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Summary 
 
In this Masters project, the possibilities of implementing an active control system 
suitable for high-rise buildings which are affected by the impact of the wind were 
investigated. Applying a variable force on the structure, depending on the dynamic 
state of the building, aims at limiting unwanted accelerations caused by wind 
impact. For example a specific project was chosen. The mechanical properties of the 
building have been determined and modelled with the help of a computer program. 
The wind load was determined and implemented in the computer model. Following 
that, an active control system was implemented. Different simulations were made of 
the dynamic behaviour in the time domain. This resulted in a properly working 
system with a reduction of the accelerations of 50% at the top of the building. The 
sensitivity of the system was analysed with a parameter study. A frequency-domain 
analysis was performed in order to give further insight into the accelerations at 
different frequencies. 
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List of symbols 
 
A  area  2m⎡ ⎤⎣ ⎦  

sA  effective area against shear deformation 2m⎡ ⎤⎣ ⎦  

0a  constant determining the proportionality of the mass to the damping -1s⎡ ⎤⎣ ⎦  

1a  constant determining the proportionality of the stiffness to the damping [ ]−  

ia  acceleration of node i  2m/s⎡ ⎤⎣ ⎦  

ma  acceleration of the mass of the active control system  2m/s⎡ ⎤⎣ ⎦  
ˆia  amplitude of the acceleration of node i   2m/s⎡ ⎤⎣ ⎦  
b  width of the building [ ]m  
C  damping matrix [ ]kg/s  

hC  shape factor  [ ]−  
rC  rotational stiffness of the foundation [ ]Nm  
*C  modal damping matrix [ ]kg/s   
yC  coherence constant in y -direction  [ ]−  
zC  coherence constant in z -direction  [ ]−  

i kv vcoh  coherence between the wind speed in point ,i k  [ ]−  

wd  displacement height  [ ]m  
E  Young’s modulus 2N/m⎡ ⎤⎣ ⎦  
E  eigenmatrix containing the eigenvectors [ ]−  

fE  location vector of the control force  [ ]−  
E  subtracted energy  [ ]J  
e  rotation in a node [ ]rad  
F  vector wind forces on the nodes  [ ]N  

iF  force on node i   [ ]N  
cF  control force  [ ]N  
ikF  force on node i  on discrete time point k   [ ]N  

f  frequency  [ ]rad/s  
if  frequency of mode i   [ ]rad/s  

G  shear stiffness 2N/m⎡ ⎤⎣ ⎦  

1g  control gain for the relative displacement of the mass  [ ]N/m  
2g  control gain for the velocity of the top of the building  [ ]Ns/m  
3g  control gain for the relative velocity of the mass  [ ]Ns/m  

h  length of the building [ ]m  
I  moment of inertia 4m⎡ ⎤⎣ ⎦  
I  identity matrix  [ ]−  
i  node number [ ]−  
I  turbulence intensity factor  [ ]−  
L  height of the building [ ]m  



  

xii  

gustL  characteristic length of a wind gust  [ ]m  
l  length of 1 element [ ]m  
K  stiffness matrix [ ]N/m  

*K  modal stiffness matrix [ ]N/m  
M  mass matrix [ ]kg  

*M  modal mass matrix [ ]kg  
M  moment [ ]Nm  
N  number of draws [ ]−  
k  bending stiffness  [ ]N/m  

ak  acceleration control gain  [ ]kg  
ck  dimensionless factor [ ]−  

dk  displacement control gain  2kg/s⎡ ⎤⎣ ⎦  

vk  velocity control gain  [ ]kg/s  
im  lumped mass in node i  [ ]kg  

m  mass of 1 storey [ ]kg  
eqm  mass of equivalent 1 degree of freedom system  [ ]kg  
mm  weight of the mass of the active control system  [ ]kg  

n  node number [ ]−  
. .n a  distance between the neutral axis and a parallel reference line  [ ]m  

P  required mechanical power  [ ]kW  
q  force per length [ ]N/m  

xxS  auto spectrum of signal x  2dim( )x⎡ ⎤⎣ ⎦  

xyS  cross-spectrum in point x  and y  [ ]dim( )dim( )x y  
1T   period  [ ]s  

t  time  [ ]s  
u  vector with the displacements of the nodes  [ ]m  
ˆ iu  eigenvector of mode i  [ ]−  
ˆ iu  eigenvector of mode i  [ ]−  

;b topu  displacement at the top of the structure due to bending [ ]m  
iu  displacement of node i  [ ]m  
mu  displacement of the mass of the active control system  [ ]m  
;r mu  relative displacement of the mass  [ ]m  
;r topu  rotation at the top of the structure [ ]rad  
;s topu  displacement at the top of the structure due to shear [ ]m  

topu  displacement at the top [ ]m  
*u  Friction velocity  [ ]m/s  

ˆiu  amplitude of the displacement of node i   [ ]m  
iv  velocity of node i  [ ]m/s  
mv  velocity of the mass of the active control system   [ ]m/s  
îv  amplitude of the velocity of node i   [ ]m/s  



  

 xiii  

v  hourly averaged wind speed [ ]m/s  
v  fluctuating part of the wind speed  [ ]m/s  
W  work done by the mass  [ ]kWh  
x  dimensionless frequency  [ ]−  
y  coordinate in width direction of the building  [ ]m  
z  height above the surface of the earth  [ ]m  

0z  roughness length  [ ]m  
iς  damping ratio of the i -th mode  [ ]−  
κ  Von Karman constant   [ ]−  

xμ  mean value for signal x  [ ]dim( )x  
ν  poisson ratio  [ ]−  
ρ  density of air 3kg/m⎡ ⎤⎣ ⎦  

cρ  specific gravity of reinforced concrete 3kg/m⎡ ⎤⎣ ⎦  

xσ  standard deviation of signal x  [ ]dim( )x  
kϕ  random phase shift  [ ]rad  

Ω  diagonal matrix with the eigenfrequencies  [ ]rad/s  
eω  damped natural frequency of the uncontrolled system  [ ]rad/s    
iω  eigenfrequency of the i -th mode  [ ]rad/s
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1. Introduction 
 
With a growing population and an increasing demand for accommodation, high-rise 
buildings are becoming more and more popular. According to the Dutch- and also 
most European standards, there must be enough daylight in the buildings, which 
means that the width has to be limited. As result of this, the high-rise buildings will 
become slender, which makes them vulnerable for dynamic loadings. Besides this, 
construction materials and construction methods have been improving constantly, 
which results in fewer and stiffer connections. Where the structure gets a lot of its 
damping from its connections and cracks by friction, a consequence of this is that the 
damping of modern structures has decreased compared to older structures. 
Therefore dynamic behaviour occurring in the ultimate or serviceability limit state is 
becoming more and more important. 
 
In the Wijnhaven district of Rotterdam, a new tower called the Juffertoren will be 
built. The first design of the Juffertoren includes 48 stories of living space with 
apartments, salvage and entry and on top of the building a technical space. The 
cross-section from the first floor to the 37th floor has dimensions of 15,44 m x 26,34 m.  
Above the 37th floor, the cross-section will be broadened.  The total height of the 
building is 145 m, with a slenderness of 9,5. Due to this slenderness the building is 
sensitive to dynamic loading. Design calculations made by the company DHV have 
shown that the wind load will cause an acceleration level which will be detrimental 
to the comfort level of the residents. Therefore the owner has decided to adapt the 
design to a lower and less slender structure. 
 
In this thesis, an investigation will be performed into the possibility of limiting the 
dynamic accelerations with the help of active control. An active control system is a 
system that can determine the state of a system and decide on a set of actions that 
will change the present state to a more desirable one. In the case of controlling the 
dynamic behaviour of a building, this can be done by applying a force to the building. 
According to the second law of Newton, this force can be achieved by accelerating a 
heavy mass where the force is desired. The mass will be driven by an engine and 
guided by a rail. 
  
This study will be focused on active control and not particularily on the Juffertoren. 
So it is permitted to make some simplifications to the design. I decided to adapt 
some dimensions of the tower so that complicated influences on the dynamic 
behaviour of the building do not need to be considered in interpreting the results. 
For instance the larger dimensions of the top floors of the building will not be 
included in this study. The building will be modelled as a 144 meters high building 
with 48 stories, all having the same dimensions as can be seen in Appendix I.
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2. Idealization of the building  
 
The complete building will be modelled with 48 elements. The elements are 
connected at the nodes. Each node has one degree of freedom which is the horizontal 
displacement in the weak direction of the structure. 
To determine whether the building has to be modelled as a shear, a bending or a 
combination of a shear and bending beam, a representative cross-section will be 
introduced. See Figure 2.1a). The maximum displacement at the top due to shear 
and bending will be determined and compared. Figure 2.1 b) and c) show 
respectively the displacement due to shear and bending of two floors of the building. 

Ub
Us

 
Figure 2.1 a) representative cross-section; b) shear deformation; c) bending deformation 

The moment of inertia of the cross-section is approximately: 

 312*
12

=I th  (2.1) 

The effective area against shear deformation is roughly: 

 52
6sA th*=  (2.2) 

We assume 0ν =  therefore 
2
EG = . 

The displacement at the top of the building due to bending divided by the 
displacement at the top of the building due to shear is then given by: 

 

4 2

22 2
;

2 3
;

5 58 8
1 8 44

b top s

s top

ss

qL L
u A L thL LEI I
u I hqL th

AEA

⎛ ⎞= = = ≈ = ⎜ ⎟
⎝ ⎠

 (2.3) 

With 144L =  m  and 15h =  m  it becomes clear that bending dominates the behaviour. 
Therefore the building can be modelled as a bending beam and the shear 
deformation may be neglected. 

2.1. Bending stiffness and mass of the structure 
Before the stiffness matrix and the mass matrix can be calculated, the bending 
stiffness and the mass of the building have to be known. The location of the neutral 
axis of the cross-section of the building can be determined from: 
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 . .
sA

n a
A

= ∑
∑

 (2.4) 

where: 
. .n a  distance between the neutral axis and a parallel reference line; 

s  the perpendicular distance between the reference line and the centre of   
 gravity of the considered wall; 
A  area of the considered wall. 
The calculation of the location of the neutral axis is performed in Matlab as can be 
seen in Appendix I. The outcome is that the neutral-axis is located at 21 mm  from the 
centreline. To make it easy it is assumed that the neutral-axis coincides with the 
centreline. 
The second moment of inertia can be calculated as: 

 
3

2

12
bhI s A= +∑ ∑  (2.5) 

The calculation has been worked out in Matlab as can be seen in Appendix I. With 
the application of concrete B65 Young’s modulus is assumed 
at 2 10 230000 / 3*10 /= =E N mm N m  which leads to a bending stiffness of: 
 13 22,00*10  NmEI =  (2.6) 

The mass of the walls of one storey can be calculated from: 
cm hAρ=  

where: 

cρ  specific gravity of reinforced concrete, 32500 kg/mcρ = ; 
h  height of the walls, 2,75 mh =  

To find the mass of one storey, a floor has to be added to this mass. See Appendix I. 
The loading on the floors of 2250 N/m  has been added to this mass, which leads to a 
mass of: 56,32*10=m kg/storey.  

2.2. Element stiffness matrix: field element 
The model is build up of 48 undeformable elements with deformable nodes. See 
Figure 2.2. The flexibility of the elements will be concentrated in the springs at the 
nodes.  

MM

M M

n1

n2

ni

nn

 
Figure 2.2 The building will be modelled as a bending beam with lumped deformations 

The aim is to find a relation between the nodal displacements and the nodal forces.  
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Figure 2.3 Bending element 

This relation is derived in Appendix I which provides the stiffness matrix of a 
bending element: 

 3

1 2 1
2 4 2

1 2 1

i i

j j

k k

F u
EIF u
l

F u

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (2.7) 

2.3. Element stiffness matrix: bottom element 
The connection between the ground and the building is not a fully clamped 
connection, because the piles will act like springs. The foundation will work as a 
rotational spring. The stiffness of this rotational spring will be determined so that 
the displacement at the top due to rotation of the foundation is equal to 20% of the 
displacement due to bending, when the building is loaded by an equally distributed 
load. This assumption is based on experience1.  

 
4

; 8b top
qLu
EI

=  (2.8) 

 
3

;
1
2r top

r r

ML qLu
C C

= =  (2.9) 

The rotation stiffness can be determined by: 

 
3 4

; ;
200,2

2 40r top b top r
r

qL qL EIu u C
C EI L

= → = → =  (2.10) 

The derivation of the elements stiffness matrix of the bottom element can be found 
in Appendix I which gives: 

 2

1 11 1
1 1 1

2

i i

j j

r

F u
lF ul
EI C

−⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭+
 (2.11) 

The stiffness matrix of the bending beam can be assembled with the stiffness matrix 
of the elements. Figure 2.4 shows how this has to be done with a system containing 4 
degrees of freedom. With the use of Matlab, it is easy to assemble a much larger 
system, as has been done in Appendix I. Here the two bottom lines and two farthest 
right rows are assembled according to eqn. (2.11). 

                                                 
1 Private investigations with Mathew Vola, Constructor of DHV 
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1
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a
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E I C

=
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32 EI a
l

− − no displacement 
possible of n0
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Figure 2.4 Assembling the system stiffness matrix 

2.4. Mass matrix 
The mass of the structure will be lumped in the nodes. The elements which 
represent the masses will appear on the diagonal of the mass matrix, as has been 
done in Appendix I. 

mn

mi

m2

m1

m2

 
Figure 2.5 Lumping the mass in the nodes 

2.5. Damping matrix 
It is practically impossible to determine the damping matrix of a structure by 
calculating the damping of the different elements of the structure. There are too 
many uncertainties about the connections and the material properties. A well-known 
method for determining the damping matrix is the proportional damping method, 
also known as the Rayleigh damping method [2],[3]. With proportional damping we 
assume that the damping matrix is proportional to the mass and stiffness matrix.  
 0 1a a= +C M K  (2.12) 

The constants can easily be determined by: 

 

( )

( )

1 2 1 2 2 1
0 2 2

2 1

2 2 1 1
1 2 2

2 1

2

2

a

a

ωω ς ω ς ω
ω ω

ς ω ς ω
ω ω

−
=

−

−
=

−

 (2.13) 

This can be proven by making use of modal analysis. The matrix E is introduced 
which is the eigenmatrix.  

 
1

ˆ
n

i
i=

= ∑E u  (2.14) 
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Now the modal mass matrix and modal stiffness matrix are introduced, which are by 
definition diagonal because of the orthogonal equations. 

