the structure. The maximum design value of the shear force is equal to:
Vgq = 8482 kN

The maximum shear force capacity of the structure can be calculated with:
VRd,max = acwbwzvlfcd - cot(0) /(1 + COt(Q)Z)

Where:
aqy, = 1.07
b, = 2400mm
z = 1245mm
v; = 0.5

frq = 113.33N/mm?

This gives that:
Vramax = 180850 - 10% - cot(8) /(1 + cot(68)?)

The angle 0 of the compressive strut should have a value between:
0.380 rad < 6 < 0.785 rad

Filling in the minimum and maximum value for 8 gives:
90430kN < Vrgmax < 129220kN
Both values are higher than the occurring shear forces in the structure.

From this design calculation it seems that the assumed dimensions are sufficient for the design of the
frUHSC bridge.
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APPENDIX VI: Matlab Code wind.m

Swind.m

$Simulation of the turbulent wind velocity in longitudinal and vertical
$direction. The Von Karman-Harris spectrum is used for the longitudinal
$wind velocity and the Bush and Panofsky spectrum is used for the

$simulated with a Fourier

Lu=200;

Lw=18;

Tu=0.11;
Iw=0.06;
v50=36.62;
sigmau=Iu*v50;
sigmaw=Iw*v50;
CL=0.9;

dCL=1;

N=12000;
deltat=0.05;
deltaf=0.001;
numberf=[1:N]"';
f=deltaf*numberf;
Suu=zeros (N, 1);
Sww=zeros (N, 1);
au=zeros (N, 1);
aw=zeros (N, 1);
phiu=zeros (N, 1);
phiw=zeros (N, 1);
u=zeros (N, 6000) ;
w=zeros (N,6000) ;

14

4

phiu=rand (N, 1) *2*pi;
for t=1:6000;

phiw=rand (N, 1) *2*pi;
for t=1:6000;

$vertical turbulent wind velocity.
%$steps of 0,05 seconds are used.

for i=1:N; %
Suu (1i)=4* (£ (1) *Lu/v50)/(
sigmau~2/ (f(i));
au(i)=sqgrt (2*Suu(

i)*deltaf);

u(i,t)=au(i)*sin(f(i)*t*deltat+phiu(i));
end
utot=sum(u) ;
end
for i=1:N; % (Calculation of vertical wind velocity)
Sww (i)=4* (£ (1) *Lw/v50)/ ((1+70.4* (£ (1) *Lw/(v50))"2)"(5/6))
*sigmaw”™2/ (£(1));
aw(i)=sqgrt (2*Sww (i) *deltaf);

w(i,t)=aw(i)*sin(f(i)*t*deltat+phiw(i));
end
wtot=sum(w) ;
end
figure(1l); % (See also figure 5.1)

In this numerical analysis 6000 time
The turbulent wind velocity 1is
series.

o\

length longitudinal [m])
length vertical[m])
Turbulence intensity longitudinal)
Turbulence intensity vertical)
Mean wind velocity[m/s])

Standard deviation longitudinal[m/s])
Standard deviation vertical[m/s])
Lift coefficient)

Derivative 1lift coefficient)
Number of frequency steps)
Timestep([s])

Frequencystep[1l/s])

Turbulence
Turbulence

o° o0 o° o° o° o° od° o oP

o\

(
(
(
(
(
(
(
(
(
(
(
(

o\

(Calculation of longitudinal wind velocity)
(1+70.4* (£ (1) *Lu/(v50))"2)~(5/6))*
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plot (utot) ;
figure(2);
plot (wtot) ;
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APPENDIX VII: Matlab Code bridge.m

$bridge.m

%$Matlab code for linear elastic FE-model of the cable stayed bridge. In
$this code the cross sectional properties of the bridge are given per
$element. The coordinates of all the individual nodes are introduced. The
$nodes are connected with Euler-Bernoulli beam elements. There are three
%$degrees of freedom per node, horizontal displacement, vertical
$displacement and rotation. Subsequently the empty matrix/vectors of the
$stiffness matrix, displacement vector and right-hand-side vector are
$given. The BC are given and the total stiffness matrix is formed. Based
$on the stiffness matrix and the rhs the displacements can be obtained.

$Cross sectional properties
L=8800;
a=pi()/12;
E1=52185;
E2=34000;
E3=195000;
A1=10.83*10"6;
A2=2%2000%2500;
A3=2%14250;
A4=2*13500;
A5=2*12750;
A6=2*12000;
AT7=2*11250;
A8=2*10500;
A9=2%9750;
A10=2%*9000;
A11=2*9000;
A12=2*9000;
A13=2*9000;
A14=2%39000;
I1=0.7849*10"12;
I2=5.205*10"12;
GAs=0;

$Allocation of the properties for each element
EI(l)—El*Il'

A(l)=E1*Al;
I(2)=E1*I1;
A(2)=E1*Al;
I(3)=E1*I1;
A(3)=E1*Al;
I(4)=E1*I1;
A(4)=E1*Al;
I(5)=E1*I1;
A(5)=E1*Al;
I(6)=E1*I1;
A(6)=E1*Al;
I(7)=E1*I1;
A(7)=E1*Al;
I(8)=E1*I1;
A(8)=E1*Al;
I(9)=E1*I1;
A(9)=E1*Al;
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EI(10)=E1*I1;
EA(10)=E1*Al;
EI(11)=E1*I1;
EA(11)=E1*Al;
EI(12)=E1*I1;
EA(12)=E1*Al;
EI(13)=E1*I1;
EA(13)=E1*Al;
EI(14)=E1*I1;
EA(14)=E1*Al;
EI(15)=E1*I1;
EA(15)=E1*Al;
EI(16)=E1*I1;
EA(16)=E1*Al;
EI(17)=E1*I1;
EA(17)=E1*Al;
EI(18)=E1*I1;
EA(18)=E1*Al;
EI(19)=E1*I1;
EA(19)=E1*Al;
EI(20)=E1*I1;
EA(20)=E1*Al;
EI(21)=E1*I1;
EA(21)=E1*Al;
EI(22)=E1*I1;
EA(22)=E1*Al;
EI (23)=E1*I1;
EA (23)=E1*Al;
EI (24)=E1*I1;
EA (24)=E1*Al;
EI (25)=E1*I1;
EA (25)=E1*Al;
EI(26)=E1*I1;
EA(26)=E1*Al;
EI(27)=E1*I1;
EA(27)=E1*Al;
EI(28)=E1*I1;
EA(28)=E1*Al;
EI(29)=E1*I1;
EA(29)=E1*Al;
EI(30)=E1*I1;
EA (30)=E1*Al;
EI(31)=E1*I1;
EA(31)=E1*Al;
EI(32)=E1*I1;
EA (32)=E1*Al;
EI (33)=E1*I1;
EA (33)=E1*Al;
EI (34)=E1*I1;
EA (34)=E1*Al;
EI (35)=E1*I1;
EA (35)=E1*Al;
EI (36)=E1*I1;
EA (36)=E1*Al;
EI(37)=E1*I1;
EA(37)=E1*Al;
EI (38)=E1*I1;
EA (38)=E1*Al;
EI(39)=E1*I1;
EA(39)=E1*Al;
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—E1*I1;
=E1*Al;
=E1*T1;
=E1*Al;
=E1*I1;
=E1*Al;
=E1*T1;

