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ABSTRACT

The Eurocode and American Bureau of Shipping code analytical methods of determining

the buckling resistance of 6 axially loaded steel shell cylinders was studied. The Eurocode

MNA/LBA and GMNIA numerical methods were also studied using finite element analysis

and compared against the results of the analytical methods. Following these comparisons

the intention was to give an overview of the different methods and their applicability. Fur-

ther suggestions were then made on how these methods could be used in the future analyses

of more geometrically complex steel shell structures.

It was found that the Eurocode significantly underestimates the buckling resistance of ring

and stringer stiffened cylindrical shells when compared to the ABS code (34% to 54% lower).

The MNA/LBA numerical method currently allows the determination of the buckling re-

sistance of simple structures under load conditions not covered by the classical theory. The

MNA/LBA method shows potential for greater usage in more geometrically complex anal-

yses provided that the required buckling parameters for its use are pre-determined. If these

parameters are available the MNA/LBA method would be a less time consuming design

method than the more rigorous GMNIA method.

The GMNIA method is the most complex analysis and as it is purely computational the

importance of correctly modelling the structure and its imperfections is paramount in the

determination of a realistic buckling resistance. The pitfalls of these requirements is that the

correct imperfection type is difficult and time consuming to determine and the introduction

of these imperfections has implications on further modelling of the structure. However, the

GMNIA method is adaptable to unique cases without precedent and there is potential for

research based on its usage as opposed to through physical experimentation.
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1 INTRODUCTION

1.1 General

In the field of civil engineering the design codes and guidelines for to designing steel shells

are of very limited use when it comes to geometrically complex structures. The typical

steel shells that civil engineers are principally concerned with are silos, tanks, pipelines,

chimneys, towers and masts which are covered in Eurocode 3. For larger scale steel shells

of increased geometrical complexity there is little guidance as current knowledge of shell

structures is dominated by and based upon shells of revolution (Rotter; 1998). As such,

when it comes to structures like the Yas Hotel bridge (Figure: 1.1) which are neither pure

shells nor typical beam and column structures the design can be approached in a number of

ways; from complicated modelling from the beginning of the design process, to developing

a design based on a simplification on the structure. To base the design of such a building

on a model with too many simplifications could lead to neglecting some very important and

advantageous characteristics of shell behaviour, resulting in inefficiently designed, wasteful

and potentially unsafe structures. Similarly, it is impractical and time consuming to design

such a structure from the early design stages using detailed computational models and it

can be difficult to accurately model the design situation. A solution may be to have some

guidelines or rules of thumb around which the preliminary design of the structure may be

based which takes into account the structurally advantageous behaviour of shells.

1.2 Shell Structures

Shell structures have a long history and have existed since before structural engineering and

architecture were even recognised sciences; one of the oldest known example of a concrete

shell being the Pantheon dome in Rome which was completed sometime around 125AD.

From an early age the aesthetics of shells and their natural strength and stability has been

well known, despite the lack of mathematical reasoning behind them. Dome structures

continued to be the most significant shell structure for quite some time and are visible

throughout history as part of many cathedrals, mosques and mausoleums up until the early
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Figure 1.1: Yas Hotel Bridge, Abu Dhabi

20th century where shell structures underwent a revival.

During the 20th century a greater understanding of the mechanical properties of shell struc-

tures was developed, not only were their aesthetics appreciated but also the economy of

such structures due to their efficient load distribution. This knowledge however was mainly

only applicable to geometrically regular curved surfaces which can be easily described by

analytical mathematical functions. With the advent of computational technology and in

particular FEM (Finite Element Modelling) engineers and architects could model more

complex shapes and venture into the analysis of more free form structures. The increased

capability and desire for free form shell structures is evident in many designs from well-

known architects such as Zaha Hadid architects, Future Systems, ONL Oosterhuis, Nor-

man Foster and Partners, Asymptote Architects and UN Studios. With this drive toward

more complex geometry there is a demand for increased research and design procedures

for these structures and in the instance of shells, where form and force are so intricately

linked, it seems that the engineering aspects are lagging behind the architectural demand.

Interestingly there have been some projects in which shipbuilding companies have designed

and built steel civil engineering structures using steel or aluminium plates such as the Yas

hotel link bridge in Abu Dhabi and the J.P. Morgan media centre in Lords Cricket Ground

in London. This meeting of two disciplines of design poses interesting research topics into

how applicable approaches from other disciplines are to the design of civil engineering struc-

2
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tures and what assumptions remain valid or could be modified for better design as despite

being based on the same theory, different approaches may be taken in design.

1.3 Buckling

Buckling is an important behaviour in the design of metal structures. Generally buckling

may be defined as the sudden failure, or instability, of a structural member subject to

compressive stress. This instability occurs at a maximum point on the load-deflection curve

at which point instability may fall into one of two categories:

1. Bifurcation of equilibrium or;

2. Limit load buckling

1.3.1 Bifurcation of Equilibrium

If a perfect member is subject to an external load and initially deforms in one configuration,

then at a critical load the deformation of this structure changes to another pattern (referred

to as the buckling mode), the instability is said to be “bifurcation buckling”, it occurs

when two (or more) equilibrium paths pass through the same point. Take for instance a

column subject to axial loading; initially the column will shorten, then at a critical load the

column will begin to bend. This type of buckling can be found in structures such as axially

compressed columns, plates and cylindrical shells and may be further broken down based

on postbuckling behaviour to i) stable postbuckling or ii) unstable post buckling.

3
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1.3.1.1 Stable Postbuckling

Figure 1.2: Stable postbuckling curve

The load required to keep the structure in a deformed configuration increases as the de-

formation increases in magnitude. For example, an axially compressed plate will develop

tensile membrane stresses as it deforms which will result in an increase of stiffness.

4
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1.3.1.2 Unstable Postbuckling

Figure 1.3: Unstable postbuckling curve

The external load required to maintain equilibrium decreases as the postbuckling deforma-

tion increases, e.g. an axially compressed cylindrical shell.

1.3.2 Limit Load Buckling

Figure 1.4: Limit load buckling

5
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When the initially stable path loses its stability at the “limit point” of the system and there

is a jump, or “snap through” non-equilibrium states to another stable path this is known

as limit load, or snap-through buckling. This behaviour may be seen in buckling of shallow

arches or spherical caps.

1.3.3 Buckling Modes

For stiffened structures buckling may occur at different levels, or modes, which can be

generalised as a scale of buckling. The failure of plates and stiffened panels can be fur-

ther subdivided into three of these modes or levels, namely, the plate level; which is local

buckling between minor stiffeners. The stiffened panel level; which is larger scale buckling

between more major stiffeners and the entire grillage level; which is buckling at a global

level (see Figure: 1.5)

Figure 1.5: Stiffened panel failure levels (American Bureau of Shipping - Guide for buckling
and ultimate strength assessment for offshore structures; 2004)

Similarly, such a distinction can be made with shell structures, for instance the probable

buckling modes of ring- and/or stringer-stiffened cylindrical shells can be sorted as follows:

6
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Figure 1.6: Buckling modes of stiffened cylindrical shells (Das et al.; 2003)

These categories of buckling are of particular interest for shell structures and are exam-

ined in detail within the American Bureau of Shipping - Guide for buckling and ultimate

strength assessment for offshore structures (2004) and can be described as follows:

• Local shell or curved panel buckling (i.e., buckling of the shell between adjacent

stiffeners). The stringers remain straight and the ring stiffeners remain round.

• Bay buckling (i.e., buckling of the shell plating together with the stringers, if present,

between adjacent ring stiffeners). The ring stiffeners and the ends of the cylindrical

7
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shells remain round.

• General buckling, (i.e., buckling of one or more ring stiffeners together with the at-

tached shell plus stringers, if present).

Additionally, the ABS guidelines for buckling of offshore structures also examines the fol-

lowing:

• Local stiffener buckling (i.e., torsional/flexural buckling of stiffeners, ring or stringer,

or local buckling of the web and flange). The shell remains undeformed.

• Column buckling (i.e., buckling of cylindrical shell as a column).

1.4 Flat Plates and Curved Panels

A plated structure as defined by Eurocode EN 1993-1-5 is “a structure built up from nomi-

nally flat plates which are connected together [where] the plates may be stiffened or unstiff-

ened” and a stiffener is defined as a plate or section attached to the plate to resist buckling

or to strengthen the plate. Structural plates and panels are very common in the fields of

civil engineering and also in other disciplines such as marine and offshore engineering. In

typical civil engineering structures they are often seen as elements in built up sections, such

as plate girders or columns which primarily function as beams, but due to their geometrical

aspects must be considered as plates.

It is important to note that mathematically we can define three different types of plates:

(1) thin plates with small deflections, (2) thin plates with large deflections and (3) thick

plates, each with their own theory and conditions. As this thesis is concerned with buckling

of thin shell elements the most closely related category is that of thin plates with large

deflections.

Eurocode EN 1993-1-6:2007 Strength and Stability of Shell Structures defines a shell panel

as “an incomplete shell of revolution”, or more explicitly that “the shell form is defined by

a rotation of the generator about the axis through less than 2 radians.” The main suppo-

sitions of the theory of thin plates also form the basis for the usual theory of thin shells.

There exists, however, a substantial difference in the behaviour of plates and shells under

the action of external loading. The static equilibrium of a plate element under a lateral

load is only possible by action of bending and twisting moments, usually accompanied by

shearing forces, while a shell, in general, is able to transmit the surface load by “membrane”

8
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Figure 1.7: Steel plate girder

stresses which act parallel to the tangential plane at a given point of the middle surface and

are distributed uniformly over the thickness of the shell. “This property of shells makes

them, as a rule, a much more rigid and a more economical structure than a plate would be

under the same conditions” (Timoshenko and Woinowsky-Krieger; 1959).

The advantage of introducing curvature can be demonstrated using a simple example:

Given the same geometrical properties i.e a thickness of 5mm, height of 1000mm and a

loaded edge length of 1570.8mm. Both the plate and the curved panel are simply supported

on all four edges and are loaded byan evenly distributed force on the short edge.

1.4.1 Plate

The classical buckling strength of a flat plate loaded in plane which is simply supported on

its sides is (Timoshenko and Gere; 1961, p.353):

σc = k
π2E

12(1− ν2)(b/t)2
(1.1)

9
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where:

a is the length of the plate,

b is the width of the plate,

t is the thickness of the plate,

E is the modulus of elasticity of the material,

ν is Poisson’s ratio and;

k = (
b

a
+
a

b
)2 (1.2)

So for the given boundary conditions k=4.873.

So;

σc = 4.873
π2 × (2× 105)

12(1− 0.32)(1570.8/5)2

σc = 8.92 N/mm2

10
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Figure 1.8: First buckling mode of flat plate - deformed shape and stress

This result is compared to a finite element computation (see Figure: 1.9). A linear

buckling analysis on the plate gives a load factor of 62466 to a load of 1N distributed over

the short edge. Therefore the buckling load is 62kN which is 11% smaller than the hand

calculation. In reality the plate strength would probably be larger due to the stable post

buckling behaviour.

1.4.2 Shell panel

If the same dimensions are used but a large curvature is introduced, the buckling strength

of the plate increases significantly. A MATLAB script (See Appendix A) was used to

determine the buckling stress of the same plate curved with a radius of 500mm into a semi

circular shape. By adapting the theory for flat plates the compressive buckling coefficient

is changed (Gerard and Becker; 1957) to:

k =
(n2 + β2)2

β2
+

12z2bβ
2

π4(n2 + β2)2
(1.3)

Where:

zb = (b2/rt)(1− ν2)1/2 (1.4)

11
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Figure 1.9: ANSYS - First buckling mode flat plate and buckling stress

β = b/λ (1.5)

λ =
(πr)

n
(1.6)

This equation for k is minimised to determine n, the wave number in the circumferential

direction of cylinders and singly curved plates. For this example it can be seen from the

MATLAB plot (Figure: 1.10) that this results in 5 waves. This is also illustrated graphically

by an ANSYS linear buckling analysis of the same plate (Figure: 1.11).

12
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Figure 1.10: Wave number vs. Buckling coefficient

Figure 1.11: First buckling mode of curved panel - deformed shape and stress

This gives a value of k=269.06 which results in a critical buckling stress for the curved plate

of:

13
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σcr = 1215.9N/mm2

Or, for the sake of comparison with the ANSYS model, the buckling force multiplier is

= 9.6783e+006. Giving a buckling force of:

Ncr = 9.6783e+ 006 N

Over an area of:

Area = πrt = 7854 mm2

Resulting in a buckling stress of:

σcr = 1232.3 N/mm2

1.5 Eurocode

“The EN Eurocodes are a series of 10 European Standards, EN 1990 - EN 1999, providing

a common approach for the design of buildings and other civil engineering works and con-

struction products” (The EN Eurocodes; n.d.).

Methods based on two Eurocode documents are used in this study. These documents

areEurocode 3 - Design of steel structures - Part 1-6: Strength and stability of shell struc-

tures (2007), which applies to the structural design of plated steel structures that have the

form of a shell of revolution, and Eurocode 3 - Design of steel structures - Part 4-1: Silos

(2007).

1.5.1 EN 1993-1-6: Strength and stability of shell structures

Part 1-6: Shells deals with four different limit states for shell structures: Plastic limit, cyclic

plasticity, buckling and fatigue however the area of interest for this study was on buckling

so this section will be explained. There are different methodologies for analysis mentioned

in Part 1-6: Shells; one set being hand calculations (referred to as “stress design”) which

are based on existing membrane theory formulae, the other methodologies being numerical

analysis which are computational.

14
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The following types of shell analysis are defined in EN 1993-1-6 :

Figure 1.12: Types of shell analysis

The Annexes of Part 1-6: Shells contain much information relating to hand calculations

of shell structures which are broken down as follows:

• Annex A - Membrane theory stresses in shells

• Annex B - Additional expressions for plastic collapse resistances

• Annex C - Expressions for linear elastic membrane and bending stresses

• Annex D - Expressions for buckling design

The most relevant to this study being Annex D which contains semi empirical formulae for

determining the buckling strength of cylindrical shells for various load cases such as; axial

compression, external pressure, shear and combinations of pressurised and axial compression

and a transformation of wind loading to and external pressure distribution. This method

of determining the buckling resistance is essentially the traditional method and is known

as design by means of buckling stresses in the Eurocode. The semi-empirical element of

this method is that it is a lower bound approach, that is that is that the yield stress is

knocked down by under predicting the strength by a specific percentile calibrated from

test specimens which were examined under the same phenomena. There are two other

approaches approved by the Eurocode, both of which are computational and are defined as:

• Design by means of a global numerical GMNIA analysis

15
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• Design by means of a global numerical MNA/LBA analysis

1.5.2 EN 1993-4-1: Silos

This standard is concerned with the resistance and stability of silo structures and is broken

down into the design of many aspects of silo structures; from rectangular silos, to cylindrical

silos, conical hoppers, and roof structures. EN 1993-4-1 covers limit state design where the

ultimate limit state is defined that the design resistance of the structure must be greater

than the design loads.

Sd < Rd

Where S and R represent any appropriate limit state action and resistance respectively.

Though Part 4-1: Silos states that the modelling of the structural shell should follow

the requirements of Part 1-6: Shells and that the method of analysis should also be car-

ried out according to the requirements of EN 1993-1-6 it was deemed appropriate to study

the document related to silos in order to compare the approaches for the design of cylin-

ders. Part 4-1: Silos includes a different analytical method to determine the axial buckling

stress (Eurocode 3 - Design of steel structures - Part 4-1: Silos; 2007, p. 53-54) and external

buckling stress (Eurocode 3 - Design of steel structures - Part 4-1: Silos; 2007, p. 56-57) for

stiffened orthotropic cylindrical walls compared to that of Annex D of Part 1-6: Shells. This

orthotropic method takes into account the contributions of the stiffeners making it more

comparable to the method used in the American Bureau of Shipping - Guide for buckling

and ultimate strength assessment for offshore structures. As a study, this method has been

adjusted so that it can model stiffened isotropic cylindrical walls (see Weingarten et al.

(1968) and Baruch and Singer (1963)).

1.6 American Bureau of Shipping

The American Bureau for Shipping is an offshore and marine classification society which

establishes rules and standards for the design and construction of offshore structures and

marine vessels. The American Bureau of Shipping - Guide for buckling and ultimate strength

assessment for offshore structures (2004) (ABS) approaches the design of shell structures

in a similar, though not identical, manner as the Eurocode buckling stresses method.

16
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Whereas the Eurocode has a lower bound approach to strength assessment there is another

method of strength formulation which can be used known as the mean value formulation.

This approach predicts the strength as the mean value based on all test specimens and is

implemented in some, though not all, of the buckling stress predictions of certain buckling

modes in the ABS guide.

Taking for instance the bay buckling strength assessment for an unstiffened or ring stiffened

cylinder. This buckling strength is determined by a lower bound approach similar to that

adopted in the Eurocode. Whereby the elastic compressive buckling stress for an imperfect

cylindrical shell is given by:

σExR = ρxRCσCExR

where:

ρxR is the lower-bound knock down factor to account for shape imperfections,

C is a length dependent coefficient and;

σCExR is the classical buckling stress.

Differences in the strength predictions occur, however, for curved panels. In this instance

the elastic buckling stress for an imperfect curved panel between adjacent stringer stiffeners

is given as:

σExP = BxPρxPCσCExP

where:

ρxP is once again a lower bound knock down factor and;

BxP is another factor to compensate for the lower bound nature of ρxP .

Though not explicitly stated in the ABS guide, it can be read in “Buckling and ultimate

strength criteria of stiffened shells under combined loading for reliability analysis”Das et al.

(2003), upon which the ABS guide is based that B is a mean bias factor which would

increase the buckling stress from a lower-bound prediction, to a less conservative mean

value based prediction. Apart from this difference the strength prediction is similar to the

Eurocode where as in this instance the classical buckling stress of a curved panel is based

on the theory used in the shell panel example given in the introduction (Subsection: 1.4.2).
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The ABS method for determining the buckling stress for ring and stringer stiffened

shells is also semi-empirical and is quite different from the Eurocode approach. The elastic

compressive buckling stress of an imperfect stringer-stiffened shell is given as:

σExB = σs + σc

where:

σs is the elastic buckling stress of a stringer stiffened shell

σs = ρxB
0.605E(t/r)

1 + (As/st)

E is the modulus of elasticity

As is the cross sectional area of the stringer stiffener

s is the distance between stringer stiffeners

Which is the classical buckling stress of a column reduced by a constant imperfection factor

of ρxB = 0.75 and further reduced by a parameter dependent on the area and the spacing

of the stringer stiffeners.