 
*

*

T

T

=

=

M E ME
K E KE

 (2.15) 

Introducing a modal damping matrix, which because of (2.12) also appears to be 
diagonal will give the following result: 
 * * *

0 1 0 1
T T Ta a a a= = + = +C E CE M K E ME E KE  (2.16) 

Now we assume a modal damping ratio which means that every mode i has its own 
damping ratio iς . (Note that this equation is totally decoupled) 
 [ ] * 1 *2 i iς ω −= M C  (2.17) 

Making use of eqn. (2.15) and eqn. (2.16) this results in: 

 [ ] * 1 * * 1 * 2
0 1 0 1 0 12 T

i i a a a a a aς ω − −⎡ ⎤= + = + = +⎣ ⎦M E ME K I M K I Ω  (2.18) 

Where Ω represents the diagonal matrix with the eigenfrequencies of the undamped 
system on the diagonal, hence: 

 0 1

2 2i i
i

a a
ς ω

ω
= +  (2.19) 

Which proves eqn. (2.13). The constants 0a and 1a can now be determined from: 

 

1

0 0

1 1

1 1
1 2

1 12

i i
i ii i

j jj j
j j

a a
a a

ω ωω ως ς
ς ςω ωω ω

−
⎡ ⎤ ⎡ ⎤

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= → =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.20) 

The first and second eigenfrequency can be found in the analysis made in Matlab: 
see Appendix I. So taking 1i = and 2j =  in eqn.(2.20), the only unknowns left for 
determining 0a and 1a are 1ς and 2ς . When 1ς and 2ς  are known, the total damping 
matrix - see eqn. (2.12) - can be determined.  
On the basis of experience it will be assumed that the damping ratios of the first and 
second eigenmode of a modern concrete building are 1 2 1%ς ς= = . The total damping 
matrix is determined in Appendix I.
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3. Numerical simulation in Simulink 
 
Simulink is a component of Matlab, which provides an environment where a 
physical system and controller can be modelled as a block diagram.  
The equation of motion of the building loaded by wind can be written as: 
 Mu Cu Ku F+ + =  (3.1) 
The number of degrees of freedom is 48, so ,  and M C K are (48x48) matrices and u and 
F are (48x1) vectors. Farther on in eqn. (4.4) - where eqn. (3.1) is dicretised - F  is 
defined as a matrix. Simulink cannot handle a second order differential equation. So 
the equation has to be rewritten in the state space formulation. This can be done by 
introducing a vector: 

 u
X

u
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (3.2) 

Substitution of eqn. (3.2) in eqn.(3.1) gives: 

 [ ]I 0 0 I 0
X X

0 M K C F
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.3) 

Multiplying on the left side of the second row of eqn.(3.3) with 1−M  gives: 

  [ ]1 1 1− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 I I 0 0
X X

M K M C 0 M F
 (3.4) 

In Simulink the state space equation is formulated as:  

 = +
= +

x Ax Bu
y Cx Du

 (3.5) 

Where u  is the input and y  is the output. The output we are interested in is the 
displacement u  and the velocity u  so y  will be defined as: 

 [ ] [ ]y X=  (3.6) 

Rewriting eqn.(3.4) and eqn.(3.6) gives:   

 [ ] [ ]1 1 1− − −

⎡ ⎤ ⎡ ⎤⎡ ⎤ = +⎢ ⎥ ⎢ ⎥⎣ ⎦ − −⎣ ⎦ ⎣ ⎦

0 I 0
X X F

M K M C M
 (3.7) 

 [ ] [ ] [ ]⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

I 0 0
y X F

0 I 0
 (3.8) 

This can be introduced in Simulink by defining the following matrices:   
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[ ]

1 1

1

 (96x96)

                   (96x48)

                  (96x96)

                           (96x48)

                            (48xti) (ti = number o

− −

−

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

=

0 I
A

M K M C

0
B

M

I 0
C

0 I

0
D

0

u F f timesteps)

 (3.9) 

Note that the matrix C and the vector u  in Simulink are not the same as 
respectively the damping matrix C and the displacement vector u . 
The Simulink model can be seen in Figure 3.1 and will be explained here. When 
Simulink is running, the state will be recalculated for every time step. The first 
block from the left contains the nodal forces as defined by eqn. (4.4). The output of 
this block is 48 elements for every time step. The second block transforms the 
elements of the first block into a vector. The third block contains the matrices 
defined in eqn. (3.9). The input of this block are the nodal forces and the output of 
this block are the displacements and velocities of the 48 degrees of freedom. 
Furthermore, 2 blocks can be seen which are selecting only the displacement and 
velocity of the top of the building as output from the total vector with al degrees of 
freedom. At far left, 3 output blocks can be seen. These blocks store the output in 
combination with the time and Matlab can make plots of these. Then there is one 
block which differentiates the velocity in time with as result the acceleration of the 
top. 

3

acceleration top

2

velocity top 

1

displacement top

U U(E)

output only
velocity

top

U U(E)

output only
displacement

top

U U(E)

input elements
output vector

x’ = Ax+Bu
 y = Cx+Du

from forces on the nodes
to displacements of the nodes

du/dt

acceleration

1

Nodal forces
for every timestep

 
Figure 3.1 Uncontrolled model of the MDF system in Simulink 

3.1.1. Validation of the static behaviour  
The mass matrix is very simple with only elements on the diagonal and it is not 
necessary to validate it. 
The stiffness matrix can easily be validated by application of a static evenly 
distributed load. Taking 62,1 kN/mq = the total static displacement of the top of the 
building must be: 

4

; 1, 2 0, 200 m
8static top
qLu
EI

= =  (20% extra due to deformation of the foundation, see section 

2.3). 
Now the stiffness matrix can easily be checked in Matlab with: 
 1−=u K F  (3.10) 

with: 
K  Is the stiffness matrix derived in Appendix I according to section 2.2 and 2.3  
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F  (48x1) vector with forces on the nodes, each force equals the height of one 
storey times the distributed load 3*62,1 186,3 kNiF = = . 

Executing eqn. (3.10) in Matlab results in a static deflection at the top of 
0,205 mtopu = , as can be seen in Figure 3.2, so the stiffness matrix is well defined. 

0 0.1 0.2
0

20

40

60

80

100

120

140

u(m)

z(
m

)

 
  Figure 3.2 Static deflection to check the stiffness matrix 

3.1.2. Validation of the dynamic behaviour: damping and eigenfrequency 
The damping matrix and dynamic behaviour can be checked by applying a step 
function to the system in Simulink. By taking the same force as has been done for 
the static control, a vibration of the displacement of the top around 0,205 mtopu =  can 
be expected: see Figure 3.2. The natural frequencies can be determined from the 
homogeneous equation: 
 + + =Mu Cu Ku 0  (3.11) 

With eqn. (2.15) and eqn.(2.16) this can be rewritten as: 
 * * *T T T+ + = + + =E MEu E CEu E KEu M u C u K u 0  (3.12) 

This is a fully decoupled differential equation. By multiplying this equation on the 
left with ( ) 1* −

M  and with the help of the relation ( ) 1* * 2−
=M K Ω  we find: 

 ( ) 1* *−
+ + =2u M C u Ω u 0  (3.13) 

Where Ω  is a diagonal matrix with on the diagonal ( ) 1, 2,..., 48i iω = . With eqn.(2.17), 
this decoupled system can be written as follows: 
 ( )22 0  1, 2,..., 48i i i i i iu u u iς ω ω+ + = =  (3.14) 

The homogeneous solution then is [2]: 

 ( ) ( ) ( ) ( )i- 2
ie sin 1   1,2,..., 48it

i i i iu t A t iς ω ω ς ϕ= − + =  (3.15) 

This leads to the natural vibration: 

 ( ) ( ) ( )1 1- 2
1 1 1 1 1e sin 1tu t A tς ω ω ς ϕ= − +  (3.16) 
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With ( ) 1* * 2−
=M K Ω , Matlab can determine iω , as has been done in Appendix I. With 

1 0,01ς = and 1 1, 48 rad/sω =  the eigenfrequency of the damped system can be 
determined: 

 2 2
1 11 1, 48 1 0,01 1, 48 rad/seω ω ς= − = − =  (3.17) 

The dynamic displacement of the structure will exist for 95% of the vibration of the 
first mode [4]. So the contribution of the higher modes to the displacements is small. 
Therefore by knowing the damping ratio of the first eigenmode (see 2.5) and the 
natural frequency, the behaviour of the multi degree of freedom (MDF) system can 
be approached by the behaviour of an single degree of freedom (SDF) system see 
Figure 3.3. 

mn

mi

m2

m1

meq

 
Figure 3.3 MDF and SDF system with equivalent mass 

Schematizing the structure as an SDF system with the displacement at the top as 
the degree of freedom gives [2]:  

 ( )( ) 1 *sineq

k t
m

e
Fu t e t
k

ς

ω
−⎛ ⎞

⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (3.18) 

with: 
1,48 rad/seω =  

5 2
4

8 3,11*10  N/m
1,2

EIk
L

= =  

0,01ς =  

62200 NtopF ku= =  

5
2 4 2

1 1

8 1, 42*10  kg
1, 2eq

k EIm
Lω ω

= = =  

The response of the SDF system eqn. (3.18) and the MDF system from Simulink, to a 
step load can be seen in Figure 3.4. The responses are almost the same; the 
difference can be accounted for by the higher modes of the MDF system which are 
not included in the SDF system. The vibrations converge to a displacement of 

0, 200 mtopu =  and the period equals: 

 1
1

2 2 4, 25 s
1,48

T π π
ω

= = =  (3.19) 
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Figure 3.4 Response to a step load of analytical SDF system and MDF system with Simulink 

simulation.
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4. Wind 
 
The building will be located in an urban area II according to NEN 6702 [5]. The wind 
consists of an hourly-averaged part ( )v z  and a fluctuating part ( ), ,v y z t .  

4.1. Wind load on the structure 
The wind load will be lumped as forces on the nodes as can be seen in Figure 4.1. 
The force on a node is equal to: 
 ( )i h wF t AC q=  (4.1) 

with: 

 ( )21
2wq v vρ= +  (4.2) 

i  Node number 
A   The area loaded by wind; 23*26,34 79 mA = =  
ρ   Density of air; 3= 1,25 kg/mρ  

hC  Shape factor; 0,8 0, 4 1,2hC = + =  (NEN 6702 figure A.4) 

Fn(t)

Fi(t)

F2(t)

F1(t)

 
Figure 4.1 Forces on the nodes as a function of time 

The forces on the nodes can be presented as a vector where each element represents 
a nodal force. By discretization in time, these nodal forces can be calculated for every 
time step, which makes a matrix of the nodal forces as shown in eqn. (4.3). The 
nodes are numbered 1, ,..i n  and the time steps are numbered 1, ,..k m . 

 ( )

( )
( )

( )

11 1 11

1

1

.

. .
discretization in time

. . . ..
. .

F

k m

i iki

n nmn

F F FF t
F FF t

t

F FF t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

 (4.3) 

The nodal force matrix can be calculated by making use of eqn. (4.1) and eqn. (4.2) 
where v  is only fluctuating in place and v  is fluctuating in place and in time, which 
gives: 

 

( ) ( ) ( )
( ) ( )

( ) ( )

2 2 2
1 11 1 1 1 1

11 1 1
2 2

11

2 21
1

.
.
. . . .1

. . . . 2 . . . .
. .

. .

k m
k m

i i i iki ik
h

n nm
n n nmn

v v v v v v
F F F
F F v v v vAC

F F
v v v v

ρ

⎡ ⎤+ + +⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ + +⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦

+ +⎢ ⎥⎣ ⎦

F  (4.4) 
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NEN 6702 assumes that the wind load on a structure for 9z m< is equal to the wind 
load for 9z m= . For the sake of simplicity for the Matlab files it is assumed that for 
the constant part it holds that ( ) ( )9 m 9 mv z v z≤ = =  and for the fluctuating part it 
holds that ( ) ( ), 9 m, , 9 m,v y z t v y z t≤ = = . 

4.2. Mean part of the wind speed 
The hourly-averaged wind speed varies with the height above ground level and can 
be described by [5]: 

 ( ) *

0

ln wz du
v z

zκ
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

 (4.5) 

where: 

*u  Friction velocity [m/s] 
κ  Von Karman constant [1]; 0,4=   
z  height above the surface of the earth [m] 

wd  displacement height [m] 
0z  roughness length [m] 

The values can be found in the last but one column of Table 1. 

 Open flat terrain Urban 
 I II III I II III 
*u 2,25  2,30 2, 25 3,08 ,2 82 2,60

0z 0,1 0,2  0,3  0,7  ,0 7  0,7  
wd 0  0  0  3,5  ,3 5  3,5  
ck 1,0  1,0  1,0  0,9  ,0 9  0,9  

Table 1 Parameters for hourly averaged wind speed, NEN 6702 page 128 
Substituting in eqn. (4.5) results in a wind speed profile as can be seen in Figure 4.2. 
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Figure 4.2 Extreme hourly-averaged wind speed profile once in 12,5 years, once in 50 years 

under unfavourable direction 
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4.3. Fluctuating part of the wind speed 
The fluctuating part of the wind speed v  will be modelled with the Davenport 
spectrum [1]. The variance spectrum of the wind can be written as a function of the 
Davenport spectrum by: 

 ( )
2

D v
vv

F
S f

f
σ

=  (4.6) 

with: 

( )
2

4 / 32

2
3 1

D
xF
x

=
+

  Davenport variance spectrum; 

vσ  standard deviation of the wind speed; 

(10)
gustfL

x
v

=  dimensionless frequency; 

 
This gives the variance spectrum of the wind speed as a function of f : 

 ( )

2

2

4 / 32

(10)2
3

1
(10)

gust

v
vv

gust

fL
v

S f
ffL

v

σ
⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞⎛ ⎞
⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.7) 

with: 
f  frequency; 
(10)v  mean wind speed at 10 m height 10 m/s= see Figure 4.2 ; 
gustL  characteristic length of a wind gust. 