=E1*Al;
=E1*I1;
=E1*Al;
=E1*T1;
=E1*Al;
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EI(70)=0;
EA(70)=E3*A6;
EI(71)=0;
EA(71)=E3*A5;
EI(72)=0;
EA(72)=E3*A4;
EI(73)=0;
EA(73)=E3*A3;
EI(74)=0;
EA(74)=E3*A3;
EI(75)=0;
EA(75)=E3*A4;
EI(76)=0;
EA(76)=E3*A5;
EI(77)=0;
EA(77)=E3*A6;
EI(78)=0;
EA(78)=E3*A7;
EI(79)=0;
EA(79)=E3*A8;
EI(80)=0;
EA(80)=E3*A9;
EI(81)=0;
EA(81)=E3*Al10;
EI(82)=0;
EA(82)=E3*Al1l;
EI(83)=0;
EA(83)=E3*Al2;
EI(84)=0;
EA(84)=1E3*Al13;
EI(85)=0;
EA(85)=E3*Al3;
EI(86)=0;
EA(86)=E3*Al13;
EI(87)=0;
EA(87)=E3*Al13;
EI(88)=0;
EA(88)=E3*Al2;
EI(89)=0;
EA(89)=E3*Al1l;
EI(90)=0;
EA(90)=E3*A10;
EI(91)=0;
EA(91)=E3*A9;
EI(92)=0;
EA(92)=E3*A8;
EI(93)=0;
EA(93)=E3*A7;
EI(94)=0;
EA(94)=E3*A6;
EI(95)=0;
EA(95)=E3*A5;
%Loads
gamg=1.32;
gamg=1.65;
psi=0.4;
qg=314.07;
qq=0;
gl=qg;
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a2=qq;

a3=qq;

F=880000;

%$Coordinates on the x-y axis for all the nodes

coord=[0 0; 8800 0; 17600 0; 26400 0; 35200 0; 44000 0; 52800 0; 61600 0;

70400 0; 79200 0; 88000 0; 96800 0; 105600 0; 114400 0; 123200 0; 132000

0; 140800 0; 149600 0; 158400 0; 167200 0; 176000 0; 184800 0; 193600 O0;

202400 0; 211200 0; 220000 0; 228800 0; 237600 0; 246400 0; 255200 0;

264000 0; 272800 0; 281600 0; 290400 0; 299200 0; 308000 0; 316800 O0;

325600 0; 334400 0; 343200 0; 352000 0; 360800 0; 369600 0; 378400 O0;

387200 0; 396000 0; 404800 0; 413600 0; 422400 0; 431200 0; 96800 -5000;

96800 62500; 334400 -5000; 334400 62500]

$Forming of the beam elements between the nodes

conn=[1 2; 2 3; 3 4; 4 5; 56; 6 7; 78; 8 9; 9 10; 10 11; 11 12; 12 13;

13 14; 14 15; 15 16; 16 17; 17 18; 18 19; 19 20; 20 21; 21 22; 22 23; 23

24; 24 25; 25 26; 26 27; 27 28; 28 29; 29 30; 30 31; 31 32; 32 33; 33 34;

34 35; 35 36; 36 37; 37 38; 38 39; 39 40; 40 41; 41 42; 42 43; 43 44,; 44

45; 45 46; 46 47; 47 48; 48 49; 49 50; 51 52; 53 54; 1 52; 2 52; 3 52; 4

52; 5 52; 6 52; 7 52; 8 52; 9 52; 10 52; 14 52; 15 52; 16 52; 17 52; 18

52; 19 52; 20 52; 21 52; 22 52; 23 52; 24 52; 25 52; 26 54; 27 54; 28 54;

29 54; 30 54; 31 54; 32 54; 33 54; 34 54; 35 54; 306 54; 37 54; 41 54, 42

54; 43 54; 44 54; 45 54; 46 54; 47 54; 48 54; 49 54; 50 547;

%$Number of degrees of freedom, nodes and elements

dofNode=3;

nNodes=size (coord, 1) ;

nElements=size (conn, 1) ;

$Allocate arrays in ka=f

nDofs=dofNode*nNodes; % (Total number of DOFs)

k=zeros (nDofs,nDofs); %$(Stiffness matrix)

a=zeros (nDofs, 1) ; % (Displacement vector)

f=zeros (nDofs, 1) ; % (Right-hand-side)

$Define boundary conditions:

$Constrained DOFs and applied load

constrainedDofs=[2 34 35 116 149 151 152 153 157 158 159];

£f(5)=—qgl*L;

£(8)=—qgl*L;

£f(11)=-gl*L;

£(14)=-gl*L;

£f(17)=—qgql*L;

£(20)=—qgql*L;

£(23)=—ql*L;

£f(26)=-gl*L;

£(29)=-qgl*L;

£(32)=—qgql*L;

£(38)=—qg2*L;

f(41)=—qg2*L;

£ (44)=-g2*L;

£(47)=-g2*L;

£(50)=—qg2*L;

£(53)=—qg2*L;

£f(56)=—q2*L;

£(59)=-g2*L;

£f(62)=-qg2*L;

£f(65)=—q2*L;

£(68)=—qg2*L;
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£f(71)=-g2*L;
£(74)=-g2*L;
£(74)=-F;
£(77)=—q2*L;
£(80)=—g2*L;
£(83)=-g2*L;
£(86)=-g2*L;
£(89)=-g2*L;
£(92)=—q2*L;
£(95)=—q2*L;
£(98)=-g2*L;
£f(101)=-g2*L;
£(104)=-g2*L;
£(107)=—-qg2*L;
£(110)=—g2*L;
£f(113)=-g2*L;
£(119)=-g3*L;
£(122)=-g3*L;
£(125)=-qg3*L;
£(128)=-qg3*L;
£f(131)=-g3*L;
£(134)=-g3*L;
£f(137)=-93*L;
£(140)=-g3*L;
£(143)=-qg3*L;
£(146)=-9g3*L;

$Assemble stiffness matrix
$First bar
for e=l:nElements;

$element connectivity table
eleConn=conn (e, :);

$Element coordinates and length
x1l=coord(eleConn(l),1);
x2=coord(eleConn(2),1);
yl=coord(eleConn(l),2);
y2=coord(eleConn(2),2);
len=sqgrt ((x2-x1)* (x2-x1)+(y2-y1)*(y2-y1));
%c and s are cosine and sine of the

%sangle between local and global axes
=(x2-x1)/len;

=(y2-yl)/len;

$Phi is a constant depending of the shear modulus
phi=0; %$phi=0 gives Euler-Bernoulli beam elements