σc is the elastic buckling stress of a column

σc =
π2EIse

l2(As + set)

Ise is the moment of inertia of stringer stiffener plus associated effective shell plate width

se is the reduced effective width of shell

l is the length of the shell segment

Which is the classical Euler buckling stress formula for a column, but incorporating the

associated shell width of the cylinder.

Similarly the critical buckling stress for a ring and stringer stiffened cylinder is also deter-

mined semi-empirically incorporating the properties of the stiffeners into derivation.

These are some examples of differences between the ABS code and the Eurocode, the

differences between the methods shown in greater detail in the Methodology section (Chap-

ter: 4).
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2 PROBLEM DEFINITION

One of the major problems with constructing such structures is that there are few guidelines

for the design of geometrically complex shell structures or for structures with curved steel

panels in the field of civil engineering. The purpose of this thesis is to explore another

disciplines of design, maritime engineering, and to see if the codes or design guidelines from

this field could be adapted to be used for civil engineering structures.

Figure 2.1: Yas hotel link bridge stiffeners

The Yas hotel was mentioned earlier as an example of a steel shell structure. Though

not a ‘pure’ shell, this structure exhibits shell behaviour. Some of the structural engineers

that were involved in the design of the Yas hotel bridge were contacted and they men-

tioned several topics that could have influenced the design but which there was insufficient

information to be found on1. These topics were:

• Design of stiffening beams and incorporating effective widths of shell segments

1Stated in an e-mail conversation with a structural engineer that worked on the Yas Marina Bridge
project, Abu Dhabi whose name has purposefully not be printed to maintain confidentiality
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• The effect of curvature on the buckling of the steel panels

• Modelling of minor stiffeners

• Stiffener orientation (orthogonal, radial, stress flow driven)

It was decided that the most interesting topic to investigate would be methods to deter-

mine the buckling resistance of steel shell structures and to investigate the approaches these

methods take in accounting for the stiffeners in these shell structures. By researching these

topics perhaps some useful conclusions could be drawn that will aid designers in having a

greater understanding of the behaviour of steel shell structures, and could lead to a more

accurate reflection of the behaviour of these stiffened structures which could lead to better,

safer and more economically designed buildings.

It was decided that the American Bureau of Shipping - Guide for buckling and ultimate

strength assessment for offshore structures (2004) would be an appropriate code to compare

with the Eurocode. The ABS code was developed by a classification society with a long

history in the development of standards for the design and construction of large steel struc-

tures. Their work involves the standardisation of marine vessels and offshore structures the

likes of which companies such as centraalstaal design and build. As centraalstaal are now

working to design and build geometrically complex steel shell structures it was regarded as

befitting that a set of standards that the company would be familiar with be studied.

2.1 Objective

• The objective of this Master’s thesis is to investigate and compare the Eurocode and

the American Bureau of Shipping methods of analytically determining the buckling

resistance of steel shell cylindrical structures.

• Following this a comparison of the numerical methods of determining buckling resis-

tance of shell structures is to be made with particular focus on the two Eurocode

methods specified in EN 1993-1-6: Strength and stability of shell structures

• Upon comparison, to make recommendations as to how these methods may be adapted

or adopted to approach the design of more geometrically complex steel structures.
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3 THEORETICAL BACKGROUND

3.1 Axial Buckling of Cylindrical Shells

The theoretical buckling stresses of cylindrical shells are misleading as they may substan-

tially overestimate the actual carrying resistance of the shell. This will be illustrated through

the derivation of the theoretical buckling stress of an elastic, thin cylinder of medium length.

Assuming that the buckled shape will give radial displacements according to the expression:

w = −A sin
mπx

l
(3.1)

This assumption is important as we can already predict the shape at which we expect the

cylinder to buckle across length, l, according to each mode, m.

Figure 3.1: First and second modal shapes
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The strain in the axial direction, ε1 and the strain in the circumferential direction, ε2

can be obtained by applying the condition that the axial compressive force during buckling,

Ncr, remains constant.

The axial strain before buckling is given by the following expression:

ε0 = −Ncr

Et
(3.2)

Applying the above constant compressive force condition:

ε1 + νε2 = (1− ν2)ε0 (3.3)

It can be observed that the strain in the circumferential direction is:

ε2 = −νε0 −
w

r
(3.4)

Substituting in the assumed radial displacement:

ε2 = −νε0 +
A

r
sin

mπx

l
(3.5)

We also find that:

ε1 = ε0 − ν
A

r
sin

mπx

l
(3.6)

The change of curvature in the axial plane is given as:

χx =
∂2w

∂x2
= A

m2π2

l2
sin

mπx

l
(3.7)

Using the energy method (Equation: 3.8) the obtained solutions for ε1, ε2 and χx are

substituted into the equations for the strain energy of a deformed shell due to bending:

U1 =
1

2
D

∫ ∫
[(χx + χy)

2 − 2(1− ν)(χxχy − χ2
xy)] dA (3.8)

and the strain energy of a deformed shell due to stretching of the middle surface:

U2 =
Et

2(1− ν2)

∫ ∫
[(ε1 + ε2)

2 − 2(1− ν)(ε1ε2 −
1

4
γ4)] dA (3.9)
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Where D is the flexural rigidity given by:

D =
Et

12(1− ν2)
(3.10)

We find that the increase of the strain energy during buckling is given by the equation:

∆U = −2πtEνε0

l∫
0

A sin
mπx

l
dx+

πA2Etl

2r
+A2π

4m4

2l4
πrlD (3.11)

And the work done by compressive forces during buckling is:

∆T = 2πNcr(ν

l∫
0

A sin
mπx

l
dx+

r

4
A2m

2π2

l
) (3.12)

Where:

ν
l∫
0

A sin
mπx

l
dx is due to the change of ε1-ε0 of the axial strain and;

r

4
A2m2π2

l is due to the bending of the generators given by the

assumed radial displacement, w.

Equating the work done by the compressive forces during buckling with the increase of

strain energy during buckling gives us:

σcr =
Ncr

t
= D(

m2π2

tl2
+

E

r2D

l2

m2π2
) (3.13)

And assuming that there are many waves formed along the length of the cylinder during

buckling and considering σcr as a continuous function of m/l, we find that the minimum

value of the critical buckling stress is:

σcr =
2

rt

√
EDt =

Et

r
√

3(1− ν2)
(3.14)

And substituting in the Poisson’s ratio for steel, ν = 0.3 the theoretical critical buckling
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stress for perfect elastic steel cylinders may be given as:

σcr = 0.605
Et

r
(3.15)

Which occurs at:
mπ

l
=

4

√
Et

r4D
(3.16)

So, the length of the half-waves into which the shell buckles (in it’s first mode, m=1) can

be given as:

l

m
= π

4

√
r2D

Et
= π 4

√
r2t2

12(1− ν2)
≈ 1.72

√
rt (3.17)

The theoretical basis of this approach is that at loads lower than the elastic critical load,

the gain of strain energy in the elements is less than the potential energy of the loads. A

condition of instability is defined, as the stage when the change of the above two energies

is zero, that is, the stiffness of the structure is zero. Then the structure will not resist any

random disturbance. (Mahfouz; 1999)

Readers requiring a more detailed coverage of shell buckling are advised to consult “Theory

of elastic stability” (Timoshenko and Gere; 1961)

This theoretical buckling stress for elastic thin shells is used both in the Eurocode and

the ABS guide to buckling for offshore structures.

In the ABS code it is denoted as the classical compressive buckling stress for a perfect

cylindrical shell:

σCExR = 0.605
Et

r

Whereas in the Eurocode this stress is denoted as the critical buckling stress of the isotropic

wall or the meridional critical buckling stress resistance:

σx,Rcr =
E√

3(1− ν2)
t

r
= 0.605

Et

r

3.2 External Pressure Buckling of Cylindrical Shells

The theory used to determine the external buckling pressure of cylindrical shells differs

slightly between the two design codes examined. The Eurocode is based on a simplification

of the method described in “Theory of elastic stability”(Timoshenko and Gere; 1961, p.474)
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where the three simultaneous partial differential equations representing the relationships

between the displacement in the axial, circumferential and radial directions were simplified

by neglecting higher-order terms (Donnell; 1933). This was simplification was adopted by

Batdorf (Batdorf; 1947) and the Eurocode equation for the critical circumferential buckling

stress was obtained from this (Rotter; 2008, p.176), but with some changes to the coefficients

relating to the boundary conditions and geometry of the cylinder (which will be explained

in further detail in Chapter 5).

Though the references for the theory on the calculation of the circumferential buckling

stresses are not explicitly stated in the ABS buckling guide it is assumed that they were

also at some stage derived from the method derived by Batdorf (Batdorf; 1947) as the

“Batdorf parameter” is used. There are, however, some differences between the ABS method

and the Eurocode method relating to the parameters accounting for geometrical properties

and boundary conditions. American Bureau of Shipping - Commentary on the guide for

buckling and ultimate Strength assessment for offshore structures (2005) states that much

of the ABS buckling guide recommendations are based on experimental data of past and

current offshore-related research and references a report on such experimental data (Das

et al.; 2003).

3.3 Imperfections

It has already been stated that the bifurcation process is purely mathematical and the end

result is the theoretical upper limit for the strength of a structure. However, when geo-

metrical imperfections, material non-linearity, residual stresses etc. are taken into account

the critical buckling load may be significantly lower than the theoretical load anticipates;

the primary source of these discrepancies being shape imperfections. It is not correct to

assume that all shells are highly sensitive to imperfections. the sensitivity depends on a the

type of shell and the type of loading. For instance, a cylindrical shell is highly imperfection

sensitive to a wide range of imperfection forms when compressed in the meridional direc-

tion, however their imperfection sensitivity is quite low under uniform external pressure for

example. This sensitivity is of course dependent on the type of imperfection and it should

be noted that cylindrical shells are extremely sensitive to axisymmetric geometric imper-

fections (Forasassi and Frano; 2006). For eigenmode pre-deformed shells it can even be the

case that the buckling stress of a cylindrical shell under uniform external pressure can be
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higher than that of a perfect cylindrical shell under uniform external pressure Schneider

and Brede (2005).

Figure 3.2: A geometric imperfection illustrated as a crease in a cylinder

This difference relates to the buckling modes, under axial loading the buckling modes are

characterised by waves which, compared to the diameter are short in both the longitudinal

and circumferential direction. Small imperfections on the surface of the shell are likely

to have the same characteristic shape as some of the critical buckles and will tend to

deepen under increasing load and trigger “snap-through” buckling at an earlier loading

stage. The buckling pattern under external pressure consists of buckles which are longer in

the meridional direction and less numerous in the hoop direction, therefore these buckles are

probably considerably larger than the initial imperfections (Faculty of Civil and Geodetic

Engineering, University of Ljubljana; n.d.).

Sensitivity to geometric imperfections is dependant on both the form and the amplitude of

the imperfection, it can be the case that imperfections strengthen the structure, in fact, large

amplitude imperfections may raise the strength of the structure above what is associated

with smaller amplitudes and unfortunately the form of geometric imperfection that is most

critical in determining the strength of a structure cannot be easily defined (Rotter; 2008).
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3.4 Finite Elements

Figure 3.3: 4-noded quadrilateral shell element

The main finite elements types used were 4-noded shell elements (Figure: 3.3) which

can account for both membrane and bending forces. Each of the four nodes has six degrees

of freedom (three translational, three rotational) with the following translational and rota-

tional polynomials (see Figure: 3.4):

u =
1

4
(uI(1− s)(1− t) + uj(1 + s)(1− t) + uk(1 + s)(1 + t) + uL(1− s)(1 + t)) (3.18)

v =
1

4
(vI(1− s)(1− t) + vj(1 + s)(1− t) + vk(1 + s)(1 + t) + vL(1− s)(1 + t)) (3.19)

w =
1

4
(wI(1− s)(1− t) + wj(1 + s)(1− t) + wk(1 + s)(1 + t) + wL(1− s)(1 + t)) (3.20)

θx =
1

4
(θx(1− s)(1− t) + θx(1 + s)(1− t) + θx(1 + s)(1 + t) + θx(1− s)(1 + t) (3.21)

θy =
1

4
(θy(1− s)(1− t) + θy(1 + s)(1− t) + θy(1 + s)(1 + t) + θy(1− s)(1 + t)) (3.22)

θz =
1

4
(θz(1− s)(1− t) + θz(1 + s)(1− t) + θz(1 + s)(1 + t) + θz(1− s)(1 + t)) (3.23)

The number of integration points through the thickness of this element can be chosen

as 1, 3, 5, 7 or 9. The default option is three integration points (top, middle and bot-

tom) however when plasticity is present the minimum number of integration points is five.

Full integration was used as opposed to reduced integration, which is not recommended,

according to:
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Figure 3.4: 4 node shell

1∫
−1

1∫
−1

f(x, y)dxdy =
m∑
j=1

l∑
i=1

HjHif(xi, yj) (3.24)

Where:

f(x, y) is the function to be integrated,

Hi and Hj are weighting factors,

xi and yj are the locations to evaluate the function and;

l and m are the number of integration points.

The basic functions for the transverse shear strain have been changed to avoid shear lock-

ing by use of the Mixed Interpolation of Tensorial Components (MITC) method (For fur-

ther reading consult Dvorkin (1984), Dvorkin and Bathe (1984) and Bathe and Dvorkin

(1986)).“The basic idea of the MITC technique is to interpolate displacements and strains

separately and “connect” these interpolations at “tying points” (Lee and Bathe; 2004).

Other Finite Elements may be found in Appendix D
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4 METHODOLOGY

4.1 Eurocode: EN 1993-1-6

The following equations from Eurocode 3 - Design of steel structures - Part 1-6: Strength

and stability of shell structures (2007) were used in the design code comparison and have

been transcribed here for easy reference.

The length of the shell segment is characterised in terms of the dimensionless length pa-

rameter ω;

ω =
l

r

√
r

t
=

l√
rt

(4.1)

The boundary conditions are defined in the Eurocode in Figure 4.1.

Figure 4.1: Eurocode defined boundary conditions

4.1.1 Meridional Buckling

The critical meridional buckling stress, using a value of Cx should be obtained from:

σxRc = 0.605ECx
t

r
(4.2)
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For short cylinders with:

ω ≤ 1.7

Cx = 1.36− 1.83

ω
+

2.07

ω2
(4.3)

For medium cylinders with:

1.7 ≤ ω ≤ 0.5
r

t

Cx = 1 (4.4)

For long cylinders with:

0.5
r

t
< ω

Cx = 1 +
0.2

Cxb
[1− 2ω

t

r
] (4.5)

but Cx ≥ 0.6

Table 4.1: Parameter Cxb for the effect of boundary conditions on the critical meridional
buckling stress in long cylinders

Case Cylinder end Boundary condition Cxb

1
end 1 BC 1

6
end 2 BC 1

2
end 1 BC 1

3
end 2 BC 2

3
end 1 BC 2

1
end 2 BC 2

The meridional elastic imperfection factor should be obtained from:

αx =
0.62

1 + 1.91(∆wk/t)1.44
(4.6)

where ∆wk is the characteristic imperfection amplitude

∆wk =
1

Q

√
r

t
t (4.7)
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Where Q is the meridional compression fabrication quality parameter.

Table 4.2: Values of fabrication quality parameter Q

Fabrication Quality Class Description Q

Class A Excellent 40
Class B High 25
Class C Normal 16

The meridional squash limit slenderness λ̄x0, the plastic range factor β, and the interaction

exponent η should be taken as:

λ̄x0 = 0.2 β = 0.6 η = 1.0

Cylinders need not be checked against meridional shell buckling if they satisfy:

r

t
≤ 0.04

E

fy,k

4.1.2 Circumferential Buckling

For short cylinders with:
ω

Cθ
< 20

the critical circumferential buckling stress should be obtained from:

σθRc = 0.92E
Cθs
ω

t

r
(4.8)

For medium-length cylinders with:

20 ≤ ω

Cθ
≤ 1.63

r

t

the critical circumferential buckling stress should be obtained from:

σθRc = 0.92E
Cθ
ω

t

r
(4.9)
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For long cylinders with:
ω

Cθ
> 1.63

r

t

the critical circumferential buckling stress should be obtained from:

σθRc = E(
t

r
)2[0.275 + 2.03(

Cθ
ω

r

t
)4] (4.10)

The meridional squash limit slenderness λ̄θ0, the plastic range factor β, and the interaction

exponent η should be taken as:

λ̄θ0 = 0.4 β = 0.6 η = 1.0

Cylinders need not be checked against circumferential shell buckling if they satisfy:

r

t
≤ 0.21

√
E

fy,k

Table 4.3: Values of αθ based on fabrication quality

Fabrication quality class Description αθ

Class A Excellent 0.75
Class B High 0.65
Class C Normal 0.50

4.1.3 Stress Design Method

The buckling resistance should be represented by the buckling stresses as defined in 1.4.5.

The design buckling stresses should be obtained from:

σx,Rd = σx,Rk/γM (4.11)

σθ,Rd = σθ,Rk/γM (4.12)

The characteristic buckling strengths should be obtained by multiplying the characteristic

yield strength by the reduction factors:

σx,Rk = χxfy,k (4.13)
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Table 4.4: External pressure buckling factors for medium-length cylinders Cθ

Case Cylinder end Boundary condition Value of Cθ

1
end 1 BC 1

1.5
end 2 BC 1

2
end 1 BC 1

1.25
end 2 BC 2

3
end 1 BC 2

1
end 2 BC 2

4
end 1 BC 1

0.6
end 2 BC 3

5
end 1 BC 2

0
end 2 BC 3

6
end 1 BC 3

0
end 2 BC 3

Table 4.5: External pressure buckling factors for short cylinders Cθs

Case Cylinder end Boundary condition Cθs

1
end 1 BC 1

1.5 +
10

ω2
− 5

ω3end 2 BC 1

2
end 1 BC 1

1.25 +
8

ω2
− 4

ω3end 2 BC 2

3
end 1 BC 2

1.0 +
3

ω3end 2 BC 2

4
end 1 BC 1

0.6 +
1

ω2
− 0.3

ω3end 2 BC 3
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σθ,Rk = χθfy,k (4.14)

The reduction factors χx and χθ should be determined as a function of the relative slender-

ness of the shell λ̄ from:

χ = 1 when λ̄ ≤ λ̄0

χ = 1− β(
λ̄− λ̄0
λ̄p − λ̄0

)η when λ̄0 ≤ λ̄ ≤ λ̄p

χ =
α

λ̄2
when λ̄ ≥ λ̄p

where:

λ̄p =

√
α

1− β

λ̄x =
√
fy,k/σxRc

λ̄θ =
√
fy,k/σθRc

4.2 Eurocode: EN 1993-4-1

The following equations from Eurocode 3 - Design of steel structures - Part 4-1: Silos (2007)

were used in the design code comparison and have been transcribed here for easy reference.