If the spectrum is written as a function of the circle-frequency ω  the spectrum 

( )vvS ω  is defined such that ( )2

0
v vvS dσ ω ω

∞

= ∫ . Where the spectrum is written as a 

function of f , the spectrum ( )vvS f  is defined such that ( )2

0
v vvS f dfσ

∞

= ∫ . The relation 

between those spectra can be given by: 

 ( ) ( ) ( ) 1
2 2 2vv vv vv vv vv

dfS d S f df S S f S f
d

ω ωω ω ω
π ω π π

⎛ ⎞ ⎛ ⎞= → = = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.8) 

With the help of eqn. (4.8), the variance spectrum of eqn. (4.7) can be written as a 
function of ω : 

 ( )

2 2

2 2

4 / 3 4 / 3 22 2

2 (10) (10)21 2
2 3 6

1 1
2 (10) 2 (10)

v v
vv

L L
v v

S
L L

v v

ω
π πσ ωσ

ω
π ω πω ω

π π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (4.9) 

The standard deviation of the wind can be calculated with: 

 v vIσ =  (4.10) 

With: 
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( )

0

ln

c

w

k
I z

z d
z

=
⎛ ⎞−
⎜ ⎟
⎝ ⎠

 Turbulence intensity factor; 

0,9ck =  is a factor see Table 1 

Taking for v  eqn. (4.5), this results in: 

 * 0,9*2,82 6,35 m/s
0,4v

kuσ
κ

= = =  (4.11) 

The variance spectrum of the wind speed as a function of ω is plotted in Figure 4.3. 
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Figure 4.3 Spectrum of the wind speed 

A realisation of the wind in the time domain can now be calculated by dividing the 
ω domain into a finite number of points kω  equally distanced at ωΔ . The fluctuating 
part of the wind speed is now described by: 

 ( )
1

sin
N

k k k
k

v a tω ϕ
=

= +∑  (4.12) 

with: 
2k vv ka S ω= Δ  

kϕ  Random number between 0 and 2π  

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

t(s)

v(
m

/s
)

 
Figure 4.4 A realization of the fluctuating wind speed 
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4.3.1. Correlation between the wind speed at different locations 
The fluctuating part of the wind speed is not only varying in time but also in place. 
The wind speed at the locations on the facade of the building is naturally not the 
same at each moment. When there is a peak of the wind speed at the top of the 
building there may not be a peak at the bottom of the building too. This is due to the 
dimensions of a wind gust.  
When we assume that the wind speed at every node is the same we speak about total 
correlation, but this is much too conservative: see Figure 4.5. When the wind speed 
at the different nodes are totally independent of each other this is called 
uncorrelated in z-direction. Placing 46 uncorrelated signals on the building with a 
mean of 0 /m s will result in a mean wind speed on the building of about 0 m/s . The 
result of this is that the dynamic load will also be about zero. The reality is 
somewhere in between totally correlated and uncorrelated.  
The correlation between the wind speeds at different points can be described with 
cross-spectra: 

 ( ) ( ) ( ) ( )
1 2 1 1 2 2 1 2

2 2
v v v v v v v vS f S f S f coh f=  (4.13) 

with: 
( )

1 2v vS f  the cross-spectrum of the wind speeds in points 1 and 2 
( )

i iv vS f  auto-spectrum of the wind in point i  
( )

1 2v vcoh f  coherence between the wind speeds in point 1 and 2 

and: 

 ( )
1 2

2 2 2 2
1 2 1 2( ) ( )

exp
(10)

z y
v v

f C z z C y y
coh f

v

⎛ ⎞− + −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 (4.14) 

with: 
,y z  lateral and vertical coordinate, respectively; 
,z yC C  coherence constant in z- and y-direction, respectively see Table 2 

 zC yC

lateral spectrum 7  10
Table 2 Coherence constants 

To take into account the correlation, use is made of a Matlab program [9]. This 
program calculates the wind speed for every predefined point with coordinates ( ),y z  
as a discrete function of the time. Before running the file, the standard deviation, 
the mean wind speed and the coherence, see eqn.(4.14), have to be defined. The 
Matlab program can be seen in Appendix I.  
The façade of the building has to be divided in equal areas with in the centre of each 
area a point for which the wind speed as a function of time will be calculated. By 
knowing the wind speed in a point, the wind load on the considered area can be 
calculated with eqn. (4.1). The wind loads on the different areas will be lumped in 
the 48 nodes. 
Now the question is: for how many points does the wind speed need to be calculated, 
or in other words, how fine should the mesh be. If the wind speed is calculated for 
too few points or for an area that is too big, there will still be still too much 
correlation taken into account. For example, calculating the wind speed 
at ( ) ( ); 13 m;48 my z =  and at ( ) ( ); 13 m;96 my z =  and assuming that the wind at the 
lower half of the building equals the wind speed at ( ) ( ); 13 m;48 my z =  and the wind 
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speed at the upper half of the building equals the wind speed at ( ) ( ); 13 m;96 my z = is 
inaccurate. The reason for this is because, now, fluctuations within the lower- and 
upper half are not taken into account. To take into account these fluctuations the 
mutual distance between the different points has to be small enough. Or in other 
words the areas have to be refined by increasing the number of points. 
How many points/areas have to be evaluated can be found by simulations. Too few 
points give too little variation and this gives too heavy accelerations. Increasing the 
number of points will smooth out the peak values, which means less variation and a 
less heavy dynamic behaviour. By taking more and more points, the loading will 
converge to the “real” loading on the building. 
A totally correlated signal gives a peak value for the acceleration of the top of the 
building of about 20,35 m/s as can be seen in Figure 4.5. To make clear what totally 
correlated means, the force on the top and the bottom of the building has been 
represented in Figure 4.5a). The graphs of the force are parallel to each other, 
because the fluctuating part of the wind speed at the top is equal to the fluctuating 
wind speed at the bottom. In Figure 4.6 the results can be seen of the calculation of 
the wind speed at 46 points. Note that the wind load on the first and second node 
equals the wind load on the third node as prescribed in NEN 6702, which delivers 
the force on 48 nodes instead of 46. Figure 4.6a) shows that the graphs of the force at 
the top and the bottom are not parallel to each other. This is because the fluctuating 
part of the wind speed at the top and the bottom of the building are not totally 
correlated. It must be noticed that all the simulations give upper bounds of the 
acceleration of the top of the building, so they are all safe. The wind speed and the 
accompanying accelerations of the top of the building have been calculated for 46, 
460 and 910 points. See respectively Figure 4.6, Figure 4.7 and Figure 4.8. The 
graphs are plotted with an offset of 50 s , because it takes some time for damping out 
of the relative high influence of the initial conditions.  
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Figure 4.5 Totally correlated: a) forces on the nodes; b) acceleration of the top 
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Figure 4.6 Wind speed calculated at 46 points: a) forces on the nodes; b) acceleration of the 

top 
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Figure 4.7 Wind speed calculated at 460 points, acceleration of the top 
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Figure 4.8 Wind speed calculated at 910 points:  

a) displacement of the top; b) acceleration of the top. 
It is clear that calculating the wind speed in 460 points will give a quite large 
reduction of the acceleration compared to the simulation with the wind speed 
calculated at 46 points. From this it can be concluded that taking 46 points will give 
a too coarse mesh. Refining the mesh further to 910 points will give a little more 
reduction of the acceleration of the top of the building compared to the simulation 
with the wind speed calculated in 460 points. Refining the mesh further will give no 
considerable reduction of the acceleration of the top of the building. From here on, 
the acceleration according to Figure 4.8 will be called “the uncontrolled acceleration 
of the top of building”.  
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5. Control algorithm 
 

5.1. Linear negative feedback: displacement and velocity control 
The control force will be most effective when positioned at the top. The active control 
system can mechanically be schematised as a control force at the top of the building, 
Figure 5.1. 

n1

n2

ni

n48 Fc(t)

 
Figure 5.1 Schematisation of the active control force on the building 

The equation of motion, eqn. (3.1) can now be rewritten as: 
 cF+ + = − fMu Cu Ku F E  (5.1) 

Where cF  is the control force and fE is a 48x1 vector that defines the location of the 
control force with respect to the nodes: 

 

0
0
.
0
1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

fE  (5.2) 

The magnitude of ( )cF t  can be coupled to the velocity and displacement of the top of 
the building. This method is called linear negative feedback control. Coupling the 
active control force to the acceleration of the top of the building is not an option as 
will become clear in section 5.1.1. See also [6] and [7]. 

 ( ) [ ] [ ]

1 1

2 2

48 48

0 0 . 0 . 0 0 . 0 .
. .

c v d v

u u
u u

F t k k

u u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= + = +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

dk u k u  (5.3) 

Where dk  and vk  stand for, respectively displacement control and velocity control. 
Combining eqn. (5.1) and eqn. (5.3) gives: 
 ( ) ( )+ + + + =f v f dMu C E k u K E k u F  (5.4) 

Where f vE k  and f dE k gives a 48x48 matrix with only zeros except for the entry 
(48,48). So vk  gives extra damping and dk  gives extra stiffness to the 48th degree of 
freedom as can be seen in Figure 5.2.  Displacement control gives a higher stiffness 
to the system, which results in a higher eigenfrequency, which makes the system 
less sensitive to the wind load. A higher stiffness will also give smaller 
displacements. Velocity control gives more damping to the system, which gives a 
faster convergence of the system to the desired value. It will be clear that coupling 
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the active force to the acceleration of the top of the building is the same as adding 
mass at the top of the building. This will give no changes in the dynamic behaviour 
of the structure. More about the effect of displacement control and velocity control 
can be found in [6]. 

n48

ni

n2

n1

Fc=kvu+kdu k=kd

c=kv

n1

n2

ni

n48

F
F=kdu48+kvu48

u48 u48 u48

 
Figure 5.2 The effect of adding an active control force to the structure: a) mechanical model 

of the total structure; b) roof of the building with mass and jack. 
In the case of a building loaded by wind, displacement control will not work. Because 
the wind load consists of a constant part and a fluctuating part, the displacement 
also consists of a constant and a fluctuating part. See Figure 4.8 b). If the control 
force is now coupled to the displacement, it should be coupled only to the fluctuating 
part of the displacement. But in practice the magnitude of the fluctuating part and 
the constant part is not known. Coupling of the force to the constant and fluctuating 
part of the displacement would give a reduction of the displacement. But the aim is 
not reducing the displacement, but reducing the accelerations. Another problem 
would be that the control force will also have a constant part, which results in a 
constant acceleration of the mass of the active control system. 
The only possibility left is coupling the force to the velocity of the top of the building. 

5.1.1. Energy consideration 
When the dynamic behaviour of the building is heavy, this means that there is a 
large amount of energy in the building in the form of distortion- and kinetic energy. 
The aim of the active control system is reducing these forms of energy by subtracting 
kinetic energy from the system with the accelerating mass. The subtracted energy 
equals: 

 48c cE F dx F v dt= =∫ ∫  (5.5) 

When the subtracted energy is get negative, this means that the active control adds 
energy to the moving structure, which will cause still heavier dynamic behaviour. 
Now it can be shown why coupling the active control force to the velocity of the top of 
the building is most effective. Assuming for the displacement of the top of the 
building: 
 ( )48 48ˆ sinu u tω=  (5.6) 

Then the velocity equals:  
 ( )48 48ˆ cosv u tω ω=  (5.7) 

And the acceleration equals:  
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 ( )2
48 48ˆ sina u tω ω= −  (5.8) 

 
With dk , vk  and ak  for respectively displacement-, velocity-, and acceleration control 
the energy subtracted from the moving structure will be: 

 ( )48 48 48 48d v aE k u k v k a v dt= + +∫  (5.9) 

Substituting eqn. (5.6), eqn. (5.7) and eqn. (5.8) gives: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
48 48 48 48

2 2 2
48

ˆ ˆ ˆ ˆsin cos sin cos

ˆ sin cos cos

d v a

d a v

E k u t k u t k u t u t dt

u k k t t k t dt

ω ω ω ω ω ω ω

ω ω ω ω ω ω

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= − +⎣ ⎦

∫
∫

 (5.10) 

It is clear that only velocity control will always have a positive contribution to the 
subtracted energy by the active control system. Displacement and acceleration 
control will give a negative contribution to the subtraction of energy from the moving 
building, and therefore it will be less effective. 

5.2. Feedback loop in Simulink 
The uncontrolled model of the system of Figure 3.1 is extended with a feedback loop, 
see Figure 5.3. 
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for every timestep

 
Figure 5.3 Simulink model with feedback loop for active control 

The active control system is integrated in a subsystem which can be seen in Figure 
5.4, with as input the velocity of the top and as output the active control force. The 
second block from the left will multiply the velocity with vk  which gives a force as 
output. In the next block to the right there is a transport delay which will be treated 
in section 6.2.3. The second last block on the right makes a (48x1) vector, with only 
zeros except for the last entry. This force vector is the output vector of the subsystem 
which will be added to the vector of the wind load. See Figure 5.3. By setting 

53*10  kgvk =  and the transport delay equal to zero and running Simulink again with 
the input forces - as can be seen in Figure 4.8 a) - the results of Figure 5.6 will be 
obtained, which is a notable reduction compared with the acceleration of the top of 
the building of the uncontrolled system: see Figure 5.5. 
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Figure 5.4 Simulink subsystem active control 
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Figure 5.5 Acceleration of the top of the building of the uncontrolled system 
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Figure 5.6 Acceleration of the top of the building of the controlled system 
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5.3. Displacement of the mass 
In Figure 5.7 a part of the active control force is shown. This force will be generated 
by accelerating the mass of the active control system. The acceleration of the mass of 
the active control system can be written as: 

 c
m

F
a

m
=  (5.11) 

Where: 

ma  acceleration of the mass 2m/s⎡ ⎤⎣ ⎦ ; 

cF  active control force [ ]N ; 
mm  mass [ ]kg . 