$Element stiffness matrix (local system)

ke_loc=[EA(e)/len 0 0 -EA(e)/len 0 0;

0 lZ*EI(e)/(lenA3*(l+phl)) 6*EI(e)/(len™2* (1l+phi)) 0 -
12*EI(e)/ (len”3* (1+phi)) 6*EI(e)/(len”2* (1+phi));

0 6*EI(e)/ (len”2* (1l+phi)) (4+phi)*EI(e)/(len*(l+phi)) 0 -
6*EI(e)/(lenA2*(l+phi)) (2- phi)*EI( )/ (len* (1+phi));

-EA(e)/len 0 0 EA(e)/len 0 O;

0 —lZ*EI( )/(lenA3*(l+phl)) -6*EI (e)/ (len”2* (1l+phi)) O
12*EI(e)/ (len”3* (1+phi)) -6*EI(e)/ (len”2* (1+phi));

0 6*EI(e)/(len”2*(1l+phi)) (2-phi)*EI(e)/(len*(l+phi)) 0 -
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6*EI(e)/ (len”2* (1+phi)) (4+phi)*EI(e)/ (len* (1l+phi))]

$Rotation and transformation matrix
R=[c s O;

-s ¢ 0;

00 171;

14

Zero=[0 0 O
00 0;
00 071;
T=[R Zero;
Zero R];

$Element stiffness matrix (global system)
ke=T"'*ke_loc*T

%$Compute system dofs associated with each element
% (node 1 has dofs 1, 2 and 3, node 2 has dofs 4, 5 and 6...)

index (1)=dofNode*eleConn(1l)-2;
index (2)=dofNode*eleConn(1l)-1;
index (3)=dofNode*eleConn(1l);
index (4)=dofNode*eleConn(2)-2;
index (5)=dofNode*eleConn(2)-1;
index (6)=dofNode*eleConn(2);

$Assemble ke into K
edof = length(index);
for i=l:edof
ii=index (1) ;
for j=l:edof
jj=index(3J);
end
end

end

$Apply boundary conditions by zeroing out

$rows and colums and putting ones on the diagonal

kl=k

k1l (constrainedDofs, :)=0;

k1 (:,constrainedDofs)=0;

k1l (constrainedDofs, constrainedDofs)=eye(length(constrainedDofs));

%$Solve ka=f for a
kinv=inv (k1)
a=kinv*f

f=k*a

$Determination of the reaction forces

Re=f (constrainedDofs, :)+[gl*L/2; 0; gl*L/2+9g2*L/2; g2*L/2+93*L/2; q93*L/2;

0; 0; 0; 0; 0; O]

$Plot results

mag=500; % (Scale factor for plot)

clf

hold on
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for e=l:nElements % (See also figure 5.2)
x=coord (conn (e, :),1);
y=coord(conn(e, :),2);
u=a (3*conn(e, :)-2);
v=a (3*conn (e, :)-1);
title('Deformed plot')
axis equal
plot(x,y, 'r——0")
plot (x+mag*u, y+mag*v, 'k-o'")
end
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APPENDIX VIII: Matlab Code stiffness.m

$stiffness.m

%$Determination of the mass, damping and stiffness matrix. The inverse
$stiffness matrix is determined based on the node displacements of the FE-
$model (See also APPENDIX VII). A lumped mass matrix is used in this
$model. The damping matrix is a proportional Rayleigh damping matrix.

L=237.6;
Lpart=8.8;

$Properties NSC bridge

rhoc=2500;

Ac=20.775;
mass=Lpart*Ac*rhoc+4145*Lpart+Lpart*5606;
zetal=0.0072;

zeta2=0.0070;

$Properties frUHSC bridge

rhocHSC=2900;

AcHSC=10.83;
massHSC=Lpart*AcHSC*rhocHSC+4145*Lpart+5606*Lpart;
zetalHSC=0.0055;

zeta2HSC=0.0054;

$Stiffness matrix

Ki=-1/880000000*[-1.143964862 -1.579556779 -1.469717091 -
1.200800754 -0.961519478 -0.816170483 -0.764456955 -
0.779323296 -0.826532683 -0.873665293 -0.894154726 -
0.870238569 -0.796566857 -0.68505146 -0.563425702 -
0.452014382 -0.360112632 -0.289312115 -0.236655117 -
0.197216867 -0.165901924 -0.138517034 -0.112203387 -
0.085466894 -0.057840826 -0.029202492;