Eurocode EN 1993-4-1 states that the buckling resistance for isotropic walls should use

the method described above. For determining the buckling resistance of isotropic walls with

vertical stiffeners (and the spacing of the stringer stiffeners is less than 2
√
rt which is the

case for the stringer stiffened cylinders studied) the designer is given the option to design

the shell wall in the same manner as an unstiffened wall, or by the global analysis procedure

in EN 1993-1-6.

There is, however, another design approach for stiffened corrugated shells which are treated

as stiffened orthotropic shells. This method is of interest as it incorporates the properties

of the stiffening members, making it comparable to the ABS design method. However,

as this method is for orthotropic shells with stiffening members the equations had to be
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altered to make it applicable for isotropic walls with vertical stiffeners. This was performed

by changing the equations to match those given in Weingarten et al. (1968, p.25). The

Eurocode does not state that this method in determining the buckling stresses is allowed

but it was deemed interesting to examine. In order for this to be done the flexural stiffness

must be changed from:

Dφ =
Et3

12(1− ν2)
1

(1 +
π2d2

4l2
)

Dθ = 0.13Etd2

Dφθ =
Gt3

12
(1 +

π2d
2

4l2
)

to flexural stiffness’s for isotropic cylinders:

Dφ =
Et3

12(1− ν2)

Dθ =
Et3

12(1− ν2)

Dφθ = 2Dφ

The critical buckling stress resultant nx,Rcr per unit circumference of the orthotropic

shell should be evaluated at each appropriate level in the silo by minimising the following ex-

pression with respect to the critical circumferential wave number j and the buckling height li:

nx,Rcr =
1

j2ω2
(A1 +

A2

A3
) (4.15)

The critical buckling stress for uniform external pressure pn,Rcru should be evaluated by

minimising the following expression with respect to the critical circumferential wave num-

ber, j:

pn,Rcru =
1

rj2
(A1 +

A2

A3
) (4.16)

with:

A1 = j4[ω4C44 + 2ω2(C45 + C66) + C55] + C22 + 2j2C25 (4.17)
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A2 = 2ω2(C12 + C33)(C22 + j2C25)(C12 + j2ω2C14)

− (ω2C11 + C33)(C22 + j2C25)
2

− ω2(C22 + ω2C33)(C12 + j2ω2C14)
2

(4.18)

A3 = (ω2C11 + C33)(C22 + C25 + ω2C33)− ω2(C12 + C33)
2 (4.19)

with:

C11 = Cφ + EAs/ds (4.20)

C12 = ν
√
CφCθ (4.21)

C14 = esEAs/(rds) (4.22)

C22 = Cθ + EAr/dr (4.23)

C25 = erEAr/(rdr) (4.24)

C33 = Cφθ (4.25)

C44 = [Dφ + EIs/ds + EAse
2
s/ds]/r

2 (4.26)

C45 = ν
√
DφDθ/r

2 (4.27)

C55 = [Dθ + EIr/dr + EAre
2
r/dr]/r

2 (4.28)

C66 = [Dφθ + 0.5(GIts/ds +GItr/dr)]/r
2 (4.29)

ω =
πr

jli
(4.30)

where:

li is the half wavelength of the potential buckle in the vertical direction

As is the cross-sectional area of a stringer stiffener

Is is the second moment of area of a stringer stiffener about the circumferential

axis (vertical bending)

ds is the separation between stringer stiffeners

Its is the uniform torsion constant of a stringer stiffener

es is the outward eccentricity from the shell middle surface of a stringer stiffener

Ar is the cross-sectional area of a ring stiffener
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Ir is the second moment of area of a ring stiffener about the vertical

axis (circumferential bending)

dr is the separation between ring stiffeners

Itr is the uniform torsion constant of a ring stiffener

er is the outward eccentricity from the shell middle surface of a ring stiffener

Cφ is the sheeting stretching stiffness in the axial direction

Cθ is the sheeting stretching stiffness in the circumferential direction

Cφθ is the sheeting stretching stiffness in membrane shear

Dφ is the sheeting flexural rigidity in the axial direction

Dθ is the sheeting flexural rigidity in the circumferential direction

Dφθ is the sheeting twisting flexural rigidity in twisting

r is the radius of the silo.

The characteristic buckling stress may be determined from this critical buckling stress

resultant from:

nx,Rk = χglobtmfy,k

where:

χglob =

√
tmfy,k
nx,Rcr

tm = “smeared” wall thickness

= t+As/b

This method has been verified by comparing the value of ω from EN 1993-4-1 (Equa-

tion: 4.30) with that of the Eurocode method in Annex D of EN 1993-1-6 (Equation: 4.1).

If these values match it is noted in the results table with a ‘Yes’. It should be noted that

the method adopted for this study is a very simplified approach to this theory, a more

detailed method based on this theory may be found in “Buckling of axially compressed

cylinders” (Miller; 1977,).

4.3 ABS

The following equations from American Bureau of Shipping - Guide for buckling and ulti-

mate strength assessment for offshore structures (2004) were used in the design code com-

parison and have been transcribed here for easy reference.
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4.3.1 Unstiffened or Ring-Stiffened Cylinders

4.3.1.1 Critical Buckling Stress for Axial Compression or Bending Moment

The critical buckling stress of unstiffened or ring-stiffened cylindrical shell subjected to axial

compression or bending moment may be taken as:

σCxR =


σExR σExR ≤ Prσ0

σ0[1− Pr(1− Pr)
σ0
σExR

] σExR > Prσ0

where:

Pr = proportional linear elastic limit of the structure, which may be taken as 0.6 for steel

σExR = elastic compressive buckling stress for an imperfect cylindrical shell

= ρxRCσCExR

σCExR = classical compressive buckling stress for a perfect cylindrical shell

= 0.605
Et

r

C = length dependant coefficient

=

1.0 z ≥ 2.85

1.425/z + 0.175z z < 2.85

ρxR = nominal or lower bound knock-down factor to allow for shape imperfections

=


0.75 + 0.003z(1− r

300t
) z < 1

0.75− 0.142(z − 1)0.4 + 0.003z(1− r

300t
) 1 ≤ z ≤ 20

0.35− 0.0002
r

t
z ≥ 20

z = Batdorf parameter

=
l2

rt

√
1− ν2

l = length between adjacent ring stiffeners (unsupported)

r = mean radius of cylindrical shell
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t = thickness of cylindrical shell

E = modulus of elasticity

ν = Poissons ratio, 0.3 for steel

σ0 = specified minimum yield point

4.3.1.2 Critical Buckling Stress for External Pressure

The critical buckling stress for an unstiffened or ring-stiffened cylindrical shell subjected to

external pressure may be taken as:

σCθR = ΦσEθR

where:

Φ = plasticity reduction factor

= 1 for ∆ ≤ 0.55

=
0.45

∆
+ 0.18 for 0.55 < ∆ ≤ 1.6

=
1.31

1 + 1.15∆
for 1.6 < ∆ < 6.25

= 1/∆ for ∆ ≥ 6.25

∆ =
σEθR
σ0

σEθR = elastic hoop buckling stress for an imperfect cylindrical shell

= ρθR
qCEθR(r+0.5t)

t
Kθ

ρθR = nominal or lower bound knock-down factor to allow for shape imperfections

= 0.8

Kθ = coefficient to account for the effect of ring stiffener

qCEθR = elastic buckling pressure
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=



1.27E

A1.18
L + 0.5

t

r

2

AL ≤ 2.5

0.92E

AL

t

r

2

2.5 < AL ≤ 0.208 ≤ r

t

0.836C−1.061
p E

t

r

3

0.208
r

t
< AL ≤ 0.285

r

t

0.275E
t

r

3

0.285 ≤ r

t
< AL

AL =

√
z

(1− ν2)1/4
− 1.17 + 1.068k

k = 0 for lateral pressure

= 0.5 for hydrostatic pressure

where Kθ is defined as:

Kθ = 1− 1− kν
1 + t(tw + lω̄)/ĀR

Gα

ĀR = AR(
r

rR
)2

ω̄ =
cosh2α− cos2α

α(sinh2α+ sin2α)

α =
l

1.56
√
rt

Gα = 2
sinhαcosα+ coshαsinα

sinh2α+ sin2α
≥ 0

k = Nx/Nθ for lateral pressure

= Nx/Nθ + 0.5 for hydrostatic pressure

AR = cross sectional area of ring stiffener

Nx = axial load per unit length
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Nθ = circumferential load per unit length

rR = radius to centroid of ring stiffener

t = thickness of cylindrical shell

tw = stiffener web thickness

l = length between adjacent ring stiffeners (unsupported)

4.3.2 Ring and Stringer-stiffened Shells

4.3.2.1 Critical Buckling Stress for Axial Compression or Bending Moment

σCxB =


σExB σExB ≤ Prσ0

σ0[1− Pr(1− Pr)
σ0
σExB

] σExB > Prσ0

where:

Pr = proportional linear elastic limit of the structure,

which may be taken as 0.6 for steel

σExB = elastic compressive buckling stress for an imperfect cylindrical stringer

stiffened shell

= σc + σs

σs = elastic compressive buckling stress of stringer-stiffened shell

= ρxB
0.605E(t/r)

1 +
As
st

ρxB = 0.75

σc = elastic buckling stress of column

=
π2EIse

l2(As + set)

Ise = moment of inertia of stringer stiffener plus associated effective shell plate width

= Is +Asz
2
st

set

As + set
+
set

3

12
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Is = moment of inertia of stringer stiffener about its own centroid axis

zst = distance from centerline of shell to the centroid of stringer stiffener

As = cross sectional area of stringer stiffener

se = reduced effective width of shell

=
0.53

λxP
s for λxP > 0.53

= s for λxP ≤ 0.53

s = shell plate width between adjacent stringers

λxP = reduced shell slenderness ratio

=

√
σ0
σExP

σExP = elastic compressive buckling stress for imperfect curved panel between

adjacent stringer stiffeners

σExP is defined in another section of the ABS code as:

σExp = BxPρxPσCExP

where:

σCExP = classical buckling stress for a perfect curved panel between

adjacent stringer stiffeners

= KxP
π2E

12(1− ν2)
(
t

s
)2

KxP = 4 +
3z2s
π4

for zs ≤ 11.4

= 0.702zs for zs > 11.4

ρxP = nominal or lower bound knock-down factor to allow for shape imperfections

= 1− 0.019z1.25s + 0.002zs(1−
r

300t
) for zs ≤ 11.4
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= 0.27 +
1.5

zs
+

27

z2s
+ 0.008

√
zs(1−

r

300t
) for zs > 11.4

BxP = factor compensating for the lower bound nature of ρxP

=

1.15 for λn > 1

1 + 0.15λn for λn ≤ 1

λn =

√
σ0

ρxPσCExP

zs =
√

1− ν2 s
2

rt

s = spacing of stringer stiffeners

4.3.2.2 Critical Buckling Stress for External Pressure

The critical buckling stress for ring and stringer-stiffened cylindrical shells subjected to

external pressure may be taken as:

σCθB = (σCθR + σsp)Kp ≤ σ0

where:

σCθR = critical hoop buckling stress for the unstiffened shell

σsp = collapse hoop stress for a stringer stiffener plus its associated shell plating

=
qs(r + 0.5t)

t
Kθ

qs = collapse pressure of a stringer stiffener plus its associated shell plating

=
16

sl2
As|zst|σ0

zst = distance from centerline of shell to the centroid of stringer stiffener

KP = effective pressure correction factor
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= 0.25 +
0.85

500
g for g ≤ 500

= 1.10 for g > 500

g = geometrical parameter

= 2π
l2As
NsIs

Ns = number of stringer stiffeners

4.4 Computational Analysis

For this study Ansys Workbench version 13.0.0 was used. The cylinders were drawn in Au-

toCAD 2013 by first creating a base circle representing the base of the cylinder; this base

circle was then copied using the array function with spacing equal to the spacing between

the ring stiffeners. A thin surface was then extruded from each circle to the next, creat-

ing a separate surface between each circle, where each circular line represents a ring stiffener.

Figure 4.2: Wireframe model Figure 4.3: Separation of surfaces

The AutoCAD file was then saved as an Initial Graphics Exchange Specification (IGES)

file, which was then imported into the Ansys workbench geometry modeller (called “De-

signModeller”). The option to “stich surfaces” was disabled so that each of the individual

surfaces were kept separate and the option to “process line bodies” was enabled so that the

lines representing the ring stiffeners could be imported.
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Within the DesignModeller the ring stiffener cross section was defined and then assigned

to each of the line bodies representing the ring stiffeners. These were then offset from their

centroidal axis so that they were correctly positioned and orientated. A thickness was then

defined for the imported surfaces thereby rendering the geometric modelling of the structure

complete. Using the defined geometry a number of analyses were run:

4.4.1 Static Structural Stress Analysis

A linear buckling analysis must be preceeded by a static structural analysis.

Supports:

The base of the cylinder was defined as simply supported. The top ring of the cylinder was

radially constrained, i.e. it could only move in the vertical direction. The ring stiffeners for

the linear buckling analysis were modelled as cross-sectional elements.

Mesh:

The typical mesh size of each analysis is a minimum edge length of 10mm and a maximum

edge length of 30mm. The meshes were quadrilateral shell elements (a description of which

is given in Section: 3.4) and were “pinched” or matched at the intersections between two

surfaces and the ring stiffeners so that the structure was modelled as one contiguous part.

Loading:

Two loadcases were examined for the linear analyses: axial loading, and external pressure

loading (See Figures: 4.4 and 4.5). For the axial loading case a vertical compressive load

of 1N was distributed on the top of the cylinder, whereas for the external buckling case, a

uniform pressure of 1Pa was placed acting externally on each of the shell segments.

Steps and substeps:

For this type of analysis there was only one step and substep required as it is a direct (as

opposed to iterative) solution process.

Solution process:

A sparse matrix direct solver process was used and there were six degrees of freedom per
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Figure 4.4: Axial loading
Figure 4.5: External pressure load-
ing

node; three translational and three rotational.

4.4.2 Linear Buckling Analysis

The Block Lanczos method was used to extract the first three modal buckling shapes (Fur-

ther information on this method can be found in Rajakumar and Rogers (1991)).

The result of a linear buckling analysis is a load factor that when multiplied by the load ap-

plied in the previous static analysis will result in buckling. So, if a load of 10N were applied

in the preceding static structural analysis and the result of the linear buckling analysis is a

load factor of 550 then the buckling load is 10 x 550 = 5500N.
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4.4.3 Introduction of Imperfections

The modal buckling shapes that have been extracted from a linear buckling analysis can

be scaled and the shape exported for further analysis. For this study the first modal shape

was extracted and scaled by a number of values, and a non-linear buckling analysis was

performed on each of these geometries.

Taking Cylinder IC1 as an example:

• A linear buckling analysis was performed, the first three modal shapes and buckling

factors were determined

• The geometry of the first model shape was extracted

• The deformation of the first modal shape was scaled by 1 and a non-linear analysis

was performed on the resulting geometry

• The first modal shape was scaled by a factor of 5 and a non-linear analysis was

performed on the resulting geometry

• The first modal shape was scaled by a factor of 10 and a non-linear analysis was

performed on the resulting geometry etc.

This allowed an imperfection sensitivity analysis to be performed when the resulting buck-

ling stresses from the non-linear analyses were compared.

Figure 4.6: Computational analysis procedure

4.4.4 Non-Linear Analysis

Multiple non-linear analyses were performed on each cylinder in this study. The Eurocode

section describes some of these in detail. The following description is the methodology

for the geometrically and materially non-linear analysis of a cylinder of perfect geometry
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(That is that the modal imperfection shape was not used, the geometry is the same as the

linear analysis i.e. geometric imperfection free) and a description of the non-linear analysis

performed on each cylinder with introduced imperfections (Geometrically, materially non-

linear analysis with included imperfections of which, approximately 30 of these analyses

were performed). The external uniform pressure loadcase was not analysed non-linearly, it

was decided that axial loading was of greater interest as axial loading of cylindrical shells

has more critical post-buckling behaviour. Given the limitation of time and computational

storage space non-linear analyses of axial loading alone was deemed sufficient. Further

information on non-linear analyses of cylindrical shells under uniform external pressure

may be found in “Consistent equivalent geometric imperfections for the numerical buckling

strength verification of cylindrical shells under uniform external pressure” Schneider and

Brede (2005).

Supports:

The base of the cylinder was defined as simply supported. The top ring of the cylinder was

radially constrained, i.e. it could only move in the vertical direction. The ring stiffeners

for the non-linear buckling analysis were modelled as infinitely radially stiff1 i.e. that they

could not displace laterally but were free to move in the vertical direction.

Mesh:

The typical mesh size of each analysis is a minimum edge length of 10mm and a maxi-

mum edge length of 30mm. The meshes were quadrilateral elements and were “pinched”

or matched at the intersections between two surfaces and the ring stiffeners so that the

structure was modelled as one contiguous part.

Loading:

The loading procedure for the non-linear analyses was to apply a vertical displacement to

the top of each cylinder in the direction of the base putting the cylinder under compression.

The imposed displacement varied per analysis. The procedure was to perform an initial

1This was a requirement as the surfaces of the buckled shape could not be ’split’ and a supporting line
element could not be introduced. Therefore constraints were placed directly on the nodes at the locations
of the stiffeners, a comparison was performed between a case where line elements could be used and a case
where nodal constraints were used, this is discussed in more detail in the discussion of computational results
section
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buckling analysis with a large imposed displacement then once convergence was lost, the

displacement at which the structure became unstable was determined. Upon inspection of

the load vs. displacement diagram it was determined if this instability was induced by buck-

ling (or improper modelling). The applied displacement was then adjusted to a value closer

to that which induced buckling and the analysis was run again. This resulted in smaller

load increments allowing the resulting buckling load to be more accurately determined.

Steps and substeps:

For each analysis there was one load step which was further subdivided into substeps.

The initial subdivision into substeps was performed automatically by the program until an

approximate buckling load (from induced displacement) was determined. After an approx-

imate buckling load was determined the substeps were typically set to a minimum of 50.

This meant that for each substep the load increment was the (imposed displacement/50).

After 50 steps, the total imposed displacement was then equal to the applied displacement.

Analysing the model in 50 substeps allowed the load vs. displacement diagram to be giving

the behaviour of the structure in good detail. A greater number of substeps would result in

greater computation time, but more accurate results. The accuracy given with 50 substeps

was considered sufficient for this study.

Solution process:

The non-linear analysis was analysed using the full Newton-Raphson method with sparse

matrix direct solver and the convergence criteria used was an L2-norm (Weisstein; n.d.) of

force (and moment) tolerance equal to 0.5%.

Once again the nodes had six degrees of freedom; six translational and six rotational.