100 120 140 160 180 200
−50

0

50

t(s)

F
(k

N
)

 
Figure 5.7 Active control force 

The velocity of the mass can be found by integrating the acceleration of the mass in 
time. Integrating once more will give the displacement of the mass. By integrating 
twice, two integration constants can be found. In determining these there will be a 
problem which will be explained here. Assume that the acceleration equals a single 
sine function, then the velocity and displacement of the mass can be determined 
with: 
 ˆ sin( )ma a tω=  (5.12) 

 1
0

ˆ
( ) cos( )

t

m m
av t a dt t cω
ω

= = − +∫  (5.13) 

 1 22
0

ˆ
( ) sin( )

t

m m
au t v dt t c t cω
ω

= = − + +∫  (5.14) 

By taking the initial velocity and the initial displacement equal to zero 
(0) (0) 0m mv u= = , the constants can be determined: 

 1 1

ˆ ˆ
(0) 0m

a av c c
ω ω

= − + = → =  (5.15) 

 2(0) 0mu c= =  (5.16) 

With 1 0c ≠ the displacement, eqn. (5.14), will grow in time, which will result in 
unacceptable large displacements as can be seen in Figure 5.8. 
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Figure 5.8 Integrating the acceleration two times 

In this case - where the acceleration is one single sine function - it is easy to avoid 
this growth of the displacement by setting the initial velocity to (0) 1 m/smv = − . In 
reality, the wind load consist of large number of sines, so the acceleration of the 
mass is also built up of a large number of sines. See Figure 5.7. Now it is impossible 
to determine the initial velocity such that 1 0c = . Even if it were possible there is 
another situation in which the displacement of the mass will have a constant 
growth. This is when the wind load is increasing at a certain time. As result of this, 
there will be a ramp in the displacement of the top of the building as can be seen in 
the top graph of Figure 5.9. By splitting up the displacement in a fluctuating part 
and a mean part, it can be made clear what the displacement of the mass of the 
active control system will be. Now only the mean part will be discussed because this 
part will cause a growing displacement of the mass. 
The velocity of the top of the building 48v is the derivative of the displacement of the 
top of the building which will be a step function. The active control force is related to 
the velocity of the top of the building as 48c vF k v= so the acceleration of the mass 
equals 48 /m v ma k v m=  which is also a step function. Integrating one time will give the 
velocity of the mass which is a ramp function. Integrating once more will give the 
displacement which will grow in time. This growth in time is shown in the bottom 
graph of Figure 5.9.
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Figure 5.9 A ramp in the mean part of the displacement of the top will result in a growth of 

the displacement of the mass. 
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5.4. Displacement control strategy 
In trying to limit the displacement of the mass, different control algorithms - which 
were all unsuccessful – were tested: see Appendix I. It became clear that limiting the 
displacement of the mass is an important part of the control algorithm of the active 
control system. Velocity control alone or velocity control with a gain depending on 
the velocity of the top and the displacement of the top (see Appendix I), will not give 
the desired behaviour. In controlling the displacement of the mass the active control 
force has to be coupled to the displacement of the mass. Also the velocity of the mass 
can be coupled to the active control force [7]: 
 1 ; 2 48 3 ;c r m r mF g u g v g u= + +  (5.17) 

Here ;r mu  is the relative displacement of the mass with respect to the top of the 
building and 1g to 3g  are the control gains. The calculation of the absolute 
displacement of the mass equals, see Figure 5.10: 
 48 ;m r mu u u= +  (5.18) 

u48 um

ur;m

FcFc

 
Figure 5.10 Interaction force and absolute and relative displacement of the mass 

When ;r mu and ;r mu have to be limited cF  has to decrease and when 48v  has to be 
limited cF  has to be increased. Therefore 1 20, 0g g≤ ≥ and 3 0g ≤ . See Figure 5.10. The 
equation of motion of the mass is: m cmu F= . 
The equation of motion of the building eqn. (5.1) will be expanded by adding the 
equation of motion of the mass: 

 0 0 0
0 0 0 0 0 0 1 c

m m m

F
u u um
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
fu u uM C K F E  (5.19) 

This will be written as: 
 ; cF+ + = −m m m m m m m f mM u C u K u F E  (5.20) 

With this formulation, the state space formulation (see chapter 3) will be redefined 
and substituted in the Simulink model. 
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Besides the displacements and velocities of the nodes, the state space block of 
Simulink will now also give the absolute displacement and absolute velocity of the 
mass. With this model, integration of the velocity of the mass is not necessary for 
determining the displacement and velocity of the block. The active control force eqn. 
(5.17) has to be rewritten with respect to the absolute displacement and velocity of 
the mass: 
 ( ) ( )1 48 2 48 3 48c m mF g u u g v g v v= − + + −  (5.22) 

The Simulink model including the displacement and velocity of the mass can be seen 
in Figure 5.11. The subsystem which calculates the active control force can be seen 
in Figure 5.12. 
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Figure 5.11 Simulink model with displacement and velocity of the mass 
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Figure 5.12 Subsystem with as output the control force 

As a first estimation the gains and the mass are determined with the trial and error 
method. The gain for the velocity will be 5

2 6*10 Ns/mg = . The maximum displacement 
of the mass (about 2 m ) multiplied by 1g  may be estimated at about 20 times as 
large as the maximum velocity of the top of the building (about 0,1 m/s ) multiplied by  

2g . Therefore 4
1 3*10  N/mg = −  which will work as a spring on the mass, is about 20 

times as small as 2g . The weight of the mass will be assumed to be 46*10 kgmm = . The 
velocity of the mass will be limited by 3g  and therefore 3g  can be seen as a damper of 
the mass. The value will be determined as it is a single mass damper system with a 
relative damping of about 5%ζ = . This gives 

4 4 3
3 12 2 3*10 *6*10 0,05 5*10  Ns/mmg g m ζ= − = − ≈ − . Running this model with the input 

wind load from section 4.3.1 will give good results: compare Figure 5.13 with Figure 
4.8. The accelerations of the top of the building are considerably less and the 
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displacement of the mass is limited. It can be concluded that this is a good control 
algorithm.  
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Figure 5.13 Acceleration of the top, global displacement of the mass and active control force 

5.5. Energy consumption 
The acceleration of the mass will be facilitated by a motor. The mechanical power 
required for accelerating the mass follows from: 
 *P F v=  (5.23) 

The mechanical power can be determined with the output of Simulink, which results 
in Figure 5.14. 
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Figure 5.14 Required effective power of the actuator 

The work done by the mass equals: 

 W Pdt= ∫  (5.24) 

This can also be determined with Simulink which results in Figure 5.15. 
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Figure 5.15 Work done by the actuator 

The real energy consumption and required power of the jack will be higher due to 
energy losses. These losses are mainly caused by transformation of electrical to 
mechanical energy and the friction of the mass on the rail. The amount of these 
losses should be determined in a mechanical engineering study. 
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6. Implementing an active control system in the Juffertoren 
 
In earlier chapters especially the qualitative aspects of an active control system has 
been considered. In this chapter, the dimensions of the system will be determined so 
that the active control system can be implemented in the Juffertoren. 

6.1. Acceptable comfort level 
According to NEN 6702 [5] vibrations are annoying when the acceleration exceeds a 
value depending on the frequency according to Figure 6.1. 
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Figure 6.1 limitation demand for the acceleration according to NEN 6702 figure 21 

The acceleration of the top of the building without the active control system is shown 
in Figure 6.2. 
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Figure 6.2 Acceleration of the top of the building without active control 

The frequency belonging to this acceleration equals the lowest eigenfrequency of the 
structure. See section 3.1.2: 1 0,235 Hze ef T −= = . The peak acceleration of the top of the 
building equals: 2

48;max 0,0821 m/sa = which is lower than the maximal acceptable 
acceleration. We may assume that 48a  is a normally distributed signal. The standard 
deviation of 48a  can be determined from: 

 ( )
1
22

;48 48; ;48
1

1 n

a i a
i

a
n

σ μ
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  (6.1) 
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Where: 
n  the number of discrete time points for which 48a  have been calculated; 

48;ia  the acceleration of the top of the building at time point i ; 
;48aμ  the mean value of 48a . 

With 2
;48 0,0261 m/saσ =  and 5 2

;48 1,62*10  m/saμ = , calculated with Matlab, the expected 
peak value of the acceleration for a given time range follows from: 

 ( )48; ;48 ;48 2 lnpeak a aa Nμ σ= +  (6.2) 

Where N  is the number of draws which follows from the number of local peaks in 
the total time range: 
 s eN T f=  (6.3) 

Where:  

sT  time range of the signal; 750 ssT =  

Filling in eqn. (6.2) gives: 

 ( ) 2
48; ;750 0,0261 2ln 750*0, 235 0,0839 m/speaka = =  (6.4) 

The difference between the expected peak value and the actual one equals: 
( )1 0,0821/ 0,0839 *100 2, 2%− =  which is quite accurate. The expected peak value for a 
storm of 6 hours 21600 s  can be calculated from: 

 ( ) 2
48; ;21600 0,0261 2ln 21600*0,235 0,108 m/speaka = =  (6.5) 

According to NEN 6702 the limitation demand for the peak value of the acceleration 
follows from: 

 2 ;1
max

1

1,6 w t mp C b
a a

φ
ρ

= <  (6.6) 

Where: 
a  limitation demand of the acceleration according to Figure 6.1 20,17 m/sa = ; 

1ρ  mass of the building per meter height, see Appendix I  
 5 5

1 6,3*10 / 3 2,1*10  kg/mρ = = ; 
mb  average width of the building perpendicular to the wind direction 26,3 mmb = ; 
tC  summation of the shape factor, See section 4.1 1, 2tC = ; 

;1wp  value for the varying part of the wind pressure ( ) 2
;1 100ln / 0, 2 660 N/mwp h= = ; 

2φ  value depending on the dimensions, the eigenfrequency and the damping; 

 
( ) ( )

2 / 3

2
0,0344

1 0,12 1 0, 2
e

e e m

f
f h f b

φ
ς

−

=
+ +

 

Where: 
ef  eigenfrequency 1 0, 235 Hzef T −= = ; 

ς  damping ratio, see section 2.5 0,01ς = ; 
This gives:  

 
( ) ( )

2 / 3

2
0,0344*0,235 0,892

0,01 1 0,12*0, 235*144 1 0,2*0, 235*26,3
φ

−

= =
+ +

 (6.7) 
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Filling in eqn. (6.6) gives: 

 2 2
5

0,892*660*1,2*26,31,6 0,149 m/s 0,17 m/s
2,1*10

= <  (6.8) 

The expected peak value for a six hours long storm derived from the Simulink 
simulation can be validated by comparing it with the maximum acceleration 

according to NEN 6702, calculated with eqn. (6.6): max;

48; ;21600

0,149 1,38
0,108

NEN

peak

a
a

= = .  

The calculated maximum acceleration according to eqn. (6.6) can be reduced further 
by taking into account the aerodynamic admittance factor ( )efχ . So the accelerations 
of the top of the building found with Simulink and the accelerations found with the 
rule of thumb of NEN 6702 do not exclude each other. 
Now according to eqn. (6.8) no more calculations of the accelerations of the building 
are required. So it can be concluded that an active control system is not required for 
the Juffertoren according to NEN 6702. This is not in accordance with the design 
calculations of DHV. DHV has chosen for a conservative calculation in the 
preliminary design. In this manner changes later on in the design stage, which will 
change the stiffness of the structure will not give problems. In this project, my 
intention is to apply an active control system. For this reason the demand for an 
acceptable acceleration level is intensified to: 2

48; ;750 0,045 m/speaka < . 

6.2. Parameter study 
The active control system parameters are the mass and the control gains, 
respectively mm  and 1g , 2g  and 3g . In examining the behaviour of the system when 
the active control parameters are changed the equation of motion will be rewritten. 
The active control force, (see eqn. (5.22)), follows from: 
 1 1 48 2 48 3 3 48c m mF g u g u g v g v g v= − + + −  (6.9) 

The displacement of the mass ( mu ) is about 20 times as large as the displacement of 
the top of the building ( 48u ). Therefore 1 48g u  can be neglected in the active control 
algorithm. Simulations in Simulink affirm this conclusion. Now substituting eqn. 
(6.9) without 1 48g u  in eqn. (5.19) leads to: 
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 (6.10) 

Substituting the active control force in the damping and stiffness matrix gives: 
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 (6.11) 

From eqn. (6.11), it can be concluded that, considering the displacement of the mass, 
the damping of the mass equals 3g . Taking 3 0g =  will result in unstable behaviour 
as can be seen in Figure 6.3. It will be clear that 3g  may not be too small. 
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Figure 6.3 With 3 0g =  the displacement of the mass will be unstable 

The control gain 1g  is equivalent to a spring connected to the mass. Taking 1 0g =  
which is equivalent to only a mass with an inertia and friction will result in very 
large displacements of the mass. See Figure 6.4. 
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Figure 6.4  With 1 0g =  the displacement of the mass will become very large 

It will be clear that when presuming that 2 0g = , the acceleration of the top will not 
be limited compared to the uncontrolled system.  

6.2.1. Varying the control gains and the mass of the actuator 
When simulations with different control gains and different masses are performed 
there must be a measure for comparing the qualities of the different systems. While 
doing this a reference model is taken with: 46*10  kgmm = , 4

1 3*10  N/mg = − , 
6

2 1*10  Ns/mg =  and 3
3 5*10  Ns/mg = − . These values are chosen by the “trial and error” 

method. Result of the simulation for the reference model can be seen in Figure 6.5. 
Measures for the quality of the system are the peak values of the acceleration of the 
top of the building, the displacement of the mass and the peak value of the required 
value for accelerating the mass. Other interesting variables are the peak values of 
the velocity of the top and the velocity of the mass. These are interesting because 
these determine together with the displacement of the mass the active control force, 
see eqn. (6.9).  
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Figure 6.5 a) acceleration of the top, b) global displacement of the mass, c) active control force 
 
The quality measures for the reference model are shown in Table 3. 
 