-1.579556779 -2.908948282 -3.132647521 -2.744194834 -
2.258704599 -1.897722764 -1.712652883 -1.673034557 -
1.717240746 -1.779053832 -1.800944464 -1.742678792 -
1.589817935 -1.363929963 -1.119578067 -0.896809941 -
0.713707296 -0.573076758 -0.468760875 -0.390782225 -
0.328907252 -0.27476017 -0.222657982 -0.169649494 -
0.114830199 -0.057978237;
-1.469717091 -3.132647521 -4.320290637 -4.386899869 -
3.887310774 -3.345122911 -2.968698199 -2.788277356 -
2.747406564 -2.758832802 -2.736194706 -2.614072308 -
2.364817394 -2.015974068 -1.646302322 -1.313366849 -
1.042244102 -0.835676717 -0.683522174 -0.570366133 -
0.480740213 -0.402160364 -0.326261709 -0.248773686 -
0.168455433 -0.085065951;
-1.200800754 -2.744194834 -4.386899869 -5.564525048 -
5.641064287 -5.15918379 -4.629319703 -4.248410736 -
4.030266692 -3.900862216 -3.759668417 -3.519587272 -3.13795255
-2.644795778 -2.139648835 -1.694165245 -1.337328152 -
1.069400038 -0.87460422 -0.731136303 -0.617891069 -
0.518244074 -0.421304643 -0.321687431 -0.217992487 -
0.110109884;
-0.961519478 -2.258704599 -3.887310774 -5.641064287 -
6.936425852 -7.106919311 -6.674553823 -6.140594794 —
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5.690561164 -5.327931955 -4.973789384 -4.535939967 -
3.961945949 -3.283896723 -2.619354286 -2.050124559 -
1.604944028 -1.27796244 -1.045017064 -0.876106232 -
0.743522209 -0.626167809 -0.510675458 -0.390760991 -
0.265108276 -0.133962691;
-0.816170483 -1.897722764 -3.345122911 -5.15918379
7.106919311 -8.565117167 -8.833437233 -8.415372972 -
7.796679294 -7.156031724 -6.500781216 -5.771267427 -
4.923946217 -3.999776016 -3.134533494 -2.4171412 -
1.871753144 -1.482004596 -1.21162403 -1.019689633 -0.87020648
-0.73679739 -0.603412596 -0.463000316 -0.314588981
0.159048698;
-0.764456955 -1.712652883 -2.968698199 -4.629319703
6.674553823 -8.833437233 -10.43965366 -10.75747276 -
10.26061931 -9.424798043 -8.43919548 -7.341646846 -
6.136235871 -4.891929866 -3.768954746 -2.863637455 -
2.192939882 -1.7261327 -1.410920562 -1.192175312 -
1.023268074 -0.871149028 -0.716457688 -0.551267973 -
0.375123936 -0.189752202;
-0.779323296 -1.673034557 -2.788277356 -4.248410736
6.140594794 -8.415372972 -10.75747276 -12.45179996 -
12.71498196 -12.00026892 -10.79511641 -9.327495743 -
7.712358508 -6.082954252 -4.639919887 -3.494076522 -
2.657449853 -2.084107602 -1.703305145 -1.442832672 -
1.242831432 -1.061636493 -0.875367819 -0.674673093 -
0.459513121 -0.23251229;
-0.826532683 -1.717240746 -2.747406564 -4.030266692
5.690561164 -7.796679294 -10.26061931 -12.71498196 -
14.38654501 -14.45837969 -13.38933232 -11.70701657 -
9.723746295 -7.693046513 -5.885084732 -4.443287532 -3.38617446
-2.658474776 -2.172805693 -1.839180119 -1.582580383
1.350520581 -1.112728819 -0.857193383 -0.583671989 -
0.295309368;
-0.873665293 -1.779053832 -2.758832802 -3.900862216
5.327931955 -7.156031724 -9.424798043 -12.00026892 -
14.45837969 -15.98574545 -15.76090701 -14.275445 -
12.13780391 -9.79512469 -7.631070638 -5.854756522 -
4.516573714 -3.568981857 -2.91762563 -2.458749501 -
2.102386795 -1.783389775 -1.462639897 -1.123353924 -
0.763662651 -0.386158458;
-0.894154726 -1.800944464 -2.736194706 -3.759668417
4.973789384 -6.500781216 -8.43919548 -10.79511641 -
13.38933232 -15.76090701 -17.08514627 -16.56014479 -14.7416842
-12.35094319 -9.942023822 -7.84004972 -6.170731429 -
4.927067802 -4.02927994 -3.371627672 -2.853535715 -2.39675143
-1.95061533 -1.490511208 -1.010463161 -0.510466771;
-0.870238569 -1.742678792 -2.614072308 -3.519587272 -
4.535939967 -5.771267427 -7.341646846 -9.327495743 -
11.70701657 -14.275445 -16.56014479 -17.74252537 -
17.05685457 -15.12932641 -12.74689019 -10.41702592 -
8.404227709 -6.794021633 -5.558348254 -4.61227024 -
3.855453964 -3.198963183 -2.578370686 -1.957383625 -
1.322249378 -0.667144759;
-0.796566857 -1.589817935 -2.364817394 -3.13795255 -
3.961945949 -4.923946217 -6.136235871 =7.712358508 -
9.723746295 -12.13780391 -14.7416842 -17.05685457 -
18.26721153 -17.6199963 -15.75246505 -13.42997156 -
11.13692781 -9.123131612 -7.467092406 -6.141053774 -
5.064657409 -4.145367433 -3.30436332 -2.48957836 -
1.674729306 -0.843748909;
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-0.68505146
3.283896723
7.693046513
-18.26721153
9.723746295
3.961945949
0.796566857;
-0.563425702
2.619354286
5.885084732
15.75246505
-11.70701657
4.535939967
0.870238569;
-0.452014382
2.050124559
4.443287532
13.42997156
15.76090701
6.500781216
1.800944464
-0.360112632
1.604944028
-4.516573714
12.13780391
14.45837969
5.327931955
0.873665293;
-0.289312115
1.27796244
2.658474776
9.123131612
14.45837969
7.796679294
1.717240746
-0.236655117
1.045017064
2.172805693
7.467092406
12.00026892
8.415372972
1.673034557
-0.197216867
.876106232
.839180119
.141053774
.424798043
.833437233
.712652883
-0.165901924
. 743522209
.582580383
.064657409
.156031724
.565117167
1.897722764
-0.138517034
0.626167809
1.350520581
4.145367433

= 0 W oy O

0 J U= O

-1.363929963

-3.999776016
-9.79512469

-17.05685457

=7.712358508
-3.13795255

-1.119578067

-3.134533494
-7.631070638
-17.05685457

-9.327495743

-3.519587272

-0.896809941

-2.4171412
-5.854756522
-14.7416842
-13.38933232
-4.973789384
-0.894154726;

-0.713707296

-1.871753144

-6.170731429

-14.275445
-12.00026892
-3.900862216

-0.573076758

-1.482004596
-3.568981857
-9.723746295
-14.38654501
-5.690561164
-0.826532683;

-0.468760875

-1.21162403
-2.91762563
=7.712358508
-12.71498196
-6.140594794
-0.779323296;

-0.390782225

-1.019689633
-2.458749501
-6.136235871
-10.26061931
-6.674553823
-0.764456955;

-0.328907252

-0.87020648
-2.102386795
-4.923946217
=7.796679294
-7.106919311
-0.816170483;
-0.27476017
-0.73679739
-1.783389775
-3.961945949

-2.015974068
-4.891929866
-12.35094319

-14.7416842
-6.136235871
-2.364817394

-1.646302322
-3.768954746
-9.942023822
-17.74252537

-7.341646846
-2.614072308

-1.313366849
-2.863637455
-7.84004972
-16.56014479
-10.79511641
-3.759668417

-1.042244102
-2.192939882

-8.404227709
-15.76090701
-9.424798043
-2.758832802

-0.835676717
-1.7261327
-4.927067802
-11.70701657
-12.71498196
-4.030266692

-0.683522174
-1.410920562
-4.02927994
-9.327495743
-12.45179996
-4.248410736

-0.570366133
-1.192175312
-3.371627672
-7.341646846
-10.75747276
-4.629319703

-0.480740213
-1.023268074
-2.853535715
-5.771267427
-8.415372972
-5.15918379

-0.402160364
-0.871149028
-2.39675143
-4.535939967

-2.644795778
-6.082954252
-15.12932641

-12.13780391
-4.923946217
-1.589817935

-2.139648835
-4.639919887
-12.74689019
-16.56014479

-5.771267427
-1.742678792

-1.694165245
-3.494076522
-10.41702592
-17.08514627
-8.43919548
-2.736194706

-1.337328152
-2.657449853

-11.13692781
-15.98574545
-7.156031724
-1.779053832

-1.069400038
-2.084107602
-6.794021633
-13.38933232
-10.26061931
-2.747406564

-0.87460422
-1.703305145
-5.558348254
-10.79511641
-10.75747276
-2.788277356

-0.731136303
-1.442832672
-4.61227024
-8.43919548
-10.43965366
-2.968698199

-0.617891069
-1.242831432
-3.855453964
-6.500781216
-8.833437233
-3.345122911

-0.518244074
-1.061636493
-3.198963183
-4.973789384

17.6199963

14.275445

3.38617446
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5.327931955
7.106919311
2.258704599
-0.112203387
0.510675458
1.112728819
-3.13795255
4.030266692
5.641064287
1.200800754;
-0.085466894
0.390760991
0.857193383
-2.364817394
2.747406564
3.887310774
1.469717091;
-0.057840826
.265108276
.583671989
.674729306
.779053832
.897722764
.908948282
-0.029202492
.133962691
.295309368
.843748909
.873665293
.816170483
.579556779