4.4.4.1 Global numerical MNA/LBA analysis

This approach is given in section 8.6 of Part 1-6: Shells and is explained in (Figure: 4.7)

and has essentially the same basis of the traditional stress design buckling approach.

1. Firstly a linear buckling analysis (LBA) is performed - this determines the elastic

critical buckling resistance Rcr of a perfect shell.

2. A material non-linear, or elastic-plastic, analysis is performed to determine the plastic

reference resistance of the shell Rpl
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Figure 4.7: Steps in buckling strength assessment using design by global numerical
MNA/LBA analysis (Rotter; 2008)

3. The relative slenderness, λov, is deduced where:

λov =
√
Rpl/Rcr (4.31)

4. The overall buckling reduction factor χov is then determined from:

χov = 1 when λov ≤ λov,0

χov = 1− βov(
λov − λov,0
λov,p − λov,0

)ηov when λov,0 < λ < λov,p

χov =
αov
λ2ov

when λov,p ≤ λov

where:

λov,p =

√
αov

1− βov

As the analyses are of cylinders under meridional loading, λov, βov and ηov were

chosen as the same as λx, βx and ηx, so the elastic imperfection factor αov is also

determined the same way as a cylinder under meridional loading.
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αov =
0.62

1 + 1.91(∆wk/t)1.44
(4.32)

and ∆wk is determined by Equation: 4.7

5. The characteristic buckling resistance, Rk, is then obtained from:

Rk = χovRpl

6. and the design bucking resistance, Rd, is given by:

Rd = Rk/γM

where:

γM1 is the partial factor for resistance

4.4.4.2 Global numerical GMNIA analysis

Figure 4.8: Definition of buckling resistance from global GMNIA analysisRotter (2008)

The procedure is summarised as follows:

1. Firstly a linear buckling analysis (LBA) is performed - this determines the elastic

critical buckling resistance Rcr of a perfect shell.

2. A materially non-linear analysis is performed on a perfect shell - this determines the

plastic reference resistance Rpl of a perfect shell.
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3. These two resistances are used to establish the overall relative slenderness λov of the

shell.

4. Next geometrically and materially non-linear analysis are performed using a number

of imposed imperfection amplitudes on the same cylinder to determine the imperfect

elastic-plastic critical buckling resistance RGMNIA, which is determined as one of the

values (Figure: 4.8):

• The maximum load factor (limit load) on the load-deformation curve C1

• The bifurcation load factor, where this occurs before the limit load is reached C2

• The largest tolerable deformation C3

• The load factor at which the equivalent stress at the most highly stressed point

on the shell surface reaches the design value of the yield stress.

• The buckling loads were graphed in non-dimensional form. the buckling load for

each imperfection amplitude (Ncr, also denoted RGMNIA) was divided by the

buckling load for the perfect cylinder (Ncr,perfect, also denoted RGMNA) and the

imperfection amplitude was divided by the shell thickness.

5. For the buckling design by global numerical GMNIA analysis a required amplitude

of the adopted equivalent geometric imperfection form, ∆w0,eq, was determined from

the larger of:

∆w0,eq,1 = lgUn1

∆w0,eq,2 = nitUn2

where:

lg is the relevant gauge length

ni is a multiplier to achieve an appropriate tolerance level

(ni = 25 is recommended)

Un1 and Un2 are the dimple imperfection factors given in Table: 4.6:

6. The imperfect elastic-plastic critical buckling resistance, RGMNIA, for this amplitude

was then determined from linear interpolation of the previous GMNIA results (see

Figure:
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Table 4.6: Recommended values for dimple imperfection parameters (Eurocode 3 - Design
of steel structures - Part 1-6: Strength and stability of shell structures; 2007)

Fabrication quality class Description Recommended Un1 Recommended Un2

Class A Excellent 0.01 0.01
Class B High 0.016 0.016
Class C Normal 0.025 0.025

7. The characteristic buckling resistance should be obtained from:

Rk = kGMNIARGMNIA

Where kGMNIA is the calibration factor and was assumed to be 1 (one)2.

8. The design bucking resistance, Rd, is given by:

Rd = Rk/γM

where:

γM1 is the partial factor for resistance

Figure 4.9: Example interpolation of the RGMNIA for the amplitude of the adopted equiv-
alent geometric imperfection

2kGMNIA can lie between 0.8 and 1.2 but if it falls outside this range the analytical results are deemed
invalid, it is determined through comparison with known results or tests
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5 DESIGN CODE ANALYTICAL METHOD

American Bureau of Shipping - Commentary on the guide for buckling and ultimate Strength

assessment for offshore structures (2005) has six example steel structures to which the guide

was applied to. Three cylinders stiffened only with ring stiffeners and three cylinders with

both ring and stringer stiffeners. These examples were used to verify the Matlab script

written for the ABS the guide for buckling and ultimate strength assessment for offshore

structures (see Appendix B) but these structures were also designed using the Eurocode and

finite element analysis to compare the design approaches and see what range of buckling

stresses are given for the different design approaches. The basic geometric information is

given in Tables 5.1 and 5.8 but for further details such as stiffener dimensions, loading etc.

please consult the ABS commentary (2005). This chapter will present the results of the

design methods, their results will be compared and discussed in Chapters 6 and 8.

5.1 Ring Stiffened Cylinders

Table 5.1: Ring stiffened shell geometry

Model Name IC-1 1 6.1

Total Length(Assumed) L (mm) 2239.5 2438.49 2522.1
Length between ring stiffeners l (mm) 746.5 812.83 840.7

Mean radius r (mm) 749.7 197.2 3175
Thickness t (mm) 3.52 12.57 6.35

Specified minimum yield stress σ0(N/mm2) 281 301 276
Modulus of elasticity E (N/mm2) 2.05E+05 2.04E+05 1.99E+05

Poisson’s ratio ν 0.3 0.3 0.3

5.1.1 Cylinder IC-1

Ring stiffened steel cylinder subject to axial loading only.

For this first example the equations will be written but for further examples only the key

values will be given.
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5.1.1.1 Eurocode - Meridional (Axial) Loading

The length of the shell segment is characterised in terms of the dimensionless length pa-

rameter ω:

ω =
l

r

√
r

t
=

l√
rt

ω =
746.5√

749.7× 3.52
= 14.53

The critical meridional buckling stress, using a value of Cx, should be obtained from:

σxRc = 0.605ECx
t

r

where the coefficient Cx is a length dependent factor and as:

1.7 ≤ ω ≤ 0.5
r

t

the cylinder is classified as medium length so:

Cx = 1

The critical meridional buckling stress can be determined as:

σxRc = 0.605× (2.05× 105)× 1× 3.52

749.7
= 582.32 N/mm2

The meridional elastic imperfection factor should be obtained from:

αx =
0.62

1 + 1.91(∆wk/t)1.44

where ∆wk is the characteristic imperfection amplitude:

∆wk =
1

Q

√
r

t
t
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where Q is the meridional compression fabrication quality parameter (see Table: 4.2), which

for this study is assumed to be “excellent”1, so:

∆wk =
1

40

√
749.7

3.52
3.52 = 1.28

and:

αx =
0.62

1 + 1.91(1.28/3.52)1.44

αx = 0.4284

The meridional squash limit slenderness λ̄x0, the plastic range factor β, and the interaction

exponent η should be taken as:

λ̄x0 = 0.2 β = 0.6 η = 1.0

So, determining the reduction factor χx:

λ̄p =

√
α

1− β

λ̄p =

√
0.4284

1− 0.6
= 1.03

and:

λ̄x =
√
fy,k/σxRc

λ̄x =
√

281/582.32 = 0.6947

as

λ̄0 ≤ λ̄x ≤ λ̄p

The reduction factor χx may be taken as:

χx = 1− β(
λ̄x − λ̄0
λ̄p − λ̄0

)

1This is a significant assumption but the fabrication quality of a manufacturer is difficult to determine. A
manufacturer was approached about their fabrication tolerances but they never responded so an assumption
was required. Reducing the fabrication quality to “High” results in a design buckling stress of 148.37N/mm2

which is a 10% reduction of the “Excellent” value. If the quality was reduced to “Normal” the buckling
strength would be 120.42N/mm2, a 26% reduction of the “Excellent” value.
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χx = 1− 0.6(
0.6947− 0.2

1.03− 0.2
) = 0.64

The characteristic buckling strengths should be obtained by multiplying the characteristic

yield strength by the reduction factors:

σx,Rk = χxfy,k

σx,Rk = 0.64× 281 = 181.11 N/mm2

Although for this study the characteristic buckling stresses are compared, for the sake of

completeness the Eurocode design buckling stresses should be obtained from:

σx,Rd = σx,Rk/γM

σx,Rd = 181.11/1.1 = 164.65 N/mm2

5.1.1.2 ABS - Axial Loading

The elastic buckling stress for an imperfect cylindrical shell is defined as:

σExR = ρxRCσCExR

where ρxR, the nominal or lower bound knock-down factor and the length dependent coef-

ficient, C, are dependent on the Batdorf parameter, z:

z =
l2

rt

√
1− ν2

z =
746.52

749.7× 3.52

√
1− 0.32 = 201.44

in this case, where:

20 ≤ z

then ρxR is determined by:

ρxR = 0.35− 0.0002
r

t

ρxR = 0.35− 0.0002
749.7

3.52
= 0.3074
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for the length dependent coefficient when:

z ≥ 2.85

then C is defined as:

C = 1

The classical compressive buckling stress σCExR for a cylinder is the same that was derived

in theory (see Section: 3.1):

σCExR = 0.605
Et

r

σCExR = 0.605
(2.05× 105)× 3.52

749.7
= 582.32 N/mm2

so the elastic buckling stress for an imperfect cylindrical shell is:

σExR = 0.3074× 1× 582.32 = 179.01 N/mm2

but as the elastic buckling stress for an imperfect cylindrical shell falls into the elastic-plastic

range:

σExR > Prσ0

the critical buckling stress of unstiffened or ring-stiffened cylindrical shell subjected to axial

compression or bending moment may be taken as:

σCxR = σ0[1− Pr(1− Pr)
σ0
σExR

]

σCxR = 281[1− 0.6(1− 0.6)
281

179.00
] = 175.14 N/mm2

Table 5.2: Cylinder IC-1 - Axial

Eurocode ABS

Plasticity Elasto-plastic Plasticity Plastic effects

Length coefficient, Cx 1 Length coefficient, C 1

Elastic stress, σx,Rc 582.32 N/mm2 Elastic stress, σExR 582.32 N/mm2

Critical stress, σx,Rk 181.11 N/mm2 Critical stress, σCxR 175.14 N/mm2
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5.1.1.3 Eurocode - Circumferential Loading

The equation for the critical buckling stress for circumferential is length dependent so firstly

the non-dimensional length of the cylinder must be defined using ω and Cθ. The value

for ω has already been determined, and the value for Cθ is dependent on the boundary

conditions (see Table: 4.4) which were assumed to be “pinned-pinned”2. For “pinned-

pinned” conditions the value of Cθ may be taken as:

Cθ = 1

As the non-dimensional length is:
ω

Cθ
< 20

the critical circumferential buckling stress should be obtained from:

σθRc = 0.92E
Cθs
ω

t

r

where the value for Cθs is taken from Table 4.5 which for “pinned-pinned” conditions is

defined as:

Cθs = 1 +
3

ω1.35

Cθs = 1 +
3

14.531.35
= 1.08

The critical circumferential buckling stress can then be determined as:

σθRc = 0.92E
Cθs
ω

t

r

σθRc = 0.92× (2.05× 105)(
1.08

14.53
)(

3.52

749.7
) = 65.87 N/mm2

The value for αθ is based on the fabrication quality and is taken from Table 4.3:

αθ = 75

The meridional squash limit slenderness λ̄θ0, the plastic range factor β, and the interaction

exponent η should be taken as:

2This is the boundary condition which most closely matched the ABS code
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λ̄θ0 = 0.4 β = 0.6 η = 1.0

So, determining the reduction factor χθ:

λ̄p =

√
α

1− β

λ̄p =

√
0.75

1− 0.6
= 2.07

and:

λ̄θ =
√
fy,k/σθRc

λ̄θ =
√

281/65.87 = 2.07

as

λ̄θ ≥ λ̄p

The reduction factor χθ may be taken as:

χθ =
α

λ̄2θ

χθ =
0.75

2.072
= 0.1758

The characteristic buckling strengths should be obtained by multiplying the characteristic

yield strength by the reduction factors:

σθ,Rk = χθfy,k

σθ,Rk = 0.1758× 281 = 49.4 N/mm2

Although for this study the characteristic buckling stresses are compared, for the sake of

completeness the Eurocode design buckling stresses should be obtained from:

σθ,Rd = σθ,Rk/γM

σθ,Rd = 49.4/1.1 = 44.91 N/mm2
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5.1.1.4 ABS - External Pressure Loading

Firstly AL will be calculated:

AL =

√
z

(1− ν2)1/4
− 1.17 + 1.068k

where:

k = 0 for lateral pressure

z = 201.44

the elastic buckling pressure is dependent on AL, so

AL =

√
201.44

(1− 0.32)1/4
− 1.17 + (1.068× 0) = 13.36

which falls into the range of

2.5 < AL ≤ 0.208 ≤ r

t

then the elastic buckling pressure is determined as

qCEθR =
0.92E

AL

t

r

2

qCEθR =
0.92× 2.05× 105

13.36

3.52

749.7

2

= 0.31Pa

Next the coefficient to account for the effect of ring stiffener, Kθ, must be determined:

Kθ = 1− 1− kν
1 + t(tw + lω̄)/ĀR

Gα

ĀR = AR(
r

rR
)2

ω̄ =
cosh2α− cos2α

α(sinh2α+ sin2α)

α =
l

1.56
√
rt

Gα = 2
sinhαcosα+ coshαsinα

sinh2α+ sin2α
≥ 0
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k = Nx/Nθ for lateral pressure

= Nx/Nθ + 0.5 for hydrostatic pressure

AR = cross sectional area of ring stiffener

Nx = axial load per unit length

Nθ = circumferential load per unit length

rR = radius to centroid of ring stiffener

t = thickness of cylindrical shell

tw = stiffener web thickness

l = length between adjacent ring stiffeners (unsupported)

Substituting in the known values results in:

Nx = 624.14

Nθ = 0

k = 0

α = 9.32

Gα = 0

ω̄ = 0.11

ĀR = 173.39

Giving a coefficient to account for the effect of ring stiffener of

Kθ = 1

The elastic hoop buckling stress for an imperfect cylindrical shell is:

σEθR = ρθR
qCEθR(r+0.5t)

t
Kθ = 53.14 N/mm2

and ∆ is:

∆ =
σEθR
σ0

∆ =
53.14

281
= 0.19

which falls into the range:

∆ ≤ 0.55
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so

Φ = 1

which means the critical buckling stress for an unstiffened or ring-stiffened cylindrical shell

subjected to external pressure may be taken as:

σCθR = ΦσEθR

σCθR = 1× 53.14 = 53.14 N/mm2

Table 5.3: Cylinder IC1 - External Pressure

Eurocode ABS

Plasticity Elastic Plasticity Elastic

Circumferential stress, σθ,Rc 65.87 N/mm2 Hoop stress, σEθR 53.14 N/mm2

Characteristic stress, σθ,Rk 44.91 N/mm2 Critical stress, σCθR 53.14 N/mm2

5.1.2 Cylinder 1

Ring stiffened cylinder subject to hydrostatic pressure only. The stiffeners of this structure

are located externally.

Table 5.4: Cylinder 1 - Axial

Eurocode ABS

Plasticity Elasto-plastic Plasticity Plastic effects

Length coefficient, Cx 0.6 Length coefficient, C 1

Elastic stress, σx,Rc 4720.25 N/mm2 Elastic stress, σExR 2728.8 N/mm2

Critical stress, σx,Rk 291.56 N/mm2 Critical stress, σCxR 293.03 N/mm2

Table 5.5: Cylinder 1 - External Pressure

Eurocode ABS

Plasticity Elasto-Plastic Plasticity Plastic effects

Circumferential stress, σθ,Rc 783.43 N/mm2 Hoop stress, σEθR 571.95 N/mm2

Characteristic stress, σθ,Rk 260.04 N/mm2 Critical stress, σCθR 235.23 N/mm2
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5.1.3 Cylinder 6.1

Ring stiffened cylinder subject to combined radial pressure and axial loading.

Table 5.6: Cylinder 6.1 - Axial

Eurocode ABS

Plasticity Elastic Plasticity Elastic

Length coefficient, Cx 1 Length coefficient, C 1

Elastic stress, σx,Rc 240.79 N/mm2 Elastic stress, σExR 240.79 N/mm2

Critical stress, σx,Rk 81.73 N/mm2 Critical stress, σCxR 60.20 N/mm2

Table 5.7: Cylinder 6.1 - External Pressure

Eurocode ABS

Plasticity Elastic Plasticity Elastic

Circumferential stress, σθ,Rc 78.66 N/mm2 Hoop stress, σEθR 61.72 N/mm2

Characteristic stress, σθ,Rk 58.99 N/mm2 Critical stress, σCθR 61.72 N/mm2

5.2 Ring and Stringer Stiffened Cylinders

Table 5.8: Ring and stringer stiffened cylinders geometry

Model Name IC6 2-1C 2-1B

Total length(Assumed) L (mm) 2847.36 9909.97 9919.09

Length between ring stiffeners l (mm) 180 228.6 228.6

Mean radius r (mm) 160 571.4 571.1

Thickness t (mm) 0.84 1.96 1.97

Specified minimum yield stress σ0(N/mm2) 348 393.2 395.7

Modulus of elasticity E(N/mm2) 2.01E+05 2.16E+05 2.18E+05

Poisson’s ratio ν 0.3 0.3 0.3

5.2.1 Cylinder IC6

Axial force alone.
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Table 5.9: Cylinder IC6 - Axial

Eurocode ABS

Plasticity Elasto-plastic Plasticity Plastic effects

Elastic stress, σx,Rc 638.43 N/mm2 Elastic stress, σExB 1400.77 N/mm2

Critical stress, σx,Rk 215.38 N/mm2 Critical stress, σCxB 327.25 N/mm2

Table 5.10: Cylinder IC6 - External pressure

Eurocode ABS

Plasticity Elastic Plasticity Elastic

Circumferential stress, σθ,Rc 67.15 N/mm2 Unstiffened stress, σCθR 54.24 N/mm2

Characteristic stress, σθ,Rk 50.37 N/mm2 Critical stress, σCθB 126.49 N/mm2

Table 5.11: Cylinder IC6 - Alternative Eurocode

EN 1993-4-1 Method

Axial External Pressure

Omega match Yes

Critical stress, nx,Rcr 107.62 N/mm2 Critical stress, Pn,Rcru 39.99 N/mm2

5.2.2 Cylinder 2-1C

Radial pressure alone.