Reference model: 46*10  kgmm = , 4
1 3*10  N/mg = − , 6

2 1*10  Ns/mg =  and 3
3 5*10  Ns/mg = −  

( )2
48; m/speaka  ( ); mm peaku  ( ); kNc peakF  ( ); kWc peakP  ( )48; m/speakv  ( ); m/sm peakv  

0,0445  1,79  69,7  30,4  0,0281 1,34  
Table 3 Quality measures of the reference model 



 Tall storeys: active control of wind impact on high-rise buildings 

40 

Six new variables are defined which represent the quality measures normalized to 
the quality measures of the reference model of Table 3. 
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m peak
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A number of simulations has been made with different control gains and masses. For 
each simulation only one parameter differs from the reference model. For every 
simulation the normalized quality measures have been determined. The results of 
these simulations can be seen in Figure 6.7 - Figure 6.10. Resonance can be expected 
when the eigenfrequency of the active control mass comes close to one of the 
eigenfrequencies of the structure. The eigenfrequency of the undamped active 
control mass can be derived from eqn. (6.9), which leads to: 

 1
m

m

g
m

ω =  (6.18) 

The square of the first and second eigenfrequency of the structure equals 
respectively 2 2 2

1;2 2,19;88,0 rad / sω = . Taking 46*10  kgmm =  and varying 1g , will give 
resonance for: 
 2 5 6

1 1,31*10 ;5,28*10  N/mm ng m ω= =  (6.19) 

Or when 4
1 3*10  N/mg = and the mass mm  will be varied, resonance will occur for: 

 1 4
2 1,37*10 ;341 kgm
n

g
m

ω
= =  (6.20) 

The values for 1 and mm g  which gives resonance will not be in the domain of Figure 
6.7, Figure 6.8 and Figure 6.10. Therefore resonance due to the eigenfrequency of 
the active control mass which gets close to the one of the structure can not be seen 
from these figures. The values for the control gains 1 3g g−  are limited, because at 
some point instability will occur. For 1g  instability will occur for ( )5

1 1*10  N/mg ≤ −  or 
( )5

1 1*10  N/mg ≥ . See Figure 6.6. In this figure the trend of the growing acceleration 
of the top of the building and the displacement of the mass will continue in time. 
This behaviour can be explained with the equation of motion of the mass of the 
active control system which can be derived from eqn. (6.11): 
 ( ) ( )3 1 2 3 48m m m m mm u g u g u g g u u− − = −  (6.21) 
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In this equation the velocity of the top of the building is a function of the motion of 
the mass of the active control system. With eqn. (6.21) the eigenfrequency of the 
mass of the active control system can be derived: 

 1
0;m

m

g
m

ω
−

=  (6.22) 

With ( )5
1 1 10  N/m*g = −  and 46*10  kgmm =  the eigenfrrequency of the mass equals 

0; 1, 29 rad/smω = , which gives a period 0;
2 4,87 smT π
ω

= = . This period can also be seen in 

Figure 6.6. So what happens is that the mass of the active control system gets in its 
eigenmotion. When the mass moves in its eigenmotion the active control force will 
have a period equal to the period of the mass 0; 4,87 smT =  and when the force becomes 
big enough the structure will also oscillate with this period. As a result of this the 
active control force will amplify the oscillation of the structure and the other way 
around. Here we speak about instability. Eqn. (6.21) will make this clear. At the left 
side we see the equation of motion with mass mm  damping 3g−  and stiffness 1g− . On 
the right side we see the force which is proportional to the velocity of the top of the 
structure. When the right side has the same frequency as the eigenfrequency of the 
system on the left side – this is the eigenfrequency of the mass – we get resonance. 
This behaviour will only occur when the period of the mass is smaller than or equal 
to the first period of the structure 0 4,25 sT = . Or in other words, the eigenfrequency of 
the mass is bigger than the natural frequency of the structure. When this is the case 
the displacement of the top of the building will be out of phase compared to the 
control force. But the velocity of the top of the building ( )48u  will be in phase with the 
control force and the control force will be intensified by the motion of the structure. 
When the natural frequency of the structure is bigger than the natural frequency of 
the mass, the velocity of the structure will be out of phase compared to the control 
force. Then the eigenmotion of the mass of the active control system will be 
attenuated by the motion of the structure. Comparable behaviour occurs for 

( )6
2 2*10  Ns/mg ≥  and ( )3

3 1,5*10  Ns/mg ≥ − . These values are out of the range of the 
parameters studies, so further elaboration will not be given here. 

0 5 10 15 20 25 30
−0.5

0

0.5

a 48
(m

2 /s
)

0 5 10 15 20 25 30
−20

0

20

t(s)

u m
(m

)

 
Figure 6.6 Resonance for ( )5

1 1*10  N/mg = −  
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Figure 6.7 Simulation with 7 different masses of the active control system. 
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Figure 6.8 Simulation with 7 different values for 1 .g  Instability occurs for ( )5

1 1*10  N/mg ≤ −  
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Figure 6.9 Simulation with 5 different values for 2g . Instability occurs for ( )6

2 2*10  Ns/mg ≥  
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Figure 6.10 Simulation with 7 different values for 3g . Instability occurs 

for ( )3
3 1,5*10  Ns/mg ≥ −  

Now by choosing the right control gains and mass we have to fulfil the following 
requirements: 

• The maximal acceptable peak value of the acceleration of the top of the 
structure is limited by 2

48; 0,045 m/speaka < . 
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• The width of the building equals 15, 44 m  so the maximum acceptable 
displacement of the mass will be assumed to be 8 m  from its equilibrium 
point, what means that the maximal displacement reaches over the top of the 
building. 

• The required power for accelerating the mass and the active control force 
must be limited because these determine the dimensions of the active control 
system.  

• The dimension of the mass of the active control system itself must be limited. 
Looking to the reference system (Table 3) the first requirement is just satisfied, but 
the displacement of the mass can be a factor 3,5  larger. This is only effective if it 
decreases the required power, the active control force or the mass of the active 
control system.  
What we first try to do is to decrease the mass of the active control system. Figure 
6.7 shows that this gives a considerable decrease of 48; peaka  but it also gives a 
considerable unwanted increase of the required power of the active control system. 
An attempt has been made to compensate for this increase of power by decreasing 

1g , (see Figure 6.8), which will give a little increase of 48; peaka . In this way different 
systems, (see Table 4), have been tested and the results are compared to the 
reference system, see Figure 6.11. The aim of this is tuning the system so that it will 
work with a lighter mass, with the same peak value for the acceleration of the top of 
the building and an acceptable value for the peak of the required power.
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system ( )3*10 kgmm  ( )3

1 *10 N/mg ( )6
2 *10 Ns/mg  ( )3

3 *10 Ns/mg

1 (reference system) 60  30−  1  5−  
2  30  5−  1  5−  
3  10  5−  1  5−  
4  10  2−  1  5−  
5  10  2−  2  5−  
6  10  10−  1  5−  
7  10  2−  1,5  5−  
8  10  2−  1,25  5−  
9  10  1,5−  1,5  5−  

10  5  1,5−  1,5  5−  
Table 4 Different systems have been tested in search of the optimal system 

Comparing the results of system 5 with the reference system, it can be concluded 
that with a 6 times smaller mass the accelerations at the top are smaller, but the 
peak value of the displacement of the mass and the required power is somewhat too 
high. The latter can be reduced by a lower value for 2g  - see system 7 and 8. 
Increasing 1g  will also give an improvement considering the peak value of the 
required power - see system 6. In general, it holds that, when the mass decreases, 
the active control force remains equal, so the acceleration of the mass increases. This 
results in increasing velocities, displacements and required power for the active 
control system. The choice is made to apply a light mass on a rail with a maximum 
displacement that reaches just over the top of the building. So finally system 10 is 
chosen as the best system to apply to the Juffertoren. The configuration of this 
system will be worked out in section 6.4. The results of the simulation for system 10 
can be seen in Figure 6.12. 
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Figure 6.11 Normalized outputs of the peak values of the different systems 
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Figure 6.12 Results for system 10 

6.2.2. Varying the mass, stiffness and damping of the structure 
In chapter 2, the mass, stiffness and damping of the structure have been determined 
but in fact these parameters possess some uncertainty. In this section, I will 
examine what the influence is on the structural behaviour of some deviation in these 
structural parameters. It will be most transparent when all the values (the system 
parameters as well as the quality measures) will be normalized to the values of the 
system chosen in previous section (system 10). Here system 10 of previous section is 
called the reference system, so as not to confuse it with the reference system in 
previous section. 
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Reference model: 35*10  kgmm = , 3
1 1,5*10  N/mg = − , 6

2 1.5*10  Ns/mg =  and 3
3 5*10  Ns/mg = −

( )2
48; m/speaka  ( ); mm peaku  ( ); kNc peakF  ( ); kWc peakP  

0,0447  7,72  41,3  180  
Table 5 Quality measures of the reference model 

Four new variables are defined which represent the quality measures normalized to 
the quality measures of the reference model of Table 5. 
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Now 6 systems will be tested, each with one parameter different from the reference 
system as shown in Table 6.  

system difference from reference system 
1  
2  25%  more mass of the structure 
3  25%  less mass of the structure 
4  25%  more stiffness of the structure 
5  25%  less stiffness of the structure 
6  10%  more damping of the structure 
7  25%  less damping of the structure 

Table 6 Varying mass, stiffness and damping of the structure 
The results for the normalized peak values of the acceleration of the top, the 
displacement of the mass, the active control force and the required power can be 
seen in Figure 6.13. It can be seen that more or less damping has hardly any 
influence on the structural behaviour. The influence of more or less mass or stiffness 
on the acceleration of the top of the building is considerably more, but this difference 
will also be expected for the uncontrolled system. Figure 6.13 makes once more clear 
that adding stiffness (equivalent to velocity control) to the structure is the best way 
of reducing the accelerations of the top of the structure. 
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Figure 6.13 The result of an inaccurate determination of the system parameters  

6.2.3. Time delay 
When the top of the building has a specific velocity, the magnitude of the control 
force can be determined. When this control force is applied, the velocity of the 
building is just changed, so that the control force is somewhat later than desired. In 
other words, there will be some time delay which is the sum of the time required to 
carry out the following actions: 
- acquiring the data from the sensor 
- calculating the desired control force 
- transmitting the control force signal to the actuator 
- ramping up the actuator to the desired force level 
The peak values of the quality measures, scaled to unity for no time delay, are 
determined with Simulink for different time delay dt  as can be seen in Figure 6.14.  
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Figure 6.14 The effect of time delay 

The value for time delay in practice will depend on the system characteristics and 
will be in the order of magnitude of 0,01 s [7]. For small time delay the quality 
measures will hardly differ from the system without time delay.  
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The big disturbance around 0,336 sdt =  can be explained with the second 
eigenfrequency. The second eigenfrequency  2 9,38 rad/sω =  has been determined with 
Matlab; see also section 7.2. The oscillation time belonging to this frequency equals  

2
2

2 0,670 sT π
ω

= = . This equals twice the time delay 0,336 sdt = . This means that  

the control force for the second eigenmotion is just applied half a period later than 
desired, which causes resonance. 

6.2.4. Disturbances of the active control force 
The magnitude of the active control force is a function of the displacement of the 
mass and the velocity of the mass and the top of the building. In the measurements 
of these variables disturbances will occur. Also in the driving gear disturbances can 
be expected. To gain some insight into the consequences of disturbances in the active 
control force, simulations with a disturbed active control force have been carried out: 

 ( ) ( ) ( ); * 1c disturbed cF t F t y t= +⎡ ⎤⎣ ⎦  (6.27) 

Where y  is a normally distributed random signal, with a mean 0μ = and a standard 
deviation yσ . A number of simulations have been carried out with different values 
for the standard deviation. There seems to be a linear relation between the quality 
measures of the system, judging from eqn.(6.23), up to eqn. (6.26), and the standard 
deviation of the signal y  as can be seen in Figure 6.15. Note that a standard 
deviation of 0,1yσ = , means very large disturbances in the control force, which in 
reality would not be expected. 
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Figure 6.15 Disturbance in the active control force 

6.3. Check of the accelerations at lower stories 
When there is no control force, the vibration of the building will be dominated by its 
first eigenmode. Then the accelerations of the building will be maximal at the top. 
When there is a very strong active control force it could be possible that the 
accelerations of the top goes to zero whereas the maximal accelerations occurs 
somewhere between the top and the bottom of the building. Plotting the 
accelerations of some stories makes clear that the accelerations are maximal at the 
top. See Figure 6.16. Simulations with larger gains for the velocity of the top 2g  have 
also been carried out but this does not change the conclusion. 
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Figure 6.16 The accelerations will be maximal at the top 

6.4. Configuration of the system 
On the roof of the building, a rail will be installed with, on top of that, a mass of 5 
tons which is about the mass of 5 small cars. See Figure 6.17. The mass will be self 
driven by an electric motor and to prevent slipping of the wheels the transmission 
can be applied with cogwheels connected to the mass and a chain connected to the 
structure. See Figure 6.18 b). The mass will move with a maximum velocity of about 
30 km/h and a maximum acceleration of about 8 m/s2. Comparing this with a normal 
car we can imagine that the required motor must be very strong. Therefore I asked 
for advice from a company – called “Lenze” – specialised in driving techniques. They 
told me this motion can be made possible with a heavy electric motor. The motor 
with a weight of about 2500 kg will be placed upon the cart. This reduces the 
required adding mass. The electric motor must be provided with a reducer. This is a 
device that ensures that the cart can still be accelerated at higher velocities. The 
cost of this motor including reducer and gear case will be about €50.000. If further 
investigations leads to the conclusion that these high accelerations at high speeds 
are not possible with a normal electric motor, a solution can be found in the linear 
induction motor. This is a motor where the stator is “unrolled” to a strip connected 
with the top of the building between the rails. At the bottom of the cart a big magnet 
is connected. By changing the electrical magnetic field of the stator, forces are 
applied to the magnet connected to the cart. Both solutions have been discussed with 
a consultant of Lenze. The advantage of the linear induction motor compared to the 
electric motor is the high acceleration which can be reached. Disadvantages are the 
expensiveness and the large amount of energy required. Linear induction motors are 
often applied in roller coaster trains and elevators. Independent of the applied 
motor, the friction between the moving mass and rail must be minimized.  
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Figure 6.17 Roof of the building with on top of it a rail with the mass 

The accelerations of the top of the building will continuously be measured by one or 
more accelerometers at the top of the building. The system will only be turned on 
when the peak value of the acceleration exceeds a specific level. The system will 
therefore mostly be in the standby mode, which increases the life-span and decreases 
the maintenance and energy consumption. A glass envelope around the rail and the 
mass could be aesthetically interesting and it provides a good environment for the 
mechanical system. If it adds to the design of the tower it could add a new dimension 
to the Juffertoren.  
To prevent that the mass will reach over the end of the rails, some kind of hard stop 
has to be added, which in practice would not be reached. This hard stop serves only 
for safety in extreme situations which normally will not appear during the lifespan 
of the structure. Nevertheless, there is a probability that the hard stop will be 
reached. The probability that this hard stop will be reached once within for example 
a hundred years can be calculated. In consultation with the principal the acceptable 
probability has to be chosen. It will be obvious taking this acceptable probability 
equal to the probability of exceeding the acceptable accelerations of an uncontrolled 
building according to the code NEN 6702. When the acceptable probability is 
determined, the system can be tuned – by a longer rail or other control gains 1 3g g−  – 
such that this probability will not be exceeded. If the hard stop will be reached 
during a very heavy storm uncomfortable situations will become acceptable on 
condition that this will not cause any damage on the construction.  

 
Figure 6.18 a) Cart without cogwheel b) Cart with cogwheel
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7. Frequency-domain response analysis 
 
With the frequency-domain response analysis, the amplitude of the steady-state 
output of a system as a function of the input frequency can be determined. In section 
6.2 the forces of the active control system have been added to the equation of motion 
of the total system, see eqn. (7.1). As a result of this the damping matrix is not 
proportional to the mass- and stiffness matrix anymore, as this was derived in 
section 2.5. Therefore the well-known method of modal analysis2 [2] will not result in 
a diagonal modal damping matrix; so the system will not be uncoupled.  
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⎥
⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (7.1) 

Another method for analysing the frequency domain response is making use of 
complex quantities.  