NP PP OO

P O O O OO

-5.690561164
-6.936425852
-0.961519478;
-0.222657982
-0.603412596
-1.462639897
-3.519587272
-4.248410736
-5.564525048

-0.169649494
-0.463000316
-1.123353924

-2.614072308
-2.788277356
-4.386899869

-0.114830199
-0.314588981
-0.763662651
-1.589817935
-1.717240746
-2.258704599
-1.579556779;

-0.057978237
-0.159048698
-0.386158458
-0.796566857
-0.826532683
-0.961519478
-1.143964862]

-6.140594794
-5.641064287

-0.326261709
-0.716457688
-1.95061533

-3.759668417
-4.629319703
-4.386899869

-0.248773686
-0.551267973
-1.490511208

-2.736194706
-2.968698199
-4.320290637

-0.168455433
-0.375123936
-1.010463161
-1.742678792
-1.673034557
-2.744194834

-0.085065951
-0.189752202
-0.510466771
-0.870238569
-0.779323296
-1.200800754

$Inverse stiffness matrix frUHSC

KiHSC=-1/880000000*[-3.788998302

1.322875732
1.034705796
1.441463156
-0.405970999

-0.752893725

-1.255191393

-1.261028861
-0.331772217

-0.658645919
-1.418990273

-0.99064166 -0.729675819

-0.287844726

-4.020546349

-6.674553823
-3.887310774

-0.421304643
-0.875367819
-2.578370686

-3.900862216
-5.15918379
-2.744194834

-0.321687431
-0.674673093
-1.957383625

-2.758832802
-3.345122911
-3.132647521

-0.217992487
-0.459513121
-1.322249378
-1.800944464
-1.712652883
-3.132647521

-0.110109884
-0.23251229
-0.667144759
-0.894154726
-0.764456955
-1.469717091

-0.806328501
-1.490818196

-0.256231461

-2.538935718

.30436332

.48957836

-0.532842482

Stnr. 4029364

0.226307038 -0.193705509 -0.157801292 -0.119439285 -0.07959067
-0.039299403;
-4.020546349 -6.913149345 -5.839616968 -3.671156445 -
2.233240686 -1.70042737 -1.765442076 -2.110712368 -
2.518387589 -2.850678837 -3.010063226 -2.923750384 -
2.566502879 -2.021392743 -1.491968934 -1.091106189 -
0.831834107 -0.679664999 -0.589312282 -0.524281024 -
0.462879682 -0.396131283 -0.322692753 -0.244248304 -
0.162766171 -0.080371694;
-2.538935718 -5.839616968 -8.276360256 -7.161789534 -
5.034506992 -3.631506727 -3.149621876 -3.298282978 -
3.734544339 -4.181285075 -4.428943833 -4.327708314 -3.81911426
-3.020380211 -2.236652624 -1.639533824 -1.251196882 -
1.021995716 -0.885273318 -0.786848752 -0.694286064 -
0.594009355 -0.483853167 -0.366239148 -0.244076102 -
0.120528132;
-1.322875732 -3.671156445 -7.161789534 -9.979989254 -
9.096308758 -6.992411333 -5.51656324 -4.975223928 —
5.094154651 -5.470048276 -5.734649206 -5.610626613 -
4.970075483 -3.943504689 -2.927808167 -2.150088552 -
1.642093107 -1.340949689 -1.160670314 -1.030873828 -0.90918403
VIIl-4
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-0.777707142 -0.633451749 -0.479481627 -0.319561528 -
0.157810736;
-0.752893725 -2.233240686 -5.034506992 -9.096308758 -
12.34646803 -11.6057842 -9.41424221 -7.780478567 -
7.082063876 -7.009355257 -7.068627083 -6.818024937 -6.01202462
-4.758357994 -3.525726708 -2.585452502 -1.973313089 -
1.611660504 -1.395770017 -1.240372065 -1.094346776 -
0.936251107 -0.762623758 -0.577251514 -0.384708175 -
0.189975865;
-0.658645919 -1.70042737 -3.631506727 -6.992411333 -
11.6057842 -15.20915883 -14.53219606 -12.21723643 -
10.35968027 -9.337746359 -8.778660906 -8.131815633 -
7.011104088 -5.462340121 -3.996039265 -2.90347929 -
2.207056302 -1.804547379 -1.568680889 -1.399097718 -
1.237250799 -1.059634498 -0.863370432 -0.653464743 -
0.435393245 -0.214957826;
-0.806328501 -1.765442076 -3.149621876 -5.51656324 -
9.41424221 -14.532196006 -18.44430126 -17.8381335 -
15.36002815 -13.10499132 -11.42422262 -9.9305340674 -
8.178147588 -6.147440412 -4.362702106 -3.09865503 -
2.331444782 -1.911673719 -1.677609385 -1.50982914 -1.34281291
-1.153027492 -0.940110306 -0.711425396 -0.473725933 -
0.233757612;
-1.034705796 -2.110712368 -3.298282978 -4.975223928 -
7.780478567 -12.21723643 -17.8381335 -22.07851184 -
21.49075037 -18.64406307 -15.60972654 -12.77391647 -
9.926702833 -7.085558341 —-4.794480761 -3.277672222 -
2.422248166 -1.996236935 -1.781049745 -1.627783673 -
1.461573363 -1.260381124 -1.028796394 -0.778317126 -
0.517753994 -0.255257544;
-1.255191393 -2.518387589 -3.734544339 -5.094154651 -
7.082063876 -10.35968027 -15.36002815 -21.49075037 -
25.97117768 -25.15659617 -21.52911918 -17.21453221 -
12.85060019 -8.79310988 -5.70144991 -3.755594256 -
2.724727185 -2.257478749 -2.048414592 -1.900802341 -1.72243697
-1.491377627 -1.218640202 -0.921690909 -0.612554004 -
0.301742491;
-1.418990273 -2.850678837 -4.181285075 -5.470048276 -
7.009355257 -9.337746359 -13.10499132 -18.64406307 -
25.15659617 -29.60583513 -28.16509029 -23.33204657 -
17.51789532 -11.98940259 -7.775861541 -5.123273883 -
3.717538654 -3.080020858 -2.794523484 -2.592906389 -
2.349456394 -2.034225325 -1.662197405 -1.25716461 -
0.835513224 -0.411573969;
-1.490818196 -3.010063226 -4.428943833 -5.734649206 -
7.068627083 -8.778660906 -11.42422262 -15.60972654 -
21.52911918 -28.16509029 -32.27151676 -29.97011166 -
23.99709253 -17.34640068 -11.88036843 -8.203831943 -
6.092289668 -5.014223065 -4.454127877 -4.054374587 -
3.631325122 -3.127953835 -2.552456035 -1.931147855 -
1.284971263 -0.633648756;
-1.4414631506 -2.923750384 -4.327708314 -5.610626613 -
6.818024937 -8.131815633 -9.930534674 -12.77391647 -
17.21453221 -23.33204657 -29.97011166 -33.81448471 -
31.10664509 -24.9482887 -18.67917818 -13.7986536 -
10.56512735 -8.621021491 -7.443892759 -6.59596344 -
5.808644144 -4.965279858 -4.043569036 -3.060871841 -
2.040319581 -1.007724247;
-1.261028861 -2.566502879 -3.81911426 -4.970075483 -
6.01202462 -7.011104088 -8.178147588 -9.926702833 -
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12.85060019
35.51590637
-14.12274282
7.506144804
1.526503764;
-0.99064166
4.758357994
-11.98940259
35.51590637
12.85060019
-4.970075483
-0.729675819
3.525726708
=7.775861541
31.10664509
17.21453221
6.818024937
1.441463156;
-0.532842482
2.585452502
3.755594256
-23.99709253
21.52911918
7.068627083
1.49081819¢6;
-0.405970999
1.973313089
2.724727185
-17.51789532
25.15659617
7.009355257
1.418990273;
-0.331772217
1.611660504
2.257478749
14.12274282
25.15659617
10.35968027
2.518387589
-0.287844726
1.395770017
2.048414592
11.86848236
18.64406307
12.21723643
2.110712368
-0.256231461
1.240372065
1.900802341
10.2350419¢6
13.10499132
14.53219606
1.765442076
-0.226307038
1.094346776
-2.349456394
7.011104088
10.35968027
-6.992411333
-0.193705509