Table 5.12: Cylinder 2-1C - Axial

Eurocode ABS

Plasticity Elasto-plastic Plasticity Plastic effects

Elastic stress, σx,Rc 448.25 N/mm2 Elastic stress, σExB 3.88e+03 N/mm2

Critical stress, σx,Rk 175.06 N/mm2 Critical stress, σCxB 383.63 N/mm2
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Table 5.13: Cylinder 2-1C - External pressure

Eurocode ABS

Plasticity Plastic Plasticity Plastic

Circumferential stress, σθ,Rc 122.18 N/mm2 Unstiffened stress, σCθR 96.50 N/mm2

Characteristic stress, σθ,Rk 91.62 N/mm2 Critical stress, σCθB 184.28 N/mm2

Table 5.14: Cylinder 2-1C - Alternative Eurocode

EN 1993-4-1 Method

Axial External Pressure

Omega match Yes

Critical stress, Nx,Rcr 142.17 N/mm2 Critical stress, Pn,Rcru 68.66 N/mm2

5.2.3 Cylinder 2-1B

Combined loading of radial pressure and axial load.

Table 5.15: Cylinder 2-1B - Axial

Eurocode ABS

Plasticity Elasto-plastic Plasticity Plastic effects

Elastic stress, σx,Rc 454.95 N/mm2 Elastic stress, σExB 3.94e+03 N/mm2

Critical stress, σx,Rk 177.55 N/mm2 Critical stress, σCxB 386.16 N/mm2

Table 5.16: Cylinder 2-1B - External pressure

Eurocode ABS

Plasticity Plastic Plasticity Plastic effects

Circumferential stress, σθ,Rc 124.34 N/mm2 Unstiffened stress, σCθR 98.21 N/mm2

Characteristic stress, σθ,Rk 93.25 N/mm2 Critical stress, σCθB 188.92 N/mm2
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Table 5.17: Cylinder 2-1B - Alternative Eurocode

EN 1993-4-1 Method

Axial External Pressure

Omega match Yes

Critical stress, Nx,Rcr 143.16 N/mm2 Critical stress, Pn,Rcru 71.06 N/mm2
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6 COMPUTATIONAL METHOD

In the following section the analytical results are given for each of the cylinders. The

results of linear buckling analyses for axial loading and external pressure loading are given

followed by non-dimensionalised results for the non-linear analyses of each cylinder with

varying imperfection amplitudes to illustrate the effect that such imperfections have on the

structures. These analytical results are then used to determine the buckling resistances of

the cylinders according to the analytical methods defined in Eurocode 3 Part 1-6: Strength

and stability of shell structures.

6.1 Ring Stiffened Cylinders

6.1.1 Cylinder IC-1

Figure 6.1: Cylinder IC1 AutoCAD model
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Geometry:

The cylinder geometry was defined in AutoCAD as a 3D structure with three cylindrical

surfaces representing the shell surface between the ring stiffeners and four circular line bodies

to represent the ringstiffeners. The geometry was saved as an Initial Graphics Exchange

Specification (IGES) file and then imported into the Ansys workbench DesignModeller.

Within the DesignModeller a thickness of 3.52mm was assigned to the three surface

bodies and a cross section was defined for the ring stiffeners. The cross sectional dimensions

of the ring stiffeners are taken from the ABS commentary, for cylinder IC1 the ring stiffeners

had a thickness of 3.52mm and depth of 48mm (Figure: 6.2).

Figure 6.2: Cylinder IC1 - Cross section of ring stiffeners

The Ring stiffeners were offset so that they were orientated in the corrected direction and

in contact with the cylinder on the interior of the cylinder.

Supports:

Next the support conditions of the cylinder were defined. The base of the cylinder was
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defined as pinned, as there 6 degrees of freedom per node this meant restraint in the x- y-

and z- translational directions, with no rotational restraint. The top nodes of the cylinder

were radially constrained. Lateral translation (x- and y- directions) was constrained but the

nodes were not restrained in the vertical (z) direction (see Figure: 6.3). The ring stiffener

supports were included as the structural elements as can be seen in Figure: 6.4.

Figure 6.3: Cylinder IC1 - Radial constraints on top nodes

Mesh:

The mesh defined was a quadrilateral mesh with a face size of 25mm and the mesh was

matched at the interfaces between the shell surfaces and the ring stiffeners so that the struc-

ture was modelled as a contiguous structure. The shell elements are defined as “shell181”

elements, the ring stiffener elements are “beam181” elements and the loaded edge elements

are “surf156” elements (See Appendix D). The resulting model had a total of 7374 nodes

and 7198 elements.
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Figure 6.4: Cylinder IC1 - Junction between two shell segments and a ring stiffener

Loading:

A vertical compressive load of 1 kN was applied to the top edge of the cylinder in a static-

structural pre-analysis. This pre-analysis is a prerequisite for the linear buckling analysis

which determines the load multiplier. The load multiplier is the value that the load defined

in the pre-analysis must be factored by in order to initiate linear buckling of the structure.

For cylinder IC1 the determined load multiplier was 10354 (see Figure: 6.5) which means

that linear buckling occurs at a load of 1000× 10355 = 10355000N .
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Figure 6.5: Cylinder IC-1 - Linear axial buckling

The area of upon which this load was applied is the top edge of the cylindrical wall, this

area is defined as:

2πrt = 16580.97 mm2

The elastic buckling stress is determined by dividing the critical buckling load over the

loaded area:

Rcr =
10355000

16580
= 624.55 N/mm2

It can also be seen that the first eigenmode buckled shape matches the expected buckled

shape, that is one half wave between the stiffeners as (see Figure: 3.1). However, the buckling

stress due to axial loading is 624.55N/mm2 as opposed to the theoretically determined

stress, which is:

σcr = 0.605
Et

r
= 582.32 N/mm2

This difference may be attributed to the influence of the ring stiffener structural properties,
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which were included in the linear buckling analysis, or it may be a result of too large a

mesh, or possibly a combination of both.

A mesh sensitivity analysis was performed setting the element face size to 10mm, this

resulted in a model with 49398 nodes and 48940 elements. The load multiplier from the

linear buckling analysis for this case was 9738 resulting a buckling load of 587.3N/mm2.

The computation time for the denser mesh was 1165 seconds compared to the less dense

mesh that had a computation time of 5 seconds; which is an increase of 1160 seconds. As

there was such an increase in computation time, it was considered reasonable to use the less

dense mesh size as a finer mesh in the non-linear analyses would cause impractically long

computation times for the study1. As such, a compromise was made between computation

time and the accuracy of results.

Table 6.1: Cylinder IC-1 - Ansys Linear Buckling

Mode 1

Load multiplier 10355

Buckling load 10355000 N

Buckling stress, Rcr 624.55 N/mm2

Using the same model but changing the load from a vertical compressive load of 1 N to a

uniform external pressure load of 1 Pa, another linear buckling analysis was performed.

1By changing the value of the elastic buckling resistance the influence on further characteristic buckling
resistances was small. For instance, the characteristic buckling resistance from the LBA/MNA analysis using
an elastic buckling resistance of 624.55N/mm2 was 185.78N/mm2 where as if an elastic buckling resistance
of 587.3N/mm2 had been used, the LBA/MNA resistance would be 180.96N/mm2. This is a 2.7% difference
in results
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Figure 6.6: Cylinder IC-1 - External pressure buckling

For this loadcase the load multiplier was determined as 3.3795e+05, which means linear

buckling occurs at a uniform external pressure of 337950 Pa.

Converting Pascals to N/mm2, the critical external buckling pressure is:

Critical Pressure=
337950

1e+ 06
= 0.338 N/mm2

Table 6.2: Cylinder IC-1 - Ansys Linear External Pressure Buckling

Linear Buckling - Pressure Load

Load multiplier 3.379e+005

Buckling load 337950 Pa

Buckling pressure 0.338 N/mm2

6.1.1.1 Introduction of imperfections and first GMNIA analysis

Non-linear analyses were only performed using the axial loading loadcase. The follow-

ing procedure details how the imperfections were included and the GMNIA procedure for

Cylinder IC1 specifically for Ansys as was performed in this study.
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Figure 6.7: Introduction of analyses and GMNIA modules

Geometry:

The first eigenbuckled shape was exported from the linear buckling analysis of cylinder IC1

under axial loading using the APDL “upgeom” command. For the first case, the eigenbuck-

led shape was scaled to a factor of 1, so the deformed shape matches that given in Figure 6.5.

This eigenbuckled shape has a maximum imperfection amplitude, a of 1.0231mm. Following

this the model was imported into the finite element modeller which allows the prebuckled

shape to be converted to a parasolid file for further analysis. This parasolid geometry was

then imported into a new “static structural” module, in which the non-linear (GMNIA)

analysis was performed.

Supports:

By exporting the eigenbuckled shape the separation between shell segments is lost as the “fi-

nite element modeller” module skin detection tool stitches the entire shell surface together.

This procedure removes the ring supports of the structure, as such the simplification was

made that the nodes at the locations of the ring stiffeners of cylinder IC1 were infinitely

radially stiff (As seen in Figure: 6.3). These nodes were selected, constrained and coupled

using APDL commands. The result is that the nodes at the elevations of the ring stiffen-

ers were unable to translate laterally, but were coupled in vertical translation so that they

moved in unison.

The nodes at the base of the cylinder were constrained in the same manner as the linear

analysis, that is that translation was constrained in the x-, y- and z-directions making the

base a “pinned” support. Once again, the top nodes of the cylinder were radially con-

strained. Lateral translation (x- and y- directions) was constrained but the nodes were not

restrained in the vertical (z) direction.

Mesh:
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The mesh used for the non-linear analysis was a quadrilateral mesh with a face size of

25mm. The shell elements used were ”shell181” with 5 integration points to account for

material plasticity. The resulting model had a total of 6726 nodes and 6608 elements.

Loading:

The loading for all non-linear analyses was displacement controlled. For this analysis a

displacement of -20mm was applied to the top nodes of the cylinder which would compress

the cylinder. The reaction force from the base of the cylinder was used to determine the

equivalent force applied.

Steps and Substeps:

For this analysis an applied displacement of -20mm was set at load step 1. This load step

was then further subdivided into 100 substeps. The result is an incremental displacement

increase of 0.2mm per substep.

Solution process:

The non-linear analysis was analysed using the full Newton-Raphson method with sparse

matrix direct solver and the convergence criteria used was an L2-norm (Weisstein; n.d.) of

force (and moment) tolerance equal to 0.5%.

Solution:

The solution of this analysis took 316 seconds with a total of 118 iterations to reach the

final solution.

Figure 6.8: Cylinder IC-1 - Force convergence for first analysis
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The resultant reaction force for each substep can be used to determine the buckling stresses

by dividing the reaction forces by the area over which the force was applied.

Figure 6.9: Cylinder IC-1 - Deformation vs. Reaction stress for first analysis

From this graph it can be seen that the buckling resistance is 227.17N/mm2 (which it can

be seen is equivalent to ‘C2’ from Figure 4.8).

The maximum equivalent stress diagram shows that cylinder IC-1 exhibits elastic behaviour

and plastic behaviour (see Figure: 6.10) which is as expected as it was seen in the analytical

analysis (see Section: 5.1.1.1) that the relative slenderness of the cylinder lies between the

squash limit slenderness and the plastic limit slenderness, i.e that λ̄0 ≤ λ̄x ≤ λ̄p. As such

elastic-plastic behaviour is expected (see Figure: 7.3 later).

The result of this analysis could then be graphed non dimensionally by plotting the non-

dimensional imperfection amplitude on the x-axis, this is the maximum imperfection am-

plitude from the prebuckled shape (a) divided by the thickness of the shell wall (t):

a

t
=

1

3.52
= 0.28

77



Computational Method

Figure 6.10: Cylinder IC-1 - Maximum equivalent (Von-mises) stress for first analysis

This was plotted against Ncr/Ncr,perfect (or RGMNIA/RGMNA)2 to give the ratio of buck-

ling resistance of the structure with the given magnitude of imperfection to the buckling

resistance of the structure without included imperfections.

RGMNIA

RGMNA
=

Ncr

Ncr,perfect
=

227.17

263.07
= 0.86

This procedure was then repeated, however for the next analyses rather than scaling the

initial pre-buckled shape by a factor of 1, it was scaled to a factor of 5. This resulted in

analysing a cylinder with a maximum geometric imperfection amplitude of:

1× 5 = 5mm

2RGMNA was determined by an identical procedure as the one described here except that the imperfect
prebuckled shape was not imported, but rather the perfect geometry with no included imperfections was
analysed instead
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which results in a non dimensional amplitude of:

a

t
=

5

3.52
= 1.42

resulting in a buckling resistance (RGMNIA) of 218.38N/mm2, so:

RGMNIA

RGMNA
=

Ncr

Ncr,perfect
=

218.38

263.07
= 0.83

and so forth.

Table 6.3: Cylinder IC-1 - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

1 0.28 0.86
5 1.42 0.83
10 2.84 0.68
15 4.26 0.62
20 5.68 0.60

Figure 6.11: Cylinder IC-1 - Amplitude vs. Buckling pressure
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6.1.1.2 EN 1993-1-6 Eurocode MNA/LBA Method

For this first example the equations will be written but for further examples only the key

values will be given.

The plastic reference resistance is taken from an ANSYS analysis. The analysis performed to

obtain this plastic reference resistance is identical to the procedure to obtain RGMNA (The

analysis described above without the inclusion of imperfections) apart from the following

changes:

• Large deflection effects are not included

• No plastic hardening effects are included in the analysis

Figure 6.12: Cylinder IC-1 - Plastic reference resistance, Rpl

This allows determination of the plastic reference resistance:

Rpl = 280.62 N/mm2

Relative slenderness:

λov =
√
Rpl/Rcr

λov =
√

280.62/624.55 = 0.67
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The characteristic imperfection amplitude:

∆wk =
1

Q

√
r

t
t

∆wk =
1

40

√
749.7

3.52
3.52 = 1.28

For all Eurocode analyses it was assumed that the fabrication quality, Q, was excellent

resulting in a value of Q=40.

The meridional elastic imperfection factor:

αx =
0.62

1 + 1.91(∆wk/t)1.44

αx =
0.62

1 + 1.91(1.28/3.52)1.44
= 0.43

Overall buckling reduction factor:

χov = 1− βov[
λov − λov,0
λov,p − λov,0

]ηov when λov,0 ≤ λov ≤ λov,p

Where for meridional buckling:

λov,0 = 0.2 βov = 0.6 ηov = 1

so;

χov = 1− 0.6[
0.67− 0.2

1.03− 0.2
]1 = 0.66

The characteristic buckling resistanceis then determined as:

Rk = χovRpl

Rk = 0.66× 280.62 = 185.77 N/mm2

And the design buckling resistance:

Rd = Rk/γM1

Rd = 185.77/1.1 = 168.88 N/mm2

6.1.1.3 EN 1993-1-6 Eurocode GMNIA Method

For the buckling design by global numerical GMNIA analysis a required amplitude of the

adopted equivalent geometric imperfection form,∆w0,eq, was determined from the larger of:
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∆w0,eq,1 = lgUn1

∆w0,eq,2 = nitUn2

where:

lg is the relevant gauge length

ni is a multiplier to achieve an appropriate tolerance level

(ni = 25 is recommended)

Un1 and Un2 are the dimple imperfection factors given in Table 4.6:

Which for Cylinder IC-1 resulted in an amplitude of the adopted geometric imperfec-

tion of ∆w0,eq = 2.0548mm. From this the imperfect elastic-plastic buckling resistance,

RGMNIA, was interpolated from the non-linear analyses of various imperfection amplitudes

(Figure 6.11). As the amplitude of the adopted geometric imperfection is 2.0548mm, the

equivalent (a/t) is:

2.0548/3.52 = 0.584

As this falls between the first and second data points in Table 6.3 the equation for this line

is taken; this is:

y = −0.0294x+ 0.8719

where x is 0.584, so:

y = −0.0294(0.584) + 0.8719 = 0.8547

The y-axis is Ncr/Ncr,perfect (or RGMNA/RGMNIA), so to determine the equivalent RGMNIA

for the Eurocode amplitude of the adopted geometric imperfection the buckling resistance

of the perfect cylinder (RGMNA = 263.07N/mm2) is multiplied by 0.855:

RGMNA = 263.07× 0.855 = 224.85 N/mm2

The characteristic buckling resistance was then taken to be:

Rk = kGMINARGMNIA = 224.95 N/mm2

where kGMNIA was taken to be 1, which will be further discussed in the comparison.

This results in a design buckling resistance for the GMNIA analysis as:

Rd = Rk/γM1 = 204.5 N/mm2
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6.1.2 Cylinder 1

Ring stiffened cylinder subject to hydrostatic pressure only. The stiffeners of this structure

are located externally.