7.1. Single degree of freedom system 
First a single degree of freedom system with a harmonic excitation is discussed 

 ( )ˆ cosmu cu ku F tω+ + =  (7.2) 

The harmonic force can also be written as the real part of a complex function, with 
complex amplitude:  

 ( ) ( ) ( )cos Re i tF t F e ωω ω ω⎡ ⎤= ⎣ ⎦  (7.3) 

The particular solution to eqn. (7.2) equals: 

 ( ) ( ) ( )( )cosu t u tω ω ϕ ω= +  (7.4) 

Or in the form of the real part of a complex function with complex amplitude: 

 ( ) ( )Re i tu t u e ωω⎡ ⎤= ⎣ ⎦  (7.5) 

To simplify the nomenclature the symbol Re  will be omitted and at the end of the 
operation the imaginary part is disregarded. Expanding eqn. (7.4) and eqn. (7.5) will 
establish the relationship between the constants. Expanding eqn. (7.4) gives: 

 ( ) ( ) ( ) ( ){ }cos cos sin sinu t u t tω ϕ ω ω ϕ ω ω= −  (7.6) 

Expanding eqn. (7.5) gives: 

 ( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ) ( ) ( )Re Re Im cos sin Re cos Im sinu t u i u t i t u t u tω ω ω ω ω ω ω ω= + + = −  (7.7) 

                                                 
2 The idea behind modal analysis is that the modal mass matrix as well as the modal 
damping matrix and the modal stiffness matrix will be diagonal. When this is the 
case, the modal equation of motion is fully decoupled which results in n  second order 
differential equations. These can be solved easily. 
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Setting the coefficients of ( )cos tω  and ( )sin tω  equal in eqn. (7.6) and eqn. (7.7) leads 
to: 

 ( ) ( ) ( )Re cosu uω ω ϕ ω=  (7.8) 

 ( ) ( ) ( )Im sinu uω ω ϕ ω=  (7.9) 

This leads to the amplitude of the actual particular solution of eqn. (7.4): 

 ( ) ( ) ( )2 2Re Imu u uω ω ω= +  (7.10) 

And the phase angle: 

 ( ) ( )
( )

Im
arctan

Re
u
u
ω

ϕ ω
ω

=  (7.11) 

Above mentioned method also applies for a harmonic force according to eqn. (7.3), 
which leads to: 

 ( ) ( ) ( )2 2Re ImF F Fω ω ω= +  (7.12) 

 ( ) ( )
( )

Im
arctan

ReF

F
F

ω
ϕ ω

ω
=  (7.13) 

Substituting eqn. (7.3) and eqn. (7.5) in eqn. (7.2) leads, after cancelling out i te ω , to: 

 ( ) ( ) ( ) ( )2mu i cu ku Fω ω ω ω ω ω− + + =  (7.14) 

Which is the force displacement relationship expressed in complex amplitudes. With 
the dynamic-stiffness coefficient ( )uFS ω  this can be written as: 

 ( ) ( ) ( ) ( ) ( )2
uFF m i c k u S uω ω ω ω ω ω= − + + =  (7.15) 

With the dynamic-flexibility coefficient or transfer function ( ) ( ) 1
uF uFH Sω ω −= , the 

complex amplitude follows from: 
 ( ) ( ) ( )uFu H Fω ω ω=  (7.16) 

By applying a harmonic force with phase angle 0Fϕ = , (see eqn. (7.2)) the amplitude 
of the response can be determined as follows. With 0ϕ =  and eqn. (7.13) it follows 
that ( )Im 0F ω = . With eqn. (7.4) and eqn. (7.16), the maximum amplitude of the 
response will be: 

 ( ) ( ) ( )uFu H Fω ω ω=  (7.17) 

7.2. Multi degree of freedom system 
The above method can also be applied to the multi degree of freedom system. The 
equation of motion now gives: 
 ( )t+ + =Mu Cu Ku F  (7.18) 

Where M , C  and K  are ( )*n n  matrices and u  and F  are ( )*1n  vectors. By writing: 

 ( ) ( ) i tt e ωω=F F  (7.19) 

 ( ) ( ) i tt e ωω=u u  (7.20) 
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The frequency dependent dynamic-stiffness matrix follows from: 
 ( ) 2

uF iω ω ω= − +S K M C  (7.21) 

With ,   and K M C  from eqn. (3.1) for the uncontrolled system and from eqn. (7.1) for 
the controlled system. With the dynamic-flexibility coefficient or transfer function 

( ) ( ) 1
uF uFω ω −=H S , the maximum real amplitude follows from: 

 ( ) ( ) ( )uFω ω ω=u H F  (7.22) 

Actually we are not interested in the displacements of the structure, but in the 
accelerations of the structure. The relation between the amplitudes of the 
accelerations ( )ωa  and the amplitude of the displacement follows from the second 
derivative of eqn. (7.20). 

 ( ) ( ) ( )
2

2
2

i t i tdt e e
dt

ω ωω ω ω= = −u u u  (7.23) 

Now the amplitudes of the accelerations can be determined from: 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
uF aFω ω ω ω ω ω ω ω= = =a u H F H F  (7.24) 

Where the frequency-response function for the acceleration is: 
 ( ) ( )2

aF uFω ω ω=H H  (7.25) 

This is a (48*48)  matrix for the uncontrolled system and a (49*49)  matrix for the 
controlled system. The transfer function for the acceleration 48a  for a synchronic load 

ˆ cosF F tω=  on all nodes can be found by: 

 ( ) ( )
48 48

48

1
ia F a F

i
H Hω ω

=

= ∑  (7.26) 

This transfer function is determined with the Matlab code of Appendix I. The results 
can be seen in Figure 7.1. The eigenfrequencies can be seen at 

1;2;3;4;5 1,5;  9,4;  26;  52;  87 rad/sω = , which agrees with formerly found eigenfrequencies 
with Matlab, according to the code of Appendix I. The mode shapes belonging to this 
eigenfrequencies are represented in Figure 7.3. In Figure 7.2 the transfer function 
for the controlled system can be seen. It is striking that the reduction of the 
amplitude of the accelerations of the controlled system compared to the uncontrolled 
system will mainly be seen in the lower eigenmodes. This can be explained by the 
following. Considering the first and second eigenmode, both moving in their 
sinusoidal eigenmotion with unit amplitude for the acceleration at the top. See 
respectively eqn. (7.27) and eqn. (7.28).  

 ( ) ( )48 1 48 1 48
1

1 sin cos 1v t a t aω ω
ω

= → = → =  (7.27) 

 ( ) ( )48 2 48 2 48
2

1 sin cos 1v t a t aω ω
ω

= → = → =  (7.28) 

From these equations it follows that the amplitude of the velocity of the first 
eigenmotion is a factor 2 1/ 6,3ω ω =  times the amplitude of the velocity of the second 
eigenmotion. The magnitude of the active control force is proportional to the velocity 
of the top of the building and therefore the active control force for the first 
eigenmotion will be about 6,3  times as large as the active control force for the second 
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eigenmotion. Therefore the active control system will mainly damp the accelerations 
of the natural mode. 
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Figure 7.1 Transfer function of the uncontrolled system of the acceleration of the top of the 

building for a synchronic load on all nodes. 
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Figure 7.2 Transfer function of the controlled system of the acceleration of the top of the 

building for a synchronic load on all nodes. 
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Figure 7.3 The first to the fifth mode shape 
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7.3. Spectrum of the accelerations 
In the previous section it has been shown that the active control system mainly 
damps the accelerations of the natural frequency. Therefore it is important to 
examine if the accelerations of the structure due to the wind load are caused by the 
natural frequency or by the higher eigenfrequencies. Looking to the spectrum of the 
wind speed, (see Figure 4.3) it can be seen that the standard deviation at 

1 1, 48 rad/sω =  is somewhat larger then the standard deviation at the second 
eigenfrequency 2 9,38 rad/sω = . On the other hand the controlled system is much more 
sensitive for the accelerations of the second eigenmode. See Figure 7.2. Therefore it 
is advisable to examine at which excitation frequency the accelerations of the top of 
the building are maximal. This can be made clear by the variance spectrum of the 
acceleration. From eqn. (4.1) and eqn. (4.2) it follows: 

 ( )2 2 21 1 1
2 2 2w h hF AC v v AC v v vvρ ρ ⎛ ⎞= + = + +⎜ ⎟

⎝ ⎠
 (7.29) 

Where the static part 2
v  gives no contribution to the accelerations and the higher 

order term 2
v  can be neglected this leads to: 

 w hF AC vvρ=  (7.30) 

It is known that the fluctuating part of the wind speed v  with the Fourier method 
can be split up in a finite number of sine functions. The spectrum of v  follows from 
the Davenport spectrum, as derived in eqn. (4.9). Now the spectrum of the forces on 
the nodes ( )FFS ω , follows with the theory of Appendix VI from:  

 ( ) ( ) ( )
2

FF h vvS v AC Sω ρ ω=  (7.31) 

As derived in eqn. (7.24) the acceleration follows from: 

 ( ) ( ) ( )aFω ω ω=a H F  (7.32) 

It is a very sizable calculation to determine the spectrum of the accelerations of the 
top of the building when at all 48 nodes a force is placed with a spectrum according 
to eqn. (7.31). This calculation includes the correlation between the forces on the 
different nodes, which has to be taken into account with the cross-spectra. These 
cross-spectra are determined with the coherence factor which is a function of the 
distance between the points and the frequency. The formulae for the spectrum of the 
acceleration of the top of the building will be given here; the derivation can be found 
in [1]: 

 ( ) ( ) ( ) ( )
48 48 48 48

48 48
*

1 1
i j i ja a a F a F F F

i j

S H H Sω ω ω ω
= =

= ∑∑  (7.33) 

Where 
48 ia FH  is the complex transfer function of the acceleration of the 48th node for a 

harmonic force on node i  and 
48

*
ja FH  is the complex conjugate of 

48 ja FH . For i j= , 
( )

i jF FS ω  is the auto-spectrum of the force and for i j≠ , ( )
i jF FS ω  is the cross-spectrum of 

the force. It will be clear that this calculation will be very large and therefore the 
correlation – which can be taken into account by de coherence factor – will not be 
taken into account. To determine nevertheless if the first or the second frequency 
causes the biggest accelerations at the top of the building, the spectrum of the 
acceleration of the top of the building will be calculated for a totally correlated wind 
load on the façade of the building. The calculation from eqn. (7.33) with total 
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correlation can be seen in Appendix VIII. Where the autospectrum from the wind 
load follows from eqn. (7.31) with v  depending on the height above the surface 
according to Figure 4.2 
The spectrum of the wind load and the spectrum of the acceleration of the top of the 
building for a totally correlated wind load have been determined for the uncontrolled 
and controlled system. The result can be seen in Figure 7.4 up to Figure 7.6. It is 
clear that the acceleration of the top of the building of the controlled system is still 
dominated by the natural frequency but the accelerations of the second 
eigenfrequency are becoming relatively more important for the damped system. 
Taking into account the correlation, this will make the natural frequency relatively 
more important compared to the second eigenfrequency. This is because lower 
frequencies mean less fluctuations and larger wind gusts with more correlation. 
Increasing the control gains more and more will give more and more damping on the 
natural frequency but this makes the second eigenfrequency more and more 
important. At some point the second eigenfrequency will dominate the acceleration 
of the top of the building. From this point increasing the control gains further will 
have no effect.  
The conclusion from this is that the reduction of the acceleration with an active 
control system is limited. In practice this would give no problems because when 
accelerations due to the second eigenmotion are higher then the acceptable comfort 
level, the structure is so slender that other problems will become normative e.g. the 
distortions. In this project a reduction of about 50% of the accelerations have been 
achieved. Judging from Figure 7.6, it can be assumed that this is about the 
maximum reduction which can be achieved with an active control system in the 
Juffertoren.  
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Figure 7.4 Spectrum of the forces on the nodes 
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Figure 7.5 Spectrum of the accelerations of the uncontrolled system 
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Figure 7.6 Spectrum of the accelerations of the controlled system 

A realisation of the acceleration of the top of the building can be generated with: 

 ( )48
1

sin
N

k k k
k

a a tω ϕ
=

= +∑  (7.34) 

with: 
2k aa ka S ω= Δ  

kϕ    Random number between 0 and 2π  

The results of these realisations can be seen in Figure 7.7 for the uncontrolled 
system and Figure 7.8 for the controlled system. Comparing Figure 7.7 – which is a 
realisation following from the spectral analysis – with Figure 4.5 – which is a 
simulations in the time-domain – both for a totally correlated wind load, makes clear 
that the spectral analysis agrees with the simulations in the time-domain.  
From the spectra of the accelerations the variance of the acceleration can be 
determined by: 

 ( )2
;48

0
a aaS dσ ω ω

∞

= ∫  (7.35) 

And the standard deviation follows from: 

 2
;48 ;48a aσ σ=  (7.36) 
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The standard deviation for the uncontrolled and controlled system equals 
respectively: 2

;48; 0,143 m/sa uncontrolledσ =  and 2
;48; 0,064 m/sa controlledσ = . The expected peak 

value can be calculated from: 

 ( )48; ;exp ;48 2 lnpeak ected a s ea T fσ=  (7.37) 

With 300 ssT =  and  0,235 Hzef =  the expected peak values for respectively the 
uncontrolled and controlled system equals: 2

48; ; 0, 417 m/speak uncontrolleda =  and 
2

48; ; 0,187 m/speak controlleda = , which come close to the peak values of the realisation in 
Figure 7.7 and Figure 7.8.   
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Figure 7.7 A realisation out of the spectrum of Figure 7.5 for the uncontrolled system 
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Figure 7.8 A realisation out of the spectrum of Figure 7.6 for the uncontrolled syste
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8. Conclusions and recommendations 

8.1. Conclusions 
• The deformation of the Juffertoren is dominated by bending and shear 

deformation is negligible. Simulink is suitable for modelling the wind load, 
structure and control system. It is important to take into account the spatial 
correlation within the wind field. 

• The natural mode is most important but the second mode cannot be neglected 
considering the accelerations. 

• The active control force needs to be coupled to the velocity of the top of the 
building. Coupling of the active control force to the displacement or 
acceleration of the building gives no improvement of the system. Because the 
displacement of the mass must be limited, the active control force should also 
be coupled to the dynamic state of the mass. 

• The active control system mainly damps the natural mode. A practical active 
damping system can reduce the maximum accelerations with more than 50% 
compared to the uncontrolled system. 