-17.51789532

-33.45442582
-11.86848236

-6.099321485

-2.021392743
-5.462340121
-17.34640068
-31.10664509
-9.926702833
-3.81911426
-1.491968934
-3.996039265
-11.88036843
-33.81448471
-12.77391647
-5.610626613

-1.091106189
-2.90347929
-5.123273883

-29.97011166
-15.60972654
-5.734649206

-0.831834107
-2.207056302
-3.717538654

-23.33204657
-18.64406307
-5.470048276

-0.679664999
-1.804547379
-3.080020858
-12.85060019
-25.97117768
-7.082063876
-1.255191393;

-0.589312282
-1.568680889
-2.794523484
-9.926702833
-21.49075037
-7.780478567
-1.034705796;

-0.524281024
-1.399097718
-2.592906389
-8.178147588
-15.36002815
-9.41424221
-0.806328501;

-0.462879682
-1.237250799

-3.631325122
-8.131815633
-12.21723643

-3.631506727

-0.396131283

-23.99709253

-27.94371209
-10.23504196

-4.619623511

-3.020380211
-6.147440412
-24.9482887
-23.99709253
-8.178147588
-2.566502879
-2.236652624
-4.362702106
-18.67917818
-29.97011166
-9.930534674
-4.327708314

-1.639533824
-3.09865503
-8.203831943

-32.27151676
-11.42422262
-4.428943833

-1.251196882
-2.331444782
-6.092289668

-28.16509029
-13.10499132
-4.181285075

-1.021995716
-1.911673719
-5.014223065
-17.21453221
-21.49075037
-5.094154651

-0.885273318
-1.677609385
-4.454127877
-12.77391647
-22.07851184
-4.975223928

-0.786848752
-1.50982914
-4.054374587
-9.930534674
-17.8381335
-5.51656324

-0.694286064
-1.34281291
-5.808644144
-8.778660906
-14.53219606
-1.70042737
-0.594009355

-31.10664509

-22.1394682
-8.854080153

-3.085360814

-3.943504689
-7.085558341

-33.45442582
-17.51789532
-7.011104088

-1.261028861;

-2.927808167
-4.794480761

-27.94371209
-23.33204657
-8.131815633
-2.923750384

-2.150088552
=3.277672222
-13.7986536

-28.16509029
-8.778660906
-3.010063226

-1.642093107
-2.422248166
-10.56512735

-29.60583513
-9.337746359
-2.850678837

-1.340949689
-1.996236935
-8.621021491
-21.52911918
-15.36002815
-3.734544339

-1.160670314
-1.781049745
-7.443892759
-15.60972654
-17.8381335
-3.298282978

-1.030873828
-1.627783673
-6.59596344
-11.42422262
-18.44430126
-3.149621876

-0.90918403
-1.461573363

-8.854080153
-9.337746359
-15.20915883

-0.658645919;

-0.777707142
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-17.4456276
-8.79310988
-6.01202462
-5.70144991
-22.1394682
-17.4456276
-1.72243697
-11.6057842
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0.936251107 -1.059634498 -1.153027492 -1.260381124 -
1.491377627 -2.034225325 -3.127953835 -4.965279858 -
7.506144804 -6.01202462 -6.818024937 -7.068627083 -
7.009355257 -7.082063876 -7.780478567 -9.41424221 -11.6057842
-12.34646803 -9.096308758 -5.034506992 -2.233240686 -
0.752893725;

-0.157801292 -0.322692753 -0.483853167 -0.633451749 -
0.762623758 -0.863370432 -0.940110306 -1.028796394 -
1.218640202 -1.662197405 -2.552456035 -4.043569036 -
6.099321485 -4.970075483 -5.610626613 -5.734649206 -
5.470048276 -5.094154651 -4.975223928 -5.51656324 -
6.992411333 -9.096308758 -9.979989254 -7.161789534 -
3.671156445 -1.322875732;

-0.119439285 -0.244248304 -0.366239148 -0.479481627 -
0.577251514 -0.653464743 -0.711425396 -0.778317126 -
0.921690909 -1.25716461 -1.931147855 -3.060871841 -
4.619623511 -3.81911426 -4.327708314 -4.428943833 -
4.181285075 -3.734544339 -3.298282978 -3.149621876 -
3.631506727 -5.034506992 -7.161789534 -8.276360256 -
5.839616968 -2.538935718;

-0.07959067 -0.162766171 -0.244076102 -0.319561528 -
0.384708175 -0.435393245 -0.473725933 -0.517753994 -
0.612554004 -0.835513224 -1.284971263 -2.040319581 -
3.085360814 -2.566502879 -2.923750384 -3.010063226 -
2.850678837 -2.518387589 -2.110712368 -1.765442076 -1.70042737
-2.233240686 -3.671156445 -5.839616968 -6.913149345 -
4.020546349;

-0.039299403 -0.080371694 -0.120528132 -0.157810736 -
0.189975865 -0.214957826 -0.233757612 -0.255257544 -
0.301742491 -0.411573969 -0.633648756 -1.007724247 -
1.526503764 -1.261028861 -1.441463156 -1.490818196 -
1.418990273 -1.255191393 -1.034705796 -0.806328501 -
0.658645919 -0.752893725 -1.322875732 -2.538935718 -
4.020546349 -3.788998302]