6.1.2.1 Linear Buckling Analyses

Figure 6.13: Cylinder 1 - Linear axial buckling

Table 6.4: Cylinder 1 - Ansys linear axial buckling

Linear Buckling - Axial Load

Load multiplier 96053

Buckling load 96053000 N

Buckling stress, Rcr 6167.212 N/mm2
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Figure 6.14: Cylinder 1 - External pressure buckling

Table 6.5: Cylinder 1 - Ansys external pressure buckling

Linear Buckling - Pressure Load

Load multiplier 5.15E+07

Buckling load 51526000 Pa

Buckling pressure 51.53 N/mm2

6.1.2.2 Non-Linear Buckling Analyses

Table 6.6: Cylinder 1 - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

1 0.08 1.00
10 0.80 0.95
25 1.99 0.84
50 3.98 0.68
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Figure 6.15: Cylinder 1 - Amplitude vs. Buckling pressure

6.1.2.3 EN 1993-1-6 Eurocode MNA/LBA Method

Plastic reference resistance is taken from an ANSYS analysis:

Rpl = 300.70 N/mm2

Relative slenderness:

λov = 0.22

The characteristic imperfection amplitude:

∆wk = 1.244mm

The meridional elastic imperfection factor:

αx = 0.58

Overall buckling reduction factor:

χov = 0.99

Characteristic buckling resistance:
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Rk = 296.97 N/mm2

Design buckling resistance:

Rd = 269.97 N/mm2

6.1.2.4 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 3.1425mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 299.19 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 297.21 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 270.19 N/mm2

6.1.3 Cylinder 6.1 - First Eigenmode

Ring stiffened cylinder subject to combined radial pressure and axial loading.
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6.1.3.1 Linear Buckling Analyses

Figure 6.16: Cylinder 6.1 - Linear axial buckling

Table 6.7: Cylinder 6.1 - Ansys linear axial buckling

Linear Buckling - Axial Load

Load multiplier 31706

Buckling load 31706000 N

Buckling stress, Rcr 250.29 N/mm2
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Figure 6.17: Cylinder 6.1 - External pressure buckling

Table 6.8: Cylinder 6.1 - Ansys Linear External Pressure Buckling

Linear Buckling - Pressure Load

Load multiplier 1.88E+05

Buckling load 188020 Pa

Buckling pressure 0.188 N/mm2

6.1.3.2 Non-Linear Buckling Analyses

Table 6.9: Cylinder 6.1 - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

1 0.16 1.00
5 0.79 1.00
15 2.36 1.00
20 3.15 1.00
50 7.88 0.99
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Figure 6.18: Cylinder 6.1 - Amplitude vs. Buckling pressure (first eigenmode)

6.1.3.3 EN 1993-1-6 Eurocode MNA/LBA Method

Plastic reference resistance is taken from an ANSYS analysis:

Rpl = 241.34 N/mm2

Relative slenderness:

λov = 0.98

The characteristic imperfection amplitude:

∆wk = 3.55mm

The meridional elastic imperfection factor:

αx = 0.34

Overall buckling reduction factor:

χov = 0.35

Characteristic buckling resistance:
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Rk = 84.95 N/mm2

Design buckling resistance:

Rd = 77.23 N/mm2

6.1.3.4 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 5.68mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 186.73 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 186.73 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 169.75 N/mm2

6.1.4 Cylinder 6.1 - Second Eigenmode

The GMNIA analysis was performed using another eigenmode as the analysis above was

very imperfection insensitive.
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Figure 6.19: Cylinder 6.1 - Amplitude vs. Buckling pressure (second eigenmode)

6.1.4.1 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 5.68mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 81.95 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 81.95 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 74.5 N/mm2
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6.2 Ring and Stringer Stiffened Cylinders

6.2.1 Cylinder IC6

Axial force alone.

6.2.1.1 Linear Buckling Analyses

Figure 6.20: Cylinder IC6 - Linear buckling axial loading

Table 6.10: Cylinder IC6 - Ansys linear axial buckling

Linear Buckling - Axial Load

Load multiplier 574.5

Buckling load 574500 N

Buckling stress, Rcr 680.32 N/mm2
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Figure 6.21: Cylinder IC6 - External pressure buckling

Table 6.11: Cylinder IC6 - Ansys external pressure buckling

Linear Buckling - External pressure

Load multiplier 4.11E+05

Buckling load 411160 Pa

Buckling pressure 0.412 N/mm2

6.2.1.2 Non-Linear Buckling Analyses

Table 6.12: Cylinder IC6 - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

1 1.19 1.02
5 5.95 0.90
10 11.90 0.53
20 23.81 0.53
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Figure 6.22: Cylinder IC6 - Amplitude vs. Buckling pressure

6.2.1.3 EN 1993-1-6 Eurocode MNA/LBA Method

Plastic reference resistance is taken from an ANSYS analysis:

Rpl = 339.38 N/mm2

Relative slenderness:

λov = 0.71

The characteristic imperfection amplitude:

∆wk = 0.29mm

The meridional elastic imperfection factor:

αx = 0.44

Overall buckling reduction factor:

χov = 0.46

Characteristic buckling resistance:
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Rk = 217.73 N/mm2

Design buckling resistance:

Rd = 197.94 N/mm2

6.2.1.4 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 0.46mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 333.09 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 333.05 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 302.77 N/mm2

6.2.2 Cylinder 2-1C

Radial pressure alone.
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6.2.2.1 Linear Buckling Analyses

Figure 6.23: Cylinder 2-1C - Linear axial buckling

Table 6.13: Cylinder 2-1C - Ansys linear axial buckling

Linear Buckling - Axial Load

Load multiplier 4112.4

Buckling load 4112 N

Buckling stress, Rcr 584.41 N/mm2
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Figure 6.24: Cylinder 2-1C - External pressure buckling

Table 6.14: Cylinder 2-1C - Ansys external pressure buckling

Linear Buckling - External pressure

Load multiplier 4.94E+05

Buckling load 493950 Pa

Buckling pressure 0.494 N/mm2
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Table 6.15: Cylinder 2-1C - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

0.5 0.26 0.64
1 0.51 0.76
5 2.55 0.65
10 5.10 0.19
20 10.20 0.15

6.2.2.2 Non-Linear Buckling Analyses

Figure 6.25: Cylinder 2-1C - Amplitude vs. Buckling pressure

6.2.2.3 EN 1993-1-6 Eurocode MNA/LBA Method

Plastic reference resistance is taken from an ANSYS analysis:

Rpl = 293.72 N/mm2

Relative slenderness:

λov = 0.71

The characteristic imperfection amplitude:
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∆wk = 0.84mm

The meridional elastic imperfection factor:

αx = 0.40

Overall buckling reduction factor:

χov = 0.62

Characteristic buckling resistance:

Rk = 181.13 N/mm2

Design buckling resistance:

Rd = 164.66 N/mm2

6.2.2.4 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 1.34mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 79.65 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 187.64 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 170.58 N/mm2

6.2.3 Cylinder 2-1B

Combined loading of radial pressure and axial load.
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6.2.3.1 Linear Buckling Analyses

Figure 6.26: Cylinder 2-1B - Linear axial buckling

Table 6.16: Cylinder 2-1B - Ansys linear axial buckling

Linear Buckling - Axial Load

Load multiplier 4147.7

Buckling load 4147700 N

Buckling stress, Rcr 586.74 N/mm2
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Figure 6.27: Cylinder 2-1B - External pressure buckling

Table 6.17: Cylinder 2-1B - Ansys external pressure buckling

Linear Buckling - External pressure

Load multiplier 5.95E+05

Buckling load 595080 Pa

Buckling pressure 0.595 N/mm2
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6.2.3.2 Non-Linear Buckling Analyses

Table 6.18: Cylinder 2-1B - Amplitude vs. Buckling pressure

Deformation Factor Amplitude (a/t) Buckling (Ncr/Ncr,perfect)

0.5 0.25 0.72

1 0.51 0.78

5 2.54 0.60

10 5.08 0.59

15 7.61 0.60

Figure 6.28: Cylinder 2-1B - Amplitude vs. Buckling pressure

6.2.3.3 EN 1993-1-6 Eurocode MNA/LBA Method

Plastic reference resistance is taken from an ANSYS analysis:

Rpl = 395.9 N/mm2

Relative slenderness:

λov = 0.82
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The characteristic imperfection amplitude:

∆wk = 0.84mm

The meridional elastic imperfection factor:

αx = 0.40

Overall buckling reduction factor:

χov = 0.53

Characteristic buckling resistance:

Rk = 210.76 N/mm2

Design buckling resistance:

Rd = 191.60 N/mm2

6.2.3.4 EN 1993-1-6 Eurocode GMNIA Method

Amplitude of the adopted equivalent geometric imperfection form:

∆w0,eq = 1.34mm

Interpolated imperfect elastic-plastic buckling resistance:

RGMNIA = 252.69 N/mm2

Calibration factor:

kGMNIA = 1

The characteristic buckling resistance was then taken to be:

Rk = 252.69 N/mm2

Design buckling resistance for the GMNIA analysis:

Rd = 229.72 N/mm2

6.2.4 Mesh Sensitivity

A mesh sensitivity analysis was not performed on the numerical analyses, however it is

stated in Egl̄ıtis et al. (2009) that an element size to shell radius ratio of 1/20 was sufficient

for their simulations. This ratio was met by all analyses.
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7 COMPARISON

In this chapter the analytical and numerical methods for approaching shell design will be

discussed. The results of the design code method and computational method chapters have

been compiled here in Tables 7.1 and 7.2 for easy reference.

Table 7.1: Compiled axial loading results

Ring Stiffened

Cylinder IC1 1 6.1
EN 1993-1-6 181.11 291.56 81.73 N/mm2

ABS 175.14 293.03 60.2 N/mm2

MNA/LBA 185.78 296.97 84.95 N/mm2

GMNIA 224.85 297.21 81.95* N/mm2

Ring- and Stringer Stiffened

Cylinder IC6 2-1C 21-B
EN 1993-1-6 215.38 175.06 177.55 N/mm2

EN 1993-4-1 107.62 142.17 143.16 N/mm2

ABS 327.25 383.63 386.16 N/mm2

MNA/LBA 217.73 181.13 210.76 N/mm2

GMNIA 333.05 187.64 252.69 N/mm2

Table 7.2: Compiled external pressure loading results

Ring Stiffened

Cylinder IC1 1 6.1
EN 1993-1-6 44.91 260.04 58.99 N/mm2

ABS 53.14 235.23 61.72 N/mm2

Ring- and Stringer Stiffened

Cylinder IC6 2-1C 21-B
EN 1993-1-6 50.37 91.62 93.25 N/mm2

EN 1993-4-1 39.99 68.66 71.06 N/mm2

ABS 126.49 184.28 188.92 N/mm2

* The value for the second eigenmode is shown here
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7.1 Analytical Comparison

7.1.1 Ring Stiffened Cylinders

Firstly looking at the ring stiffened cylinder the characteristic axial buckling resistances are

very similar when the Eurocode and the ABS code are compared. For cylinder IC1 the

ABS code is 3.3% lower than the Eurocode, for cylinder 1 the ABS is 0.5% higher with the

exception being cylinder 6.1 in which the ABS buckling resistance is 25.4% lower than the

Eurocode.

The Eurocode and the ABS code both approach the design of non-stringer stiffened cylin-

drical shells similarly, i.e. the ABS takes the classical buckling stress and reduces it by a

lower bound knock down factor dependent, where as the Eurocode determines the slender-

ness of the structure and knocks down the yield stress with a reduction factor. Though

both methods are based on the same parameters, their implementation is slightly different.

For instance, the ABS uses the traditional Batdorf parameter z which is replaced by the

dimensionless length parameter ω in the Eurocode. The advantages of ω are that it is a non-

dimensional length that increases linearly with increasing cylinder length and normalises

the length relative to the characteristic dimensions that control the shell behaviour. As

opposed to the Batdorf parameter which depends weakly on Poisson’s ratio (Rotter; 2008).

z =
√

1− ν2(l2
√
rt) = ω2

√
1− ν2

The length dependent factor, denoted C in the ABS and Cx in the Eurocode is required

as the classical buckling stress for cylinders without it is valid for medium length cylinders.

For short cylinders the length dependent parameter will increase the buckling resistance

as when a cylinder length decreases, the model becomes increasing like an infinitely wide

plate strip, whereas for long cylinders the buckling behaviour is closer to that of an Euler

column (Timoshenko and Gere; 1961, p465-467). Interestingly, there are only two length

domains in the ABS code with regard to C, the length dependent coefficient, which could be

categorised as ‘short’ and ‘medium’. The Eurocode states that once the cylinder becomes

long enough that flexural buckling is dominant the procedures listed in EN 1993-1-6 and EN

1993-4-1 are no longer sufficient as flexural buckling is not covered and length dependant

factor is limited to a maximum of 0.6 causing a plateau in the buckling strength as the

length increases. In this case the designer is to consult the flexural buckling section in EN

1993-1-1. It can be seen in Figure: 7.1 that this Euler flexural buckling behaviour is also
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not covered by the ABS code.

Figure 7.1: Buckling resistance vs. Increasing length

With regards to the difference between the Eurocode and the ABS code analytically

determined buckling resistance for cylinder 6.1, the ABS code determines the buckling re-

sistance to be 25.4% lower than that of the Eurocode value. Cylinder 6.1 is the most

slender of the cylinders studied (see Figure: 8.9) so it is possible that the ABS code de-

termines more conservative buckling resistances for more slender structures. However, this

is one other difference between how the Eurocode and the ABS code analytical methods

determine the buckling resistance, and that is the influence of the support conditions.

The Eurocode boundary conditions are absolutely defined as various degrees of fixed, pinned

or free (see Table: 4.1) as opposed to the ABS code which takes the properties of the stiff-

eners into account. With the ABS code there are checks to ensure that the second moment

of area of the stiffeners is sufficient, something that is not as rigorously defined within the

Eurocode. For a chapter on cylindrical shells with ring stiffeners under external pressure

the “Buckling of Steel Shells - European Design Recommendations” (2008, p331-347) uses

the rules from the Deutscher Ausschuß für Stahlbau (Richtlinie; n.d.). As restraint of flex-

ural buckling of the ring stiffeners is crucial in controlling the global buckling check of a
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stiffened steel shell (ECCS, 2008) it is advisable for the Eurocode to adopt clearer and

more stringent design requirements for the minimum stiffness of stiffeners. For example,

the minimum stiffness of the stiffeners is clearly defined in the ABS code as follows:

The moment of inertia of the ring stiffeners, Ir, together with the effective length of

shell plating, leo, should not be less than that given by the following equation:

Ir =
σx(1 + δ)tr4e

500el
+
σθr

2
e lt

2EKθ
(1 +

ze
100r

E

ησ0 − σθR
)

where:

σx = compressive stress in longitudinal direction

σθ = compressive hoop stress midway between adjacent ring stiffeners

σθR = compressive hoop stress at outer edge of ring flange

δ = As/st

ir = moment of inertia of the ring stiffeners with associated effective shell length, leo

leo = 1.56
√
rt ≤ l

re = radius to the centroid of ring stiffener, accounting for the effective

length of shell plating

ze = distance from inner face of ring flange to centroid of ring stiffener,

accounting for the effective length of shell plating

Kθ = coefficient to account for the effect of ring stiffener

t = thickness of cylindrical shell

E = modulus of elasticity

σ0 = specified minimum yield point

As = cross sectional area of stringer stiffener

s = shell plate width between adjacent stringers

η = maximum allowable strength utilization factor for stiffened

cylindrical shells subjected to external pressure

The moment of inertia of the stringer stiffeners, is, with effective breadth of shell plating,

sem, is not to be less than:

io =
st3

12(1− ν2)
γ0

where:
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γ0 = (2.6 + 4.0δ)α2 + 12.4α− 13.2α1/2

α = l/s

ν = Poisson’s ratio

Using this ABS check, the ratio of the actual ring-stiffener stiffness, Irs, to the minimum

required ring-stiffener stiffness, Ir is tabled in Table: 7.3 where any value > 1 denotes that

the stiffener meets the minimum stiffness requirements.

Table 7.3: Ring stiffener stiffness check

Cylinder Irs/Ir

IC1 24.2
1 0.88

6.1 0.29

It can be seen that cylinder 6.1 falls well below the minimum stiffness requirements

for the ABS code but as the stiffness of the ring stiffener is not taken into account in the

formulation of the buckling resistance for ring-stiffened cylinders under axial loading, it can

be concluded that the ABS code determines more conservative buckling resistances for more

slender cylinders.

The elastic-plastic stability interaction is dealt with in different ways in both codes,

where the ABS defines a piecewise function that alters the critical buckling stress over

a certain proportional limit of the yield stress. The Eurocode accounts for this in the

formulation of the stability reduction factor χ, through determining the relative slenderness

of the shell structure.

The relative slenderness is defined as a ratio of the plastic buckling resistance to the elastic

buckling resistance. In the analytical case the plastic buckling resistance is taken as the

yield stress of the material. The elastic buckling resistance is easily determined by the

classical elastic buckling resistance equations, so:

λ =

√
fy,k
σR,cr

The relative slenderness of a shell structure can fall within three ranges according to the

Eurocode. The first range is when the slenderness is below the squash limit slenderness, λ0.
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Figure 7.2: Effect of plasticity on critical buckling stress in ABS codes

In this range the reduction factor χ = 1. In this range purely plastic behaviour is expected

from the shell structure.

The next range that the relative slenderness may fall into is between the squash limit slen-

derness and the plastic limit slenderness, λ0 ≤ λ ≤ λp. Within this range the structure

is expected to show elastic, and plastic behaviour. In this range the reduction factor is

determined by not only the plastic limit slenderness, λp, and the squash limit slenderness

λ0, but also by the plastic range factor, β, and the interaction exponent, η.

The last region into which the relative slenderness may fall is when the relative slenderness

is greater than the plastic limit slenderness, λp ≤ λ. Within this region the structure be-

haves purely elastically. The most important and critical parameter for the reduction factor

in this region is the elastic imperfection slenderness, α, known as the “knock-down” factor.

These parameters are experimentally determined and define the curve of the reduction

factor (see Figure: 7.3). These factors are given for basic buckling cases in Annex D of

EN 1993-1-6 and they may be altered adjusted based on other data but it is recommended

that conservative values are used if they cannot be evaluated formally for the global system
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under the loading types that may be featured in the design (Rotter; 2008, p.105). How-

ever, all these factors apart from the elastic imperfection factor may also be determined

computationally (see Rotter 2005) allowing their use to become more case specific.

Figure 7.3: Capacity curve and parameters α, β, λ0 and η (Rotter; 2007)

For the ring stiffened cylinder examples the ABS critical buckling stress for external pressure

is also quite close to the Eurocode characteristic buckling resistance under external pressure.

For cylinder IC1 the Eurocode buckling resistance is 15.5% lower than that of the ABS code,

for cylinder 1 the Eurocode resistance is 9.5% higher and for cylinder 6.1 the Eurocode

resistance is 4.4% lower.

This is interesting as both codes take different approaches. On the one hand the ABS

derives an elastic hoop buckling stress for an imperfect cylindrical shell that is dependent

on loading conditions (radial or hydrostatic pressure), length and slenderness parameters

but also dependent on the strengthening effect of the ring stiffener which is determined by

the structural properties of the stiffener. This is then knocked down by a constant lower-

bound knock down factor. Similarly the derivation of this buckling stress is also a piecewise

function to take into account the effects of plasticity.

The Eurocode on the other had uses the classical buckling stress of a cylinder subject to

external pressure which is also adjusted dependent on a non-dimensional length, in this case

ω, but also dependent on clearly defined boundary conditions. So as opposed to defining the

stiffness of the ring stiffeners dependent on their structural properties they are categorised
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as either; free, pinned, radially pinned, fixed etc. (See Table: 4.1).

The similarity of the buckling resistances under this loading condition is interesting as

despite the fact that the ABS code takes into account the structural properties of the ring

stiffeners but the Eurocode doesn’t. Also, as can be seen in Table: 7.3 the minimum stiffness

is not met by cylinder 1 and cylinder 6.1. The correlation of the results is due to the fact

that despite the stiffness of the ring stiffener not being sufficient, the length between the

ring stiffeners is large enough that the influence of these stiffeners does not come into effect.