• Surprisingly an active control system is not necessary if the Juffertoren will 
be constructed as assumed in this thesis. 

• The spectral analysis and the simulations in the time-domain will give almost 
the same results. 

8.2. Recommendations 
• Further elaboration of the spectral analysis with the right cross-spectra for 

the wind load will give a better insight into the total system. For the 
undamped system it will become clear at what values for the control gains the 
second eigenmode becomes normative. From this it will become clear what 
the maximum damping with an active control system will be. 

• Detailed design of the control system should involve mechanical engineers. 
Different masses and different driving mechanisms can be chosen. Which of 
these systems provides the best solution cannot only be based on structural 
properties of the building. The engine and required power are also important 
in the design. 

• It should be examined if torsion oscillations will be of consequence 
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Appendix II Matlab code: mechanical characteristics of the 
structure 

 

 
The cross-section is divided into 8 walls numbered from I to VIII for the ease of the 

calculation 
 
Matlab input  
% The cross-section is divided into 8 walls. See figure above  
  
% Location of the neutral-axis, the centre line is taken as the 
reference line 
% Area of the walls 
A(1)=2*0.5*15.44; 
A(2)=2*0.3*1; 
A(3)=2*0.3*3.72; 
A(4)=2*0.3*6.12; 
A(5)=2*(0.3+0.2)*3.1; 
A(6)=0.3*7.9; 
A(7)=0.3*14.74; 
A(8)=2*6.92*0.6; 
% Perpendicular distance between centre of mass and reference line 
s(1)=0; 
s(2)=0.8; 
s(3)=1.3+0.15; 
s(4)=6.12/2+1.6; 
s(5)=3.1/2+1.3; 
s(6)=0.3/2+3.1+1.3; 
s(7)=-(0.15+0.8); 
s(8)=-(6.92/2+0.8); 
% Distance between the reference line and the neutral axis 
na=dot(A,s)/(sum(A)) 
  
% The second moment of inertia 
Ieig(1)=2*1/12*.5*15.44^3; 
Ieig(2)=2*1/12*.3*1^3; 
Ieig(3)=2*1/12*3.72*.3^3; 
Ieig(4)=2*1/12*.3*6.12^3; 
Ieig(5)=2*1/12*.5*3.1^3; 
Ieig(6)=1/12*7.9*.3^3; 
Ieig(7)=1*1/12*14.74*.3^3; 
Ieig(8)=2*1/12*.6*6.92^3; 
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% Rule of Steiner 
Isteiner=sum(s.^2.*A); 
% Total second moment of inertia 
I=sum(Ieig)+Isteiner; 
E=3e10; 
EI=E*I 
  
% The mass of one storey existing of walls, floor and loading on the 
floor 
mass=sum(A)*2.75*2500+15.44*26.34*.25*2500+15.44*26.34*250 
 
Matlab output 
na =    0.0217    % [m] 
EI =  2.0030e+013  % [Nm^2] 
mass =  6.3182e+005  % [kg/storey] 
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Appendix III Derivation of the element stiffness matrix 
 
Field element 
The aim is to find a relation between the nodal displacements and the nodal forces.  
By putting a constant moment on a bending element the rotation at each end is: 

 '
2
l Me

EI
=  (III.1) 

 

MM

M M

n1

n2

ni

nn

 
Figure III. 1 The building will be modelled as a bending beam with lumped deformations 

The rotation stiffness K can be calculated with: 
 'M Ke=  (III.2) 

 2 EIK
l

=  (III.3) 

e

φjk

φij

Fk

Fj

Fi

M

uk

uj

ui

 
Figure III. 2 Bending element 

When two nodes are connected the rotation is: 
 2 'e e=  (III.4) 

The relation between the rotation and nodal displacements can be found with  

 
( )

( )
( )

1
1 2

1

ij j i

ij jk i j k

jk k j

u u
l e u u u

lu u
l

φ
φ φ

φ

⎫= − ⎪⎪→ = − = − + −⎬
⎪= −
⎪⎭

 (III.5) 

Hence: 

 ( )1 2
2 2 i j k
e KM K u u u

l
= = − + −  (III.6) 



Tall storeys: active control of wind impact on high-rise buildings 

   

Moment equilibrium gives: 

 
( )

( )

2

2

2
2

2
2

i i j k

k i j k

M KF u u u
l l
M KF u u u
l l

= − = − +

= − = − +
 (III.7) 

Horizontal equilibrium gives: 

 ( )20 2 2i j k j i k i j k
M KF F F F F F u u u
l l

+ + = → = − − = = − + −  (III.8) 

This provides the stiffness matrix of a bending element: 

 3

1 2 1
2 4 2

1 2 1

i i

j j

k k

F u
EIF u
l

F u

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (III.9) 

Bottom element 
The rotation of the foundation is, see Figure III. 3: 

 f
r

Me
C

=  (III.10) 

e

Fj

FiM

uj

ui  
Figure III. 3 Bottom element 

So the total rotation of node i  is equal to: 

 ' fe e e= +  (III.11) 

Combining eqn. (III.1) eqn. (III.10) and eqn. (III.11) gives: 

 1
12

2
r

r

l M Me M e
lEI C
EI C

⎛ ⎞
⎜ ⎟
⎜ ⎟= + → =
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (III.12) 

From Figure III. 3 it can be seen that: 

 ( )1
j ie u u

l
= −  (III.13) 

Combining eqn. (III.12) and eqn. (III.13) gives: 

 ( )1 1
1

2

j i

r

M Ke u u
ll
EI C

⎛ ⎞
⎜ ⎟
⎜ ⎟= = −
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (III.14) 

Moment equilibrium gives: 
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 ( )2

1 1
1

2

j j i

r

MF u u
ll l
EI C

⎛ ⎞
⎜ ⎟
⎜ ⎟= = −
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (III.15) 

Horizontal equilibrium gives: 

 ( )2

1 1
1

2

i j j i

r

F F u u
ll
EI C

⎛ ⎞
⎜ ⎟
⎜ ⎟= − = − −
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (III.16) 

This leads to the stiffness matrix of the bottom element: 

 2

1 11 1
1 1 1

2

i i

j j

r

F u
lF ul
EI C

−⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭+
 (III.17)
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Appendix IV Matlab code: Stiffness-, mass- and damping 
matrix and eigenfrequencies 

%{ 
input 
v   = degrees of freedom 
EI  = bending stiffness 
L   = height of the structure 
l   = length of element 
zeta1 = damping ratio of first eigenmode 
zeta2 = damping ratio of second eigenmode 
%} 
Cr=20*EI/L; % rotational stiffness of the foundation 
  
% stiffness matrix 
% Field elements 
k=EI/l^3*[1    -2    1; 
          -2    4   -2; 
          1    -2    1];% bending element stiffness matrix 
K=zeros(v+1,v+1); % Total system matrix bending 
for o=0:1:46 
    for n=1:1:3 
        for m=1:1:3 
            K(o+n,o+m)=K(o+n,o+m)+k(n,m); 
        end 
    end 
end 
% Edge element (including rotation of the foundation) 
K(2,2)=K(2,2)+1/l^2*(1/(l/(2*EI)+1/Cr)); 
K(2,1)=K(2,1)-1/l^2*(1/(l/(2*EI)+1/Cr)); 
K(1,2)=K(1,2)-1/l^2*(1/(l/(2*EI)+1/Cr)); 
K(1,1)=K(1,1)+1/l^2*(1/(l/(2*EI)+1/Cr)); 
K(:,1)=[];          % restrained displacement of node 0 = 0 
K(1,:)=[];          % restrained displacement of node 0 = 0 
% end stiffness matrix 
  
% mass matrix 
M=zeros(v,v); 
for n=1:1:v; 
    M(n,n)=mass; 
end 
% end mass matrix 
 
% eigenfrequency 
[E,omegakw] = eig(K,M); 
for n=1:1:v 
    omega_eig(n)=sqrt(omegakw(n,n)); 
end 
% end eigenfrequency 
  
% damping matrix 
a=2*inv([1/(omega_eig(1)) (omega_eig(1)); 1/omega_eig(2) 
omega_eig(2)])*[zeta1;zeta2]; 
Cd=a(1,1)*M+a(2,1)*K; 
% end damping matrix 
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Appendix V Matlab code: correlation wind 
Coher.m 
function Coh=coher(f,r,v_10) 
% syntax: function Coh=coher(f,r,v_10) 
% Coherency function 
% of longitudinal wind velocity fluctuations 
% Input: 
%   f: frequency (Hz) 
%   r: mutual distance coordinates 
%   V_10: the 10 minute average wind speed at hub height (m/s) 
% Output: 
%   Coh: coherency (-) 
  
C=10; % coherence constant 
x=f.*C.*r./v_10 
Coh=exp(-1.*x); 
 
Autopow.m 
function S=autopow(f,v_10,sigma) 
% syntax: function S=autopow(f,v_10,sigma) 
% Autopower spectral density function of turbulence 
% Input: 
%   f: frequency (Hz) 
%   v_10: the mean wind speed at 10 m above (m/s) 
%   sigma: standard deviation (m/s) 
% Output: 
%   S: autopower spectral density (m^2/s) 
  
sigma_v=6.345;      % standard deviation of the wind speed  
L=1200;             % characteristic length Davenport 
v_10=10;            % mean wind speed at 10 m height 
  
% spectrum of the wind speed as a function of the frequency  
S=2/3*(f.*L/v_10).^2 ./ ((1+(f.*L/(v_10)).^2).^(4/3)).*sigma_v^2./(f); 
% end spectrum of the wind speed as a function of the frequency 
 
Wind.m 
function [UC]=wind0(yr,zr,v_10,sigma,N,deltat,fmax); 
% simulation of a turbulent wind field 
 
% INPUT: 
%  yr, zr: specification of coordinates on the facade of the structure 
%  v_10: mean wind velocity at 10 m above the surface of the earth (m/s)
%  N: number of time points (including zero); N must be a power of 2  
%  deltat: time step (s) 
%  fmax: maximum frequency spectrum (Hz) 
% OUTPUT: 
%  UC: constrained turbulent wind velocities (m/s) 
yr=1.3:2.6:24.7; 
zr=9:1.5:144; 
v_10=10; 
N=8192; 
deltat=.1; 
fmax=10;  
% number of points in rotor plane 
Ny=length(yr); 
Nz=length(zr); 
Np=Ny*Nz; 
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% y and z coordinates of all rotor points in one column vector 
Yr=reshape(yr'*ones(1,Nz),Np,1); 
Zr=reshape(ones(Ny,1)*zr,Np,1); 
  
r=zeros(Np,Np); 
for i=1:Np 
   for j=i+1:Np 
      % distances between points  
      r(i,j)=sqrt((Yr(i)-Yr(j))^2+(Zr(i)-Zr(j))^2); 
      r(j,i)=r(i,j); 
   end 
end 
% time vector 
t=[0:N-1]'*deltat; 
% period 
T=N*deltat; 
% frequency step 
deltaf=1/T; 
% discretised frequencies 
k=[1:N/2-1]'; 
f=k.*deltaf; 
% autopower spectral density (one-sided) 
Sa=autopow(f,v_10,sigma); 
% spectrum is cut-off above fmax by application of window 
Index=find(f>fmax); 
if ~isempty(Index) 
  Nw=Index(1); 
  w=zeros(N/2-1,1); 
  W=window('hann',2*Nw+1);w(1:Nw+1)=W(Nw+1:2*Nw+1); 
  Sa=w.*Sa; 
end 
% renormalize Sa to variance 
Sa=sigma^2/(sum(Sa)/T)*Sa; 
  
% Fourier coefficients points in rotor plane 
ak=zeros(Np,N/2-1); 
bk=zeros(Np,N/2-1); 
for k=1:N/2-1 
   Coh=coher(f(k),r,v_10); 
   % Choleski decomposition 
   L=sqrt(Sa(k)/T)*chol(Coh)'; 
   % vector of unit variance normal random numbers 
   ran=randn(Np,1); 
   ak(:,k)=L*ran; 
   ran=randn(Np,1); 
   bk(:,k)=L*ran; 
end 
  
% complex notation 
i=sqrt(-1); 
UC=zeros(N,Np); 
for j=1:Np 
   C=ak(j,:)'-i*bk(j,:)'; 
   C=1/2*[0;C;0;rot90(C')]; 
   % inverse FFT 
   uc=N*ifft(C); 
   if any(abs(imag(uc)) >= 1e-7*abs(uc) & abs(imag(uc)) >= 1e-12) 
     max(abs(uc)) 
     max(imag(uc)) 
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     error('imag too large uc') 
   end 
   UC(:,j)=real(uc); 
end 
% reshape UC: separate indices for y and z 
UC=reshape(UC,N,Ny,Nz); 
  
save ('UC1','UC') 
Force.m 
% Calculating the forces on the 48 nodes 
rho=1.25;            
Area=3*26.34/20;  % dimension of the area of the mesh [m^2] 
Ch=1.2;              
u_star=2.82; 
kappa=0.4; 
d=3.5; 
z_0=2; 
z=(9:1.5:144);    % points on the façade of the building in z-direction 
load UC1 
Uf(:,:,3:1:93)=UC; 
Uf(:,:,1)=Uf(:,:,3); 
Uf(:,:,2)=Uf(:,:,3); 
% average part 
v_mean(1,1,3:1:93)=u_star/kappa*log(z-d/z_0);              
speed at reference height 
v_mean(1,1,1:1:2)=v_mean(1,1,3); 
v_mean(:,1,:)=v_mean(1,1,:); 
v_mean(:,2,:)=v_mean(1,1,:); 
v_mean(:,3,:)=v_mean(1,1,:); 
v_mean(:,4,:)=v_mean(1,1,:); 
v_mean(:,5,:)=v_mean(1,1,:); 
v_mean(:,6,:)=v_mean(1,1,:); 
v_mean(:,7,:)=v_mean(1,1,:); 
v_mean(:,8,:)=v_mean(1,1,:); 
v_mean(:,9,:)=v_mean(1,1,:); 
v_mean(:,10,:)=v_mean(1,1,:); 
v_mean=repmat(v_mean,[8192 1 1]); 
  
U=Uf+v_mean; 
U(:,:,94)=0; 
  
F=1/2*Area*Ch*rho*(U).^2; 
F=sum(F,2); 
F=squeeze(F); 
  
f(1:1:8192,1:1:2)=2*F(1:1:8192,1:1:2);  
for n=3:1:48 
    f(:,n)=F(:,2*n-3)+F(:,2*n-2);      % nodes below z=9 m 
end 
F=f; 
F(:,49)=0; 
t=[.1:.1:819.2]'; 
save ('F','F','t') 
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Appendix VI Unsuccessful control algorithms   
 