$Stiffness matrix NSC
K=inv (Ki) ;

$Stiffness matrix frUHSC
KHSC=inv (KiHSC) ;

$Mass matrix NSC
M=zeros (26, 26) ;
for n=1:1:26;

M(n,n)=mass;
end

$Mass matrix frUHSC
MHSC=zeros (26, 26) ;
for n=1:1:26;

MHSC (n, n) =massHSC;
end

$Eigenfrequency NSC
[E, omegakw]=eig (K, M) ;

omegal=omegakw(1l,1);
omegal=omegakw(2,2) ;
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Kstar=E'*K*E;
Mstar=E'*M*E;

El=zeros (26, 1);
for n=1:26;

El(n,1)=E(n,1);
E2(n,2)=E(1'1,2)r
E3(n,3)=E(1'1,3)r

end

figure (1) ;
plot (E1);
figure(2);
plot (E2);
figure (3);
plot (E3);

$Eigenfrequency frUHSC
[EHSC, omegakwHSC]=eig (KHSC,MHSC) ;

omegalHSC=omegakwHSC (2, 2) ;
omegal2HSC=omegakwHSC (3, 3) ;

KstarHSC=EHSC'*KHSC*EHSC;
MstarHSC=EHSC'*MHSC*EHSC;

E1HSC=zeros (26,1);

for n=1:26;
E1HSC(n,1)=EHSC(n, 2);
E2HSC (n, 2)=EHSC (n, 3);
E3HSC (n, 3)=EHSC (n, 4) ;

end

figure (4);
plot (E1HSC) ;
figure (5);
plot (E2HSC) ;
figure (6);
plot (E3HSC) ;

$Damping matrix NSC (Rayleigh)

a0=2*omegal*omegal* (zetal*omegal2-zetal2*omegal)/ (omega2”2-omegal”2) ;
al=2* (zeta2*omega2-zetal*omegal)/ (omega2”2-omegal”"2) ;
Cs=zeros (26, 26);

Cs=al0*M+al*K;

$Damping matrix frUHSC (Rayleigh)

aOHSC=2*omegalHSC*omegal2HSC* (zetalHSC*omega2HSC-
zeta2HSC*omegalHSC) / (omega2HSC"2-omegalHSC"2) ;

alHSC=2* (zeta2HSC*omega2HSC—-zetalHSC*omegalHSC) / (omega2HSC"2-omegalHSC"2) ;
CsHSC=zeros (26, 26) ;

CsHSC=a0HSC*M+alHSC*K;
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$transfer.m
%$Uses data from stiffness.m

%$at midspan for the NSC bridge

for n=1:1:10000; % (Number of frequency steps)
omega (n)=n/100;
Suf=K-M*omega (n) “"2+i*omega(n) *Cs;

Hu=Suf"-1;

Hx=abs (Hu) ;

Hx13 (n)=sum(Hx (13, :));

Hal3 (n)=sum(Hx (13, :)) *omega(n)"2;

end

figure(7);
plot (omega, Hx13) ;

figure(9);
plot (omega, Hal3) ;

at midspan for the frUHSC bridge

for n=1:1:10000;
omega (n)=n/100;
AHSC=KHSC-MHSC*omega (n) ~"2+i*omega (n) *CsHSC;
HuHSC=AHSC"-1;
HxHSC=abs (HuUHSC) ;
HxHSC13 (n)=sum (HxHSC (13, :));
HaHSC13 (n)=sum (HxHSC (13, :)) *omega (n) "2;

end

figure (8);
plot (omega, HxHSC13) ;

figure (10);
plot (omega, HaHSC13) ;

$Transfer function displacement (Hx13) and acceleration (Hal3) of the node

$Transfer function displacement (Hx13) and acceleration (Hal3) of the node
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APPENDIX X: Matlab Code forcespectrum.m

$forcespectrum.m

$Lift force spectrum based on the Von Karman-Harris spectrum for the
$longitudinal wind velocity and the Bush and Panofsky spectrum for the
$vertical turbulent wind velocity.

Lu=200; % (Turbulence length longitudinal [m])
Lw=18; % (Turbulence length vertical[m])
Iu=0.11; % (Turbulence intensity longitudinal)
Iw=0.06; % (Turbulence intensity vertical)
v50=36.62; % (Mean wind velocity[m/s])

rho=1.25; % (Density of air[kg/m”3])

o\

sigmau=Iu*v50;
sigmaw=Iw*v50;

o\

(
(
(
(
(
(
(Standard deviation longitudinal[m/s])
(Standard deviation vertical[m/s])

(

(

(

(

(

CL=0.9; $(Lift coefficient)

dCL=1; % (Derivative 1lift coefficient)
N=10000; % (Number of frequency steps)

B=32.5; % (width of the bridge deck[m])

Cy=7; % (Factor for coherence in y-direction)

$Matrix with mutual distance between nodes
ypoint=8.8:8.8:228.8;
yall=ypoint'*ones (1, 26);
ydif=zeros (26, 26);
for m=1:26
for n=m+1:26
ydif (m,n)=abs(yall(m)-yall(n));
ydif (n,m)=ydiff (m,n);
end
end

omega=zeros (N, 1) ;
Suu=zeros (N, 1);
Sww=zeros (N, 1);

$Assembly of the full force matrix with force spectra for all the different
%$nodes and cross spectra
for n=1:10000;
omega (n)=n/100;
Suu (n)=(4*omega (n) *Lu/ (v50*pi*2))/(1+70.4* (omega (n) *Lu/ (v50*pi*2))"2)"(5/6)
*sigmau”2/ (omega(n)/ (2*pi));
Sww(n)=(2.15*omega (n) *Lw/ (v50*pi*2) )/ (1+11.16* (omega (n) *Lw/ (v50*pi*2))"2)"(
5/3) *sigmaw”2/ (omega(n)/ (2*pi)) ;
Chisquare(n)=((1+(1l.1*omega(n)/pi)~(4/3))"-1)"2;
cohy=exp (-1*Cy*omega (n)/ (2*pi*v50) *ydif) ;
SLL (n)=Lpart"2*rho”2*v5072*B"2* (CL"2*Suu(n)+1/4*dCL"2*Sww (n) )
*Chisquare (n) ;
end

figure (11); % (See also figure 5.5)
plot (omega, SLL) ;
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%$response.m

%$Uses transfer.m and forcespectrum.m

$Assembly of the response spectrum of the midnode (13) for the
$displacements and the accelerations. In this response spectrum it is
%assumed that all the forces on the nodes are completely coupled.

for n=1:10000;
for j=1:26;
for k=1:26;
Sxx (n)=Hx13(n) *conj (Hx13(n))*SLL(n

)) *SLL(n) ;

( )
SxxHSC (n)=HxHSC13 (n) *conj (HxHSC13 (n
Saa(n)=Hal3(n)*conj(Hal3 (n))*SLL(n);
SaaHSC (n)=HaHSC13 (n) *conj (HaHSC13(n))*SLL(n) ;
end
end

end

figure (12); % (See also figure 5.6)

plot (omega, Sxx) ;

figure (13);

plot (omega, SxxHSC) ;

figure(14); % (See also figure 5.8)

plot (omega, Saa) ;

figure (15);
plot (omega, SaaHSC) ;