That is to say that the distance between the stiffeners is larger than the half wave length of

the buckle. This is can be shown by examining the determination of the factor Kθ, which

is the factor taking into account the ring stiffeners:

Kθ = 1− 1− kν
1 + t(tw + lω̄)/ĀR

Gα

ĀR = AR(
r

rR
)2

ω̄ =
cosh2α− cos2α

α(sinh2α+ sin2α)

α =
l

1.56
√
rt

Gα = 2
sinhαcosα+ coshαsinα

sinh2α+ sin2α
≥ 0

k = Nx/Nθ for lateral pressure

= Nx/Nθ + 0.5 for hydrostatic pressure

AR = cross sectional area of ring stiffener

Nx = axial load per unit length

Nθ = circumferential load per unit length

rR = radius to centroid of ring stiffener

t = thickness of cylindrical shell

tw = stiffener web thickness

l = length between adjacent ring stiffeners (unsupported)

So, in order for Gα ≥ 0 then α must be less than 2.4l. Which can only occur if the length

between ring stiffeners is less than 2.4 times the theoretical half-wave length for external
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pressure buckling. So, provided 1.56
√
rt < 2.4l the structural properties of the ring stiffeners

have no influence.

7.1.2 Ring- and Stringer Stiffened Cylinders

Significant differences in the critical buckling resistances of the structures occur when ring-

stiffeners and stringer stiffeners are present. The procedure to calculate the buckling re-

sistance in the ABS code was mentioned previously in the methodology chapter, however

the Eurocode states that for ring- and stringer-stiffened silo structures the cylindrical wall

should be designed by the same criteria as the unstiffened wall or by the global analysis

procedure in EN 1993-6-1 provided the spacing of the stringer stiffeners is greater than 2
√
rt

(Clause 5.3.3.3 (1) EN 1993-4-1 Eurocode 3 - Design of steel structures - Part 4-1: Silos

(2007)), which is the case for the three stringer stiffened structures studied.

It can be seen that the differences in buckling resistance is quite large if the stringer stiffened

method in the ABS code is compared against the unstiffened Eurocode method. Alterna-

tive approaches are suggested in the Eurocode such as carrying the axial compression in the

stiffeners alone, thus not taking into account the membrane action of the shell wall which

is not of interest for this study. As such, another approach which is modified from the

methods described in clauses 5.3.4.3.3(3) and 5.3.4.5(4) of EN 1993-1-4 was studied. These

Eurocode methods are theoretical methods based on differential equations which take into

account the structural properties of the stiffeners. These two clauses detail similar proce-

dures for determining the meridional buckling resistance and the external pressure buckling

resistance (Section: 4.2).

The results of the modified Eurocode method, which takes into account the geometrical

properties of the stiffeners, were studied (labelled EN 1993-4-1 in Tables: 7.1 and 7.2). The

buckling resistances under axial compression and uniform external pressure are reasonable,

yet conservative, values. No examples of their use could be found so the results of the

calculations performed were verified by calculating and comparing the ω values from the

two different Eurocode axial loading methods (Equations: 4.1 and 4.30). As these values

matched it was deemed that the calculations were performed correctly and that the results

are correct.

The Eurocode states that when vertical stiffeners are present and the spacing of the stiffen-

ers is less than 2
√
rt then the cylinder is to be designed in the same manner as an unstiffened
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shell or through the global analysis procedures of EN 1993-1-6, however, the fundamental

theory is there to allow the development of an analytical process to determine the buckling

resistance of ring and stringer stiffened cylindrical shells.

A similar method to the modified Eurocode approach taken in this study is used in Rotter

(2008, p.353-363) to determine the buckling resistance of cylindrical shells under longitudi-

nal compression but which does not take into account the effect of the ring stiffeners. The

range of applicability of the method adopted in the “Buckling of Steel Shells - European

Design Recommendations” 2008 limits the degree of stiffening to:

As
bt
≤ 2

Is
bt3
≤ 15

Its
bt3
≤ 2.4

where:

As is the area of the stringer stiffener

b is the separation between stiffener centres

Its is the uniform torsion constant (Saint-Venant’s torsion) of a stiffener

t is the thickness of the cylindrical shell

It is also stated that “for shells that are more heavily stiffened than [these conditions] there

do not appear to be enough test results to formulate precise rules” (Rotter; 2008). In

comparison, the ABS method which is semi-empirical is based around theoretical buckling

stresses but has indeed been calibrated using experimental data. So, some experimental

data required to make such rules for the Eurocode does exist, but it may be possible that

the Eurocode committee deemed this data to be insufficient. Regardless, it seems as though

the development of an analytical approach that takes the stringer stiffeners into account

would be a useful addition to the Eurocode.
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7.2 Computational Comparison

7.2.1 Ring-stiffened Cylinders

Comparing the results of the computational analyses to that of the design codes we see that

there is quite a close correlation when examining the cylinders without stringer stiffeners.

The characteristic buckling resistances determined from both the LBA/GMNA and the

GMNIA analyses tend to be slightly higher values than those obtained in the codes.

The MNA/LBA analysis are between 1.8% and 3.8% higher than the Eurocode analytical

methods for determining the buckling resistance. This increase in buckling resistance is

unexpected as the MNA/LBA method is virtually identical to the Eurocode analytical

method apart from the fact that using the MNA/LBA method the relative slenderness is

obtained computationally. If it is recalled that;

λ =

√
fy,k
σR,cr

and numerically:

λ =

√
Rpl
Rcr

and it was seen in Section: 6.1.1 that with a sparser mesh the classical elastic buckling resis-

tance, Rcr, derived from the numerical analysis is higher than that of the classical theory,

σR,cr. So, as Rpl is very close to the yield stress of the material, fy,k it can be concluded that

the relative slenderness that was determined numerically is slightly lower than that of the

analytical method, resulting in a slightly higher reduction factor (i.e. less of a reduction)

and therefore a slightly higher numerically determined characteristic buckling resistance.

A large discrepancy in the numerical buckling resistance results can be seen with the

GMNIA analysis for cylinder 6.1’s first eigenmode where the GMNIA buckling resistance is

much higher than any other method, in fact it is 128.5% higher the Eurocode analytically

determined buckling resistance. This could well be due to the apparent imperfection insen-

sitivity of cylinder 6.1. It is possible that if the calibration factor k was used in this study

the value would be outside the accepted range (0.8 < kGMNIA < 1.2), thereby deeming the

analysis invalid.

This result is considerably different than any other resistance determined for the same struc-
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ture so there is little confidence that this is the correct characteristic buckling resistance.

It should be noted that cylinder 6.1 falls into the elastic relative slenderness range i.e. the

overall slenderness of this structure is greater than the plastic limit relative slenderness λp

meaning its behaviour is within the heavily knocked down elastic imperfect buckling range.

As such, another study was performed using geometric imperfections based around another

eigenmode. The results of this second analysis are much closer to the analytical buckling

resistances and 56.1% lower than the first eigenmode buckling resistance which reiterates

how important it is to make sure that the most detrimental geometrical imperfection is used

and illustrates the importance of having an expectation of the behaviour of your structure

before it is computationally analysed.

7.2.2 Ring- and Stringer-stiffened Cylinders

The computational buckling resistances become quite different to the design code resis-

tance once stringer stiffeners are introduced. The ABS code resistances are much higher

than those of the computational models or the Eurocode as neither the ANSYS models nor

the Eurocode incorporated the stringer stiffeners into their buckling resistance formulation.

So the numerical analyses can only be compared to the Eurocode analytical method.

Once again we see that the MNA/LBA determined buckling resistances are higher than the

Eurocode analytically determined buckling resistance, as there have been no other changes

this difference is still likely due to the reason given above.

Table 7.4: Numerical buckling resistance comparison table

Cylinder IC6 2-1C 21-B

Eurocode 215.38 175.06 177.55 N/mm2

MNA/LBA 217.73 181.13 210.76 N/mm2

GMNIA 333.09 187.67 252.69 N/mm2

The GMNIA analyses buckling resistances do not correspond so well for these 3 case

study cylinders. In fact for cylinder IC6 the GMNIA result is 54.7% higher than the

Eurocode analytical method and for cylinder 21-B the GMNIA result is 42.3% higher. This

is likely due to the same reason that a higher buckling resistance was found for cylinder
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6.1, that is that the imperfection modelled was not as detrimental as the real imperfections

used in the determination of the lower-bound knock-down factor. Given more time it would

have been appropriate to analyse more imperfections types.
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8 DISCUSSION

8.1 General Discussion

It can be said that there are two approaches to shell design. One in which a shell structure

is designed to be purely functional, the other in which the shell structure is optimised. Tak-

ing the Eurocode approach to analytically designing the stringer stiffened cylindrical shells

for instance; this approach is purely functional. The potential buckling resistance of a ring

and stringer stiffened shell is drastically under estimated in comparison to the buckling

resistance which can be derived by the American Bureau of Shipping code. To design a

structure around this conservative resistance is under utilising the potential load resistance

of the structure. Though the design may be safer, the result is a conservative design with

an inefficient usage of materials with probable higher costs. In terms of more geometrically

complex structures this underestimation of the strength could potentially increase the cost

of the project significantly as the scale of the structure could be much larger. As such, an

alternative to purely functional design would be recommended.

Such an alternative is optimised design. This method would utilise complex analyses, such

as the Eurocode GMNIA method to design shell structures. The significant disadvantage of

using complex numerical methods to optimise the design of shell structures, however, is the

computational time required. As seen from this study, incorrectly modelling of imperfec-

tions can result in overestimating the buckling resistance of shell structures. In order to get

an accurate representation of the buckling resistance of the shell structure numerous imper-

fection studies must be performed. If structural elements (such as supports) were then to

be repositioned in the model in order to determine the most optimal support configuration

then these imperfection studies must be run for each configuration further increasing the

computation time and further more imperfection sensitivity analyses should be run for each

type of imperfection. It can be seen that more the design is to be optimised, the greater

the number of analyses that must be run (see Figure: 8.1 as the number of support config-

urations go from 1 to j, the number of imperfection types go from 1 to k and the number of

amplitudes analysed go from 1 to n the complexity of the computational design approach
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Figure 8.1: Analysis tree for optimised design

significantly increases). With such potential increases in computation time the decision to

optimise the design of a structure must be justified. This justification can be based on:

• Economics or;

• Consequence of failure

If the structure, for example a silo, is to be mass produced then it may be prudent to opti-

mise the design so that the cost per unit is as low as possible while still meeting the safety

criteria. This would result in a lower net financial cost for the production of this structure.

Alternatively if the shell structure contains hazardous materials and people or the environ-

ment may be at risk then it is logical to accurately determine the resistance of the structure

so that this resistance will not be exceeded. Similarly, if a geometrically complex shell

structure were to have people inside the structure and if their lives were to be at risk if the
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structure fails then it would be wise to design the structure in such a way that the buckling

resistance is accurately known, and that the expected loading conditions will not exceed

this resistance.

The time required to design a shell structure optimally may be reduced by experience. Say

for instance if the designer knows what method a structure will fail and the approximate

critical load at which failure occurs prior to running a numerical analysis. In this case, a

numerical analysis is more of a tool to confirm the suspected failure mode and to give a

more accurate critical buckling load. This approach is best illustrated using cylinder 6.1 as

an example. The initial full GMNIA procedure that was run using the first eigenmode as a

pre-deformed shape resulted in a characteristic buckling resistance of 186.73N/mm2 . How-

ever, when looking at the characteristic buckling stresses determined by the design codes

which are based on experimental data we get values of 81.73N/mm2 and 60.2N/mm2 from

the Eurocode and ABS code respectively. These values are 44% of and 32% of the finite

element analysis determined buckling stress which is quite a significant difference. Similarly,

the characteristic buckling resistances for cylinder IC6 and cylinder 21-B were higher than

expected in the GMNIA analyses when compared to the analytical analyses. The numerical

analyses performed to obtain the critical buckling stresses were the full analysis including

material non-linearity and geometric imperfections and, had it not been known to expect a

lower value, an inexperienced engineer may make the error of using this higher characteristic

buckling load. In reality an engineer should double check that the obtained characteristic

buckling load from the numerical analysis is the lowest critical value by running multiple

analyses but it may also be the case that familiarity breeds complacency as in each of the

other finite element analyses run on ring stiffened cylinders, the first eigenmode was suffi-

cient.

The Eurocode includes a check to ensure that these errors do not occur by using the cal-

ibration factor, k. This calibration factor was described previously but to reiterate the

numerical critical buckling stress is to be compared to the known buckling stress of a sim-

ilar structure and if this ratio falls outside the range of 0.8 < k < 1.2 the numerical result

is deemed invalid. This calibration factor is a good check for simple shells upon which

many experiments have been performed, but when analysing more geometrically complex

shell structures where there may be no precedent its usefulness comes into question. The

computational model may be compared to scale model tests, but then the question arises

as to whether the scale model tests accurately describe the structural behaviour of the full
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size structure. The necessary load combinations, imperfections, supports may be far more

accurately modelled computationally as opposed to modelled by a scaled down structure.

This leads to the second approach to designing shell structures; rigorously designing the

structures computationally.

The experience built up from this study of singly curved cylindrical steel shells structures

has provided a foundation upon which the design of more complex shells can be based.

The critical aspects of simple shell design must be fully understood before the designer can

confidently approach the design of more complex cases. As well as this the designer must

also become competent with the computational programs required to perform the numerical

analyses. It could be said that the understanding of shell behaviour and the competency

with finite element programs go hand in hand as in order to have confidence in the numer-

ically determined results, there is a certain amount of experience required to interpret if

these results are correct.

8.2 Computational Method Discussion

8.2.1 The MNA/LBA Method

The usefulness of the MNA/LBA method in this study was limited, this is due to the ge-

ometry and the load case examined. The aspect that seperates the MNA/LBA analysis

apart from the Eurocode analytical method is that the relative slenderness is determined

numerically. In the case of a uniformly compressed, axially loaded cylinder, the elastic

buckling stress is easy to determine through theory and the plastic buckling stress in this

study was typically found to be approximately the buckling stress. As such, the MNA/LBA

analysis had no benefits over the Eurocode analytical approach and was in fact, more time

consuming.

The MNA/LBA analysis becomes useful in the case when the elastic buckling load or plastic

buckling load are not so easy to determine, such as asymmetric loading or more compli-

cated geometry. The buckling parameters used in the determination of the reduction factor

also open the MNA/LBA analysis up to more complex shapes provided that these buckling

parameters have been determined for such geometry. With more complex or freeform geom-

etry the numerical method would be required to determine the elastic and plastic buckling

resistances and from these the relative slenderness could be determined.

Assuming the buckling parameters are already known for the structure or structural ele-

120



Discussion

ment being analysed, this means that only two numerical analyses are required; one for

the elastic resistance, the other for the plastic resistance. Comparing this to the GMNIA

method, this is a great reduction in the required computation time.

The critical point regarding the applicability of the MNA/LBA analysis is that the

buckling parameters must be pre-defined. This makes this method suitable for the mass

production of particular shells or shell panels. If the manufacturer mass produces certain

shells or panels, then it would be interesting if there was a standardisation in the determi-

nation of the buckling parameters. If this were the case, the buckling parameters could be

supplied by the manufacturer to the design engineer to simplify the analysis process and

to save computation time. With these buckling parameters at hand, the design engineer

would not be required to resort to GMNIA analyses if is not felt that such time consuming

analyses are justified.

Knowing the buckling parameters and being able to determine the relative slenderness also

has advantages of it’s own.

8.2.1.1 Relative Slenderness

The determination of the relative slenderness in the Eurocode method is a useful tool in

determining the expected buckling behaviour of the shell structure. Taking cylinder 1,

which is the least slender cylinder out of those studied, and cylinder 6.1, which is the most

slender the expected buckling behaviour can be shown through the non-linear finite element

analysis.

Cylinder 1 has a relative slenderness, λov, of 0.22. This places it very close to the squash

limit relative slenderness λ0 of 0.2. As such, we expect to a significant influence of plastic-

ity and stresses equal to or higher than (due to plastic strain hardening) the yield stress of

301N/mm2. This is illustrated graphically in Figures 8.3 and 8.2.

Buckling in these shell structures occurs when the analysis fails to converge, so the char-

acteristic buckling stress is between the second last data point and the next increment.

Convergence is lost before the stress of this next increment can be determined causing the

graph to go to 0 at the end of the load step.
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Figure 8.2: Cylinder 1 - Stress distribution before buckling

Figure 8.3: Cylinder 1 - Stress vs. Applied displacement

Cylinder 6.1 has a relative slenderness, λov, of 0.98. This places it past the plastic limit

relative slenderness λ0 of 0.92 for this cylinder in the heavily knocked down elastic-imperfect

buckling region. As such, plasticity is not expected and buckling is expected to be quite
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sudden. The yield stress for this cylinder is 276N/mm2. This is illustrated graphically in

Figures 8.5 and 8.4.

Figure 8.4: Cylinder 6.1 - Stress distribution before buckling

Figure 8.5: Cylinder 6.1 - Stress vs. Applied displacement

These examples show that the relative slenderness of a structure is a useful guide in deter-
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mining the ductility of the structure. For low slenderness values the structure will behave

more plastically resulting in plastic deformations before failure. Where as for slender struc-

tures the buckling behaviour will be sudden and brittle. This is further illustrated by the

load deformation Figures 8.7 and 8.6.

Figure 8.6: Cylinder 1 - Reaction stress vs. Applied displacement
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Figure 8.7: Cylinder 6.1 - Reaction stress vs. Applied displacement

The ability to quickly be forewarned of the buckling behaviour of a structure or structural

element without the requirement of running GMNIA analyses is a useful tool in designing for

ductile failure. Knowing the relative slenderness that causes the structure to fail suddenly

and elastically allows the designer to exert a measure of control on the expected failure of

a shell structure or shell element.

A level of risk can be associated with the relative slenderness of a structure if its behaviour

can be predicted. This may allow the determination of a financial cost for insurance, or

a fee for the structural consultants. As the slenderness increases, so the risk of failure

may increase and as the risk for failure increases, the time and skill required to design the

structure safely increases.

8.2.2 The GMNIA method

The GMNIA method is the most complex approach to numerical design. As there is no

experimentally determined knock-down factor the determination of the buckling resistance

using this method is a purely numerical design approach. A major consequence of such a

complex method is the time required to run the required analyses as has been previously

discussed. The advantage of the GMNIA method, however, is that it opens up the prospect

of running very complex analyses; multiple loadcases, asymmetric loading, complex geome-
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try etc. As a result the GMNIA analysis can become a tool for analysing very case specific

structures. If the structure being designed has no precedent, then the GMNIA method is

an excellent approach in determining its buckling resistance.

A word of warning is that the GMNIA method is not without its pitfalls. The GMNIA

Figure 8.8: Results of a “reliable” selection of published axial compression cylinder tests,
compared to the EN buckling curves (Rotter; 2008)

method can, theoretically, determine everything that the structural engineer needs to know

from the model input into the program. The problem with this is how accurately the model

may reflect reality and how these results are interpreted as the interpretation may vary

from one program user to the next.