Switching on/off the active control system 
As stated in section 1.1, the displacement of the mass will have an unacceptable 
growth in time. To avoid this, a hard stop can be built into the system. This is a 
device that decelerates the mass to a velocity of zero, when the displacement of the 
mass becomes too large. In the moving mass a large amount of kinetic energy has 
been stored. In decelerating the mass a part of this energy will get lost through a 
damping device and a part will be taken by the dynamics of the building. This 
results in an undesired force on the building in the direction it is already moving.  
Without a hard stop the kinetic energy will be released when the velocity of the 
building is in the opposite direction. Then the energy is used in a desired way. For 
this reason a hard stop is not a good solution.  
Another solution could entail turning off the system when the acceleration at the top 
of the building is at an acceptable level. When the system is turned off the mass can 
move back to its initial position. Turning off the system means decelerating the mass 
slowly so that the forces on the structure are negligible. This is a more promising 
solution which will be elaborated.  
In turning on the active control system, two systems can be chosen, see Figure VI. 1. 
The first system turns on when a specific acceleration of the top is exceeded. This 
system will turn off when the acceleration crosses the specific level again. The 
second system will turn on, under the same condition as the first system. This 
system turns off when the next peak of the acceleration of the top of the building lies 
within the specific area. 

t

a 48

off

on

t
 

 
system1

off

on

t
 

 
system2

 
Figure VI. 1 two on/off systems of active control for exceeding a specific acceleration 

It is known that the building will oscillate in its natural frequency as can be seen in 
Figure 4.8. Under certain conditions the oscillation will get heavier and heavier. The 
acceleration of the top of the building is an oscillation around zero, but when the 
acceleration crosses zero the “problem” has not been solved. A quarter of a period 
later the acceleration will have a new peak. The “problem” is actually the large 
amount of kinetic and distortion energy in the system which causes the heavy 
oscillations as indicated in Figure VI. 1. The aim of the active control system is 
getting energy out of the total system. Bearing this in mind, it would be foolish to 
turn off the system when the acceleration is small for a short period as this has been 
done for system1. For this reason system2 is applied and from here on this is called 

Large amount of energy in the system 
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the on/off system. 
 
Figure VI. 2 illustrates how the displacement of the mass can be derived. The third 
graph above left, shows that at 0t the active control system is turned on because 

48a exceeds the specific acceleration. So from 0t the mass will accelerate. Integrating 
the acceleration of the mass gives the velocity and integrating once more gives the 
displacement of the mass. As can be seen in Figure VI. 2 again the displacement of 
the mass is growing in time. It can also be seen that the velocity of the mass mv is not 
an oscillation around zero, as we would like to have it, but it has shifted. This shift 
equals the integration constant as derived in eqn. (5.13). The magnitude of this 
integration constant depends on the phase of  ma  at the moment that the system is 
turned on. In the on/off system as it now stands the system is turned on at an 
“arbitrary” moment. See the third graph from above left in Figure VI. 2. To limit the 
displacement of the mass, the on/off system will be improved by starting the system 
at 1t  in stead of 0t , see the graphs in the right column of Figure VI. 2. The starting 
moment 1t will be determined as a function of the phase. The starting phase ϕ  will 
be determined in such a way that the integration constant 1c  equals zero. The 
integration constant can be determined with: 

 1

ˆ
ˆ sin( ) cos( )m

m m m
a

v a dt a t dt t cω ϕ ω ϕ
ω

= = + = + +∫ ∫  (VI.1) 

With the condition 1 0c =  and the initial condition ( 1) 0mv t = with 1 0t =  the starting 
phase can be determined with: 

 ˆ
(0) cos( ) 0  with 1,3,5...

2
m

m
a

v k kπϕ ϕ
ω

= = → = =  (VI.2) 

So the system should only be turned on when:  
 ˆ sin( / 2) with 1,3,5...m ma a k kπ= =  (VI.3) 

Because the acceleration of the mass is coupled to the velocity of the top of the 
building this constraint can also be written as: 
 48 48 48ˆ ˆsin( ) sin( / 2) with 1,3,5...v v t v k kω π= = =  (VI.4) 

This means that the system can only be turned on when the velocity of the top of the 
building 48v  has a peak value. When the velocity has a peak value, the acceleration 
which is the derivative of the velocity equals zero. So adding the constraint 

2
48 0 m/sa =  for turning on the active control system will improve the system 

considering the displacement of the mass.  
The system has to be turned off when the velocity of the mass is zero. This will give 
the same constraint as defined in eqn. (VI.2), for the turn on moment. And this will 
also result in the constraint 2

48 0 m/sa =  for turning off the active control system. 
Before the turn off algorithm is built in, in Simulink, the system will be tested on a 
“real” signal  
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Quantity On/off system Improved On/Off system 

48v  0

t
v 48 0

t

v 48

48 48
da v
dt

=  

t0

0a 48

t0 t1

0a 48

48c v
m

F k v
a

m m
= =  

t0

0a m

t0 t1

0a m

m mv a dt= ∫  

t0

0

v m

t0 t1

0

v m

m mu v dt= ∫  

t0

0

x m u m

t0 t1

0

 
Figure VI. 2 The displacement of the mass will be limited when the system is turned on at t1 

instead of t0 
The real displacement and acceleration consists of a lot of sines signals together. The 
mass has been presumed equal to vk , the results of this simulation are shown in 
Figure VI. 3. Even with the improved system the displacement will increase in time. 
This can be explained as follows. The starting point when the system is turned on 
must be at a moment when 2

48 0 m/sa = . When the acceleration of the top equals zero 
the velocity has a local peak, but this is not necessarily the peak of the oscillation of 
the first mode. And that was precisely the condition for the right starting moment. 
Another cause has already been illustrated in Figure 5.9, which illustrates that a 
ramp in the displacement of the top of the building means a growth of the 
displacement of the mass in time. 
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Figure VI. 3 The displacement of the mass will also increase with the improved on/off system 

Adapting the gain of the active control force 
When a hard stop and an on/off system are not the solution for limiting the 
displacement of the mass, there is one other conceivable solution left. This involves 
adapting the gain of the active control system to the state of the system. This means 
that, when the mass has a large displacement in the positive direction, the 
acceleration of the mass in the positive direction must be limited and the 
acceleration of the mass in the negative direction can be enlarged. The acceleration 
of the mass is coupled to the velocity of the top of the building. So the acceleration of 
the mass will be a function of the displacement of the mass mu  and the velocity of the 
top of the building 48v . The acceleration of the mass follows from: 
 /m ca F m=  (VI.5) 

Because the mass is constant the active control force has to be a function of mu  and 
48v : 

 ( ) ( )48 48,c v mF t k u v v=  (VI.6) 

Now vk  is a coefficient that makes the control force and therefore also the 
acceleration of the mass dependent on mu  and 48v . The coefficient must be limited by 

0vk > , because otherwise the control force eqn. (VI.6) can become negative where it 
should be positive and the other way around as well. For vk  the following rules will 
apply:  
When the displacement of the mass is positive, the acceleration of the mass in the 
positive direction must be reduced, and the acceleration in the negative direction 
must be enlarged: 
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 0 and 0 reduce m m vu a k> > →  (VI.7) 

 0 and a 0  enlarge m m vu k> < →  (VI.8) 

When the displacement of the mass is negative, the acceleration of the mass in the 
positive direction must be enlarged, and the acceleration in negative direction must 
be reduced:  
 0 en a 0  enlarge m m vu k< < →  (VI.9) 

 0 en a 0  reduce m m vu k< > →  (VI.10) 

With 0vk ≥ and eqn. (VI.5) and (VI.6) it can be seen that ma  has the same sign 
(positive or negative) as 48v . So eqn. (VI.7) till (VI.10) can also be written as: 
 480 and 0 reduce m vu v k> > →  (VI.11) 

 480 and 0  enlarge m vu v k> < →  (VI.12) 

 480 en 0  reduce m vu v k< < →  (VI.13) 

 480 en 0  enlarge m vu v k< > →  (VI.14) 

Assuming a linear relation between vk  and mu , vk  can be defined by: 

 ( )
( )

48

48

1 0 for 0

1 0 for 0
v m

v m

k a bu v

k a bu v

= + < <

= − < >
 (VI.15) 

By taking the same input signal as is done in Figure VI. 3, the system is tested and 
the displacement of the mass will be limited. The results can be seen in Figure VI. 4. 
In this simulation, the constants from eqn. (VI.15) are 1a = and 3b = . The active 
control force will be very small with these values, but here we will only test if 
adapting of the gain will limit the displacement of the mass. It has been shown that 
the displacement of the mass will be limited. The optimal values for a and b will be 
determined later. 
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Figure VI. 4 The displacement of the mass xm will be limited when kv is a function of xm and 

v48 
Up to now only the limiting of the displacement of the mass has been considered in 
this appendix. By doing this, the active control force has been redefined, eqn. (VI.6), 
but does this have effect on limiting the dynamic behaviour of the building? The idea 
of limiting the dynamic behaviour of the building is about getting energy out of the 
moving structure. This is done by placing a force on the structure which has a 
direction opposite to the direction of the velocity of the structure. The kinetic energy 
subtracted from the moving structure, when the top of the building displaces a 
distance dx , equals: 

 48c cE F dx F v dt= =∫ ∫  (VI.16) 

With eqn. (VI.6) this gives: 

 2
48vE k v dt= ∫  (VI.17) 

With the condition 0vk ≥ the energy subtracted from the moving structure eqn. 
(VI.17) will never get negative 0E ≥ . In other words, the active control system will 
only subtract energy from the moving structure and it will never add energy to it. It 
seems that by defining vk  as is done in eqn. (VI.15), the displacement of the mass is 
limited and the active control system will do its work. Unfortunately on a larger 
timescale, instability will occur as can be seen in Figure VI. 5.  
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Figure VI. 5 kv will grow in time which will cause instability 
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Appendix VII Deriving the spectrum from a linear relation 
Assuming the signal 
 ˆ( ) sin( )x t x tω φ= +  (VII.1) 

from which the spectrum is known. And assuming a linear related signal 
 ( ) * ( )y t C x t=  (VII.2) 

from which the spectrum has to be determined. The standard deviation of both 
signals is defined by:  

 
2

2 2

0

( ) ( )x x t f d
π

σ φ φ= ∫  (VII.3) 

 
2

2 2

0

( ) ( )y y t f d
π

σ φ φ= ∫  (VII.4) 

Where ( )f φ  is the probability density function which is by definition,  
See Figure VII 1: 

 
2

0

( ) 1f d
π

φ φ =∫  (VII.5) 

0 2*pi
0

1/(2*pi)

f(
φ)

φ  
Figure VII 1 probability density fumction ( )f φ  

The spectrum of both signals is defined by: 

 
2
x

xx
d

S
d
σ
ω

=  (VII.6) 

 
2
y

yy

d
S

d
σ
ω

=  (VII.7) 

Substituting eqn. (VII.2) in eqn. (VII.4) gives: 

 
2 2

2 2 2 2

0 0

( * ( )) ( ) ( ( )) ( )y C x t f d C x t f d
π π

σ ϕ ϕ ϕ ϕ= =∫ ∫  (VII.8) 

With eqn. (VII.3) this leads to: 
 2 2 2

y xCσ σ=  (VII.9) 

Combining eqn. (VII.6), eqn. (VII.7) and eqn. (VII.9) gives the spectrum of ( )y t : 

 2
yy yyS C S=  (VII.10) 
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Appendix VIII Matlab code: Transfer function, spectrum 
forces, spectrum of the acceleration 

 
Transfer function acceleration of the top 
% This file calculates the transfer function of the acceleration of the 
top. 
%input 
  %K:     Stiffness matrix 
  %M:     Mass matrix 
  %Cd:    Damping matrix 
%output 
  %S:     Flexibility matrix 
  %H:     Matrix containing the transfer functions of the accelerations.
  %H_u:   Absolute values of H 
  %H_a48: Damping matrix 
 
load matrices % file containing among other things K,M and Cd 
for n=1:1:1000; 
    omega(n)=n/10;  % Divides the omega domain in discrete intervals 
    S=K-omega(n)^2*M+i*omega(n)*Cd; 
    H=S^-1; 
    H_u=abs(H); 
    H_a48(n)=sum(H_u(48,:))*omega(n)^2;% H_a48 for every discrete omega 
end 
plot(omega,H_a48)% see Figure 7.1 and Figure 7.2 
 
Autospectrum of the forces on the nodes and spectrum of the accelerations 
load matrices K M Cd 
sigma_v=6.345;      % standard deviation of the wind speed 
L=1200;             % characteristic length Davenport 
v_10=10;            % mean wind speed at 10 m height 
rho=1.25;           % mean wind speed at 10 m height 
A=3*26.34;          % Wind affected area 
Ch=1.2;             % mean wind speed at 10 m height 
ve=3000; 
deltaom=.01; 
v_gem=35; 
u_star=2.82; 
kappa=0.4; 
d=3.5; 
z_0=.7; 
z(3:48)=(9:3:144)'; 
v_mean=u_star/kappa*log(z-d/z_0); % mean wind speed at reference height 
v_mean(1:1:2)=v_mean(3); 
 
for n=1:1:ve; 
    omega(n)=n*deltaom; 
    S_vv(n)=(L/v_10)^2/ (1+(omega(n)*L/(2*pi*v_10))^2)^(4/3)    
            *omega(n)*sigma_v^2/(6*pi^2); 
    for a=1:1:48 % every node has its own spectrum depending on the mean 
                   windspeed (v_mean) at that height 
        S_FF(a,n)=(rho*A*Ch*v_mean(a))^2*S_vv(n); 
    end 
end 
 
for n=1:1:ve; 
    S_u=K-omega(n)^2*M+i*omega(n)*Cd; 
    H_u=S_u^-1;  % complex according to eqn. (7.43) 



  
Tall storeys: active control of wind impact on high-rise buildings 

   

    H_u=H_u(1:1:48,1:1:48); % wipes out the 49th degree of freedom,  
                        which is the moving mass on top of the building 
    H_a=H_u*omega(n)^2; % see eqn. (7.25)  
    S_aa(n)=0; 
    for k=1:1:48; 
        for j=1:1:48; 
            S_aa(n)=S_aa(n)+H_a(48,j)*conj(H_a(48,k)) 
                    *sqrt(S_FF(k,n)*S_FF(j,n)); 
        end 
    end 
end 
 % See Figure 7.5 and Figure 7.6 
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