$Determination of the peakvalues during a certain time period.

for n=1:10000;
variance=sum(Sxx (1, :))*0.01;
varianceHSC=sum (SxxHSC (1, :))*0.01;
standev=sqrt (variance) ;
standevHSC=sqgrt (varianceHSC) ;
variancea=sum(Saa(l,:))*0.01;
varianceHSCa=sum (SaaHSC(1l,:))*0.01;
standeva=sqgrt (variancea) ;
standevHSCa=sqgrt (varianceHSCa) ;

end

Peakx=standev*sqgrt (2*1og(0.532*600)) ;
PeakxHSC=standevHSC*sqrt (2*1og (0.532*%600)) ;
Peaka=standeva*sqgrt (2*1og(0.525*600) ) ;
PeakaHSC=standevHSCa*sqgrt (2*1og(0.525%600)) ;
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APPENDIX XII: Matlab Code coherence.m

%$coherence.m
%$This file is used to obtain the response spectra when the force spectra
$for the different nodes are related with cross spectra.

Lu=200; % (Turbulence length longitudinal [m])
Lw=18; % (Turbulence length vertical[m])
Iu=0.11; % (Turbulence intensity longitudinal)
Iw=0.06; % (Turbulence intensity vertical)
v50=36.62; % (Mean wind velocity[m/s])

rho=1.25; % (Density of air[kg/m"3])

o\

sigmau=Iu*v50;
sigmaw=Iw*v50;

o\

(
(
(
(
(
(
(Standard deviation longitudinal[m/s])
(Standard deviation vertical[m/s])

(

(

(

(

(

CL=0.9; $(Lift coefficient)

dCL=1; % (Derivative 1lift coefficient)
N=10000; % (Number of frequency steps)

B=32.5; % (width of the bridge deck[m])

Cy=17; % (Factor for coherence in y-direction)

$Matrix with mutual distance between nodes
ypoint=8.8:8.8:228.8;
yvall=ypoint'*ones (1,26);
ydif=zeros (26, 26);
for m=1:26
for n=m+1:26
ydif (m,n)=abs(yall (m)-yall(n));
ydif (n,m)=ydif (m,n);
end
end

%$Assembly of the response spectra of the midnode for the displacement and
%acceleration. With a full force matrix with force spectra for all the
$different nodes and cross spectra.
for n=1:1:10000;

omega (n)=n/100;

Suf=K-M*omega (n) “2+i*omega(n) *Cs;

Hu=Suf"-1;

Hx=abs (Hu) ;
Suu (n)=(4*omega (n) *Lu/ (v50*pi*2) )/ (1+70.4* (omega (n) *Lu/ (v50*pi*2))"2)"(5/6)
*sigmau”2/ (omega (n)/ (2*pi));
Sww(n)=(2.15*omega (n) *Lw/ (v50*pi*2) )/ (1+11.16* (omega (n) *Lw/ (v50*pi*2))"2)"(
5/3)*sigmaw”2/ (omega (n)/ (2*pi));

for j=1:26;

for k=1:26;
Hx13F (j)=Hx(j,13);
Hal3F (j)=Hx(j,13) *omega(n)"2;
HxlBFT(k)sz(lS k);
HalBFT(k) =Hx (13, k) *omega (n) "2;
HxF (j,k)=Hx13F (j) '*conj (Hx13FT (k)) ;
HaF(j,k) =Hal3F (j) '"*conj (Hal3FT(k));

cohy (j,k)=exp(-1*Cy*omega (n)/ (2*pi*v50) *ydif (j,k));

SFF (j,k)=Lpart”2*rho”2*v50"2*B"2* (CL"2*Suu(n)+1/4*dCL"2*Sww (n) )
* cohy (j,k);

Szz (J,k)=HxF (j,k)*SFF (], k);

Szz13(n)=sum(sum(Szz,1),2);
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Saa(j,k)=HaF(j,k)*SFF (7, k);
Saal3 (n)=sum(sum(Saa,1l),2);
end
end
end
for n=1:1: lOOOO
omega (n)=n/100;
SufHSC KHSC -MHSC*omega (n) “"2+i*omega (n) *CsHSC;
HuHSC=SufHSC"-1;
HxHSC=abs (HuUHSC) ;
Suu (n)=(4*omega (n) *Lu/ (v50*pi*2) )/ (1+70.4* (omega (n) *Lu/ (v50*pi*2))"2)"(5/6)
*sigmau”2/ (omega (n)/ (2*pi));
Sww(n)=(2.15%*omega (n) *Lw/ (v50*pi*2))/ (1+11.16* (omega (n) *Lw/ (v50*pi*2))"2) " (
5/3)*sigmaw”2/ (omega (n)/ (2*pi));
for j=1:26;
for k=1:26;
Hx13FHSC () =HxHSC (7, 13);
Hal3FHSC(j)=HxHSC(3j,13) *omega(n) "2;
Hx13FTHSC (k)=HxHSC (13,k) ;
Hal3FTHSC (k)=HxHSC (13, k) *omega (n)"2;
HxFHSC(j,k)=Hx13FHSC(j) '*conj (Hx13FTHSC (k)) ;
HaFHSC(j,k) =Hal3FHSC(j) '*conj (Hal3FTHSC(k)) ;
cohy (j,k)=exp(-1*Cy*omega (n)/ (2*pi*v50)*ydif (j,k));
SFFHSC (j, k)=Lpart"2*rho”2*v5072*B"2*
(CL"2*Suu(n)+1/4*dCL"2*Sww (n))* cohy (3, k);
SzzHSC (j,k)=HxFHSC (j, k) *SFFHSC (j, k) ;
Szz13HSC (n)=sum(sum(SzzHSC, 1), 2);
SaaHSC (7], k)=HaFHSC(j,k)*SFFHSC (7, k) ;
Saal3HSC( )=sum(sum(SaaHSC, 1), 2);
end
end
end
figure (10); % (See also figure 5.7)
plot (omega, Szz13) ;
figure (11); % (See also figure 5.7)
plot (omega, Szz13HSC) ;
figure(12); % (See also figure 5.9)
plot (omega, Saal3) ;
figure (13); % (See also figure 5.9)
plot (omega, Saal3HSC) ;
$Determination of the peakvalues during a certain time period.
for n=1:10000;
variance=sum(Szz13(1,:))*0.01;
varianceHSC=sum(Szz13HSC (1, :))*0.01;
standev=sqrt (variance) ;
standevHSC=sqgrt (varianceHSC) ;
variancea=sum(Saal3(1l,:))*0.01;
varianceHSCa=sum(Saal3HSC(1l,:))*0.01;
standeva=sqrt (variancea) ;
standevHSCa=sqgrt (varianceHSCa) ;
end
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