8.2.2.1 Interpretation of GMNIA results

The potential difficulties with the interpretation of the results is best illustrated using the

case study cylinders in which the GMNIA analysis determined a much higher characteristic

buckling load than then analytical analyses. So cylinders IC6, 2-1B and the first eigenmode

of cylinder 6.1; in these cases if there were no other analyses to give the GMNIA a base

comparison, then the numerically determined buckling resistances could be interpreted as

correct.
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Determining the relative slenderness of a structure is an excellent measure to decide how

imperfection sensitive the structure is and how cautious the designer should be in inter-

preting the results. The relative slenderness may also be used as a guide to determine how

rigorous the designer should be with modelling of different types of imperfections and en-

suring that the modelled imperfection does not over-estimate the strength of the structure.

This is illustrated through Figures 8.8 and 8.9. It can be seen from the experimental data

in Figure 8.8 that as the slenderness goes up, the reduction factor becomes more influential

in the reduction of the buckling resistance, comparing this to cylinders studied (Figure 8.9)

it can be decided which cylinders to be more cautious with, cylinder 6.1 being a prime

example as its relative slenderness lies above the plastic limit slenderness in the heavily

knocked down elastic range.

Figure 8.9: Buckling resistance vs. non-dimensional slenderness

8.2.2.2 Difficulties Modelling the GMNIA Analysis

An example of the potential modelling difficulties for the GMNIA analyses is the simplifi-

cation that had to be made in this study due to the use of the pre-eigenbuckled shape.

In this study there was no difficulty in the solution or post-processing phases of the analysis
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process but a modelling problem was encountered in the pre-processing phase, that is the

modelling of the structural geometry. In order for the ring and stringer stiffeners to be

introduced to the model the shell surface had to be split at the junction of their intersection

(see Figure: 6.4). This was possible provided that no pre-eigenbuckled shape was imported

however, once the pre-eigenbuckled shape was exported it was as a contiguous shell surface

with no edges where the supports should be included. A simplification could be made with

regard to the ring stiffeners, but unfortunately no simplification could be justified for the

stringer stiffeners, the result of which being the stringer stiffeners were not modelled in the

GMNIA analyses.

A number of other geometry modelling programs were used in an effort to split the

surfaces but it was found that it was either impossible, or beyond the capabilities of a user

with limited experience in these programs. The geometry modeller that is integrated in

Ansys workbench was also found to have limited capabilities when it came to more complex

geometry. This raises the question as to whether using the pre-eigenbuckled shape is an

appropriate method to introduce imperfections into the model.

Though imperfections were introduced to the case study cylinders they were not repre-

sentative of the realistic imperfections to be expected in such structures. As well as this, the

introduction of these imperfections came at the cost of properly modelling the structural

geometry. The end result in using the pre-eigenbuckled shape to introduce imperfections

was that the full analytical capabilities of the finite element analysis were not utilised in

analysing the real structural geometry. Had other methods of introducing imperfections

been used it may have been the case that the stiffeners could be added to the structure

resulting in a potentially more realistic determination of the buckling resistance.

It can be speculated that this modelling problem would introduce great difficulties if the

shell geometry is modelled by a party other than the designers who will be doing the finite

element analysis. For example, if the shell geometry was defined by an architectural firm

and this geometry was sent to structural engineers for analysis and optimisation the surface

would have to be pre-split where the stiffeners are expected to be so that they could be

introduced and modelled. It is likely that the location and orientation of these stiffeners

would not be decided upon before beginning numerical analyses. In order to manipulate

the given geometry, it would be a requirement that the structural engineering consultants

and the architectural firm have compatible software.
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9 CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER STUDY

A study was performed on the Eurocode and American Bureau of Shipping (ABS) methods

of determining the buckling resistance of 6 axially compressed steel shell cylinders. A com-

parison was made between the analytical approaches to determining the buckling resistance

of these cylinders and also a comparison was made of the numerical methods to determine

the buckling resistance of these same structures. A minor objective of this study was to

make recommendations as to how these methods could be adopted or adapted to aid in the

design of geometrically complex steel shell structures. Based on this study the following

conclusions have been made:

• By not taking into account the stringer stiffeners the Eurocode analytical method for

determining the buckling resistance of steel shell structures is 34% to 54% lower than

that of the buckling resistance of the same structures determined by the American

Bureau of Shipping Guideline to Buckling of Offshore Structures code.

• The Eurocode MNA/LBA numerical method to determine the buckling resistance of

shell structures shows excellent potential for reducing computation time provided that

the required buckling parameters to determine the reduction factor have already been

pre-determined. As these buckling parameters can be determined through numerical

GMNIA analyses, the most time consuming analyses of the numerical approach would

not have to be repeated.

• The introduction of different imperfection types can have a significant affect on the

numerically determined GMNIA buckling resistance of a steel shell structure. For

instance, the buckling resistance of cylinder 6.1 with a second eigenmode pre-buckled

shape was 56% lower than when the pre-buckled shape used was the first eigenmode

with the same maximum imperfection amplitude. So, in circumstances where there

is sufficient experimental data to perform an analytical determination of the buckling

resistance, such as simple geometry under simple loading, complex GMNIA analyses
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are unnecessary and may in fact result in unconservative buckling resistances if the

incorrect imperfection type is modelled.

• The computational time required to design accurately by the GMNIA method can

be so long that its use may not be warranted in cases where an alternative design

approach would be sufficient. The usage of this method could be justified by other

external factors such as economics or consequences of failure.

• Utilisation of the pre-eigenbuckled shape to introduce imperfections into the GMNIA

analyses resulted in simplifications being made to the structural geometry of the case

study cylinders and as a result of such simplifications the minor stiffeners were not

modelled computationally. For example, the numerical GMNIA buckling resistance

for cylinder 2-1C was 51% lower than the analytically determined ABS buckling stress

for the same structure.

9.1 Recommendations for Further Study

Based on this study it was found that there are potential topics for further research. Rec-

ommendations for the further study of these topics are given below:

• Further research is warranted into the Eurocode buckling parameters. As their use

can reduce computation time, simplify numerical analyses procedures and give in-

sight into the expected behaviour of shell structures a greater understanding of these

parameters is justified. Research could be done into how the scale of a structure influ-

ences these parameters, whether the parameters can be interpolated between different

geometric shapes or sizes. Research can be done in trying to determine the influence

of the addition of stiffeners on these parameters. The significance of such research

could be that a geometrically complex structure the buckling parameters could be

determined for a set geometry under the expected loading conditions, then if these

buckling parameters do not change a significant amount for changes in stiffener size or

orientation then the computation time for each design iteration could be significantly

reduced. Another advantage of this research is that manufacturers could supply these

buckling parameters to designers for their products in a similar way that the struc-

tural properties and resistances of I-sections are readily available to the structural

engineer. This would cut out the requirement for GMNIA analyses for the structural
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engineer, and these analyses would become the responsibility of the manufacturer.

• The significance of imperfections in shell design is well known to researchers of shell

structures. This study also illustrated their significance for very simple shell geom-

etry and as shell geometry gets more complicated, the influence of imperfections is

less easy to determine. The affect of imperfections on simple shell geometry has been

determined through physical experimentation and lower-bound curve fitting but the

capabilities of complex computational analysis have also been made clear in this study.

It is proposed that further research be done into numerically determining the influ-

ence of imperfections as opposed to this being done through physical experimentation.

Through programming it becomes a simple, automated process to run a large number

of pre-defined analyses and save the results for comparison. The computational anal-

yses could then be benchmarked against physical experimentation. The potential of

these numerical studies is a much more cost efficient approach to imperfections stud-

ies. As opposed to materials being purchased and shell structures being constructed

a model could be computationally built and structural properties assigned.

• As there are significant differences between the Eurocode and ABS code analytically

determined buckling resistances for the ring and stringer stiffened cylinders it is rec-

ommended that the Eurocode includes a method of incorporating a method to analyt-

ically determine the buckling resistance of such structures. It was found that there has

been sufficient theory developed to form such methods and their implementation in

the Eurocode could result in less-conservative and more economical structures being

designed.
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AAppendix A 



clear all; 
clc; 
  
% Buckling of axially loaded singly curved plates 
  
E=2*10^5;   % Modulus of Elasticity (N/mm^2) 
nu=0.3;     % Poisson ratio 
t=5;        % Plate thickness (mm) 
b=1000;     % Plate length 
r=500;      % Radius of curvature 
  
Area=t*pi*r;    % Loaded Area (mm^2) 
  
for j=1:50; 
     
   % nwav=zeros(1,length(j)); 
    nwav(j)=0+j; 
     
    %lambda=zeros(1,length(j)); 
    lambda(j)=(pi*r)/nwav(j); 
     
    %beta=zeros(1,length(j)); 
    beta(j)=b/lambda(j); 
  
    zb=(b^2/(r*t))*sqrt(1-nu^2); 
     
    A(j)=((nwav(j)^2+beta(j)^2)^2/beta(j)^2); 
    B(j)=((12*zb^2*beta(j)^2)/(pi^4*(nwav(j)^2+beta(j)^2)^2)); 
     
    kc(j)=A(j)+B(j); 
     
    n_wav=find(kc==min(kc)); 
     
    n=n_wav; 
end 
plot(kc) 
  
lambda=(pi*r)/n; 
beta=b/lambda; 
  
A=((n^2+beta^2)^2/beta^2); 
B=((12*zb^2*beta^2)/(pi^4*(n^2+beta^2)^2)); 
     
kc=A+B; 
  
sigma=((pi^2*E)/(12*(1-nu^2))); 
sigmacr=kc*sigma*(t/b)^2; 
  
fprintf('Critical Buckling Stress for curved plate is: %.2f N/mm^2',sigmacr) 
  
force=sigmacr*Area; 
fprintf('\nCritical Buckling Force for curved plate is: %.2f N',force) 
  



Appendix B 



fprintf('\n-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-') 
fprintf('\nAmerican Bureau of Shipping\n') 
fprintf('-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- \n') 
  
  
%% 3    Unstiffened or Ring-Stiffened Cylinders 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Critical Buckling Stress due to Axial Compression (Section 4 - 3.3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%   Classical compressive buckling stress for a perfect cylindrical 
shell(N/mm^2) 
    sigma_CExR=0.605*((E*t)/r); 
  
%   Batdorf parameter (l=length between adjacent ring stiffeners 
(unsupported)) 
    z=(l^2/(r*t))*sqrt(1-nu^2);              
  
%   Length dependent coefficient 
    if (z>=2.85) 
        C=1; 
    else 
        C=(1.425/z)+(0.175*z); 
    end 
  
%   Nominal or lower bound knock-down factor to allow for shape imperfections 
    if (z<1) 
       rho_xR=0.75+0.003*z*(1-(r/(300*t))); 
    elseif (1<=z && z<20) 
            rho_xR=0.75-(0.142*(z-1)^(0.4))+0.003*z*(1-(r/(300*t))); 
        else 
            rho_xR=0.35-0.0002*(r/t); 
    end 
         
     
%   Elastic compressive buckling stress for an imperfect cylindrical shell 
(N/mm^2) 
    sigma_ExR=rho_xR*C*sigma_CExR;           
  
%   The critical buckling stress of unstiffened or ring-stiffened cylindrical 
shell subjected to axial compression 
%   or bending moment may be taken as: 
    if (sigma_ExR<=P_r*sigma_0) 
        sigma_CxR=sigma_ExR; 
    else 
        sigma_CxR=sigma_0*(1-P_r*(1-P_r)*(sigma_0/sigma_ExR)); 
    end 
  
fprintf('\nThe critical buckling stress of unstiffened or ring-stiffened 
cylindrical shell subjected to axial compression\n')     
fprintf('sigma_CxR= %.2f N/mm^2 \n',sigma_CxR) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



%  Critical Buckling Stress due to External Pressure (Section 4 - 3.5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%   The critical buckling stress for an unstiffened or ring-stiffened  
%   cylindrical shell subjected to external pressure may be taken as: 
  
  
%   Nominal or lower bound knock-down factor to allow for shape imperfections     
    rho_thetaR=0.8;      
  
%   K_theta 
if (N_theta>0) 
pressure=menu('Loading from:','Radial Pressure','Hydrostatic Pressure'); 
switch pressure 
    case 1 
        k=(N_x/N_theta);     %   For lateral pressure ((N_x/N_theta)+0.5 for 
hydrostatic pressure) 
        k1=0;                %   0 for lateral pressure, 0.5 for hydrostatic 
pressure 
    case 2 
        k=(N_x/N_theta)+0.5; 
        k1=0.5;              %   0 for lateral pressure, 0.5 for hydrostatic 
pressure 
end 
elseif (N_theta==0) 
    k=0; 
    k1=0;                   %   0 for lateral pressure, 0.5 for hydrostatic 
pressure 
end 
    alpha=l/(1.56*sqrt(r*t)); 
  
  % Code says it must be greater than or equal to 0  which wasn't adhered 
  % to in some examples in the ABS commentary document 
  if 
2*((sinh(alpha)*cos(alpha)+cosh(alpha)*sin(alpha))/(sinh(2*alpha)+sin(2*alpha
)))>=0 
        
G_alpha=2*((sinh(alpha)*cos(alpha)+cosh(alpha)*sin(alpha))/(sinh(2*alpha)+sin
(2*alpha))); 
  else 
      G_alpha=0; 
  end 
  
         
     
    omegabar=(cosh(2*alpha)-
cos(2*alpha))/(alpha*(sinh(2*alpha)+sin(2*alpha))); 
    Abar_R=(A_R)*(r/r_R)^2; 
     
    K_theta=1-((1-k*nu)/(1+(t*(t_w+l*omegabar)/Abar_R)))*G_alpha; 
     
%   Elastic buckling pressure (N/mm^2) 
    A_L=((sqrt(z))/(1-nu^2)^(1/4))-1.17+1.068*k1; 
    C_p=(A_L)/(r/t); 
     



    if (A_L<=2.5) 
        q_CEthetaR=((1.27*E)/(A_L^(1.18)+0.5))*(t/r)^2; 
    elseif (2.5<A_L && A_L<=0.208*(r/t)) 
            q_CEthetaR=((0.92*E)/A_L)*(t/r)^2; 
    elseif (0.208*(r/t)<A_L && A_L<=2.85*(r/t)) 
                q_CEthetaR=(0.836*C_p^(-1.061)*E)*(t/r)^3; 
    else 
                q_CEthetaR=0.275*E*(t/r)^3; 
    end 
     
%   Elastic hoop buckling stress for an imperfect cylindrical shell (N/mm2) 
    sigma_EthetaR=rho_thetaR*((q_CEthetaR*(r+(0.5*t)))/t)*K_theta; 
     
    DELTA=sigma_EthetaR/sigma_0; 
  
%   Plasticity reduction factor 
    if (DELTA<=0.55) 
        PHI=1; 
    elseif (0.55<DELTA && DELTA<=1.6) 
            PHI=(0.45/DELTA)+0.18; 
        elseif (1.6<DELTA && DELTA<=6.25) 
                PHI=1.31/(1+(1.15*DELTA)); 
            else 
                PHI=1/DELTA;       
    end 
     
  
sigma_CthetaR=PHI*sigma_EthetaR; 
  
fprintf('\nThe critical buckling stress for an unstiffened or ring-stiffened 
cylindrical shell subjected to external pressure\n')  
fprintf('sigma_CthetaR= %.2f N/mm^2 \n',sigma_CthetaR) 
  
%% 5    Curved Panels 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
%  Critical Buckling Stress for Axial Compression or Bending Moment (Section 
4 - 5.3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
  
%   z_s 
    z_s=sqrt(1-nu^2)*(s^2/(r*t)); 
     
%   KxP 
    if (z_s<=11.4) 
        K_xP=4+((3*z_s^2)/pi^4); 
    else 
        K_xP=0.702*z_s; 
    end 
  
%   Nominal or lower bound knock-down factor to allow for shape imperfections 
    if (z_s<=11.4) 
        rho_xP=1-(0.019*z_s^(1.25))+((0.0024*z_s)*(1-(r/(300*t)))); 



    else 
        rho_xP=0.27+(1.5/z_s)+(27/z_s^2)+(0.008*sqrt(z_s)*(1-(r/(300*t)))); 
    end 
  
%   Classical buckling stress for a perfect curved panel between adjacent 
stringer stiffeners (N/mm2) 
    sigma_CExP=K_xP*((pi^2*E)/(12*(1-nu^2)))*(t/s)^2; 
     
%   Lambda_n 
    lambda_n=sqrt(sigma_0/(rho_xP*sigma_CExP)); 
  
%   Factor compensating for the lower bound nature of rho_xP (Bias factor) 
    if (lambda_n<=1) 
        B_xP=1+(0.15*lambda_n); 
    else 
        B_xP=1.15; 
    end 
  
%   Elastic buckling stress for an imperfect curved panel (N/mm^2) 
    sigma_ExP=B_xP*rho_xP*sigma_CExP; 
  
if (sigma_ExP<=P_r*sigma_0) 
    sigma_CxP=sigma_ExP; 
else 
    sigma_CxP=sigma_0*(1-P_r*(1-P_r)*(sigma_0/sigma_ExP)); 
end 
fprintf('\nThe critical buckling stress of a curved panel subjected to axial 
compression\n')  
fprintf('sigma_CxP = %.2f N/mm^2 \n',sigma_CxP) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Critical Buckling Stress under External Pressure (Section 4 - 5.5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%   The critical buckling stress for curved panels bounded by adjacent  
%   pairs of ring and stringer stiffeners subjected to external pressure  
%   may be taken as: 
  
%   Circumferential wave number starting at 0.5Ns and increasing until a  
%   mininum value of qCE?P is attained 
alpha_2=(pi*r)/l; 
if (N_s<1) 
for j=1:50; 
    wav(j)=0+j; 
   
     
%   Elastic buckling pressure (N/mm^2) 
    q_minCEthetaP(j)=(((E*t)/r)/wav(j)^2+(k*alpha_2^2)-
1)*((((wav(j)^2+alpha_2^2-1)^2/(12*(1-
nu^2)))*(t/r)^2)+(alpha_2^4/(wav(j)^2+alpha_2^2)^2)); 
  
 n_wav=find(q_minCEthetaP==min(q_minCEthetaP)); 
  
 n=wav(n_wav);    



end 
elseif (N_s>=1) 
    vec_j=0.5*N_s:50; 
    for j=1:length(vec_j); 
    wav(j)=vec_j(j); 
   
     
%   Elastic buckling pressure (N/mm^2) 
    q_minCEthetaP(j)=(((E*t)/r)/(wav(j)^2+k*alpha_2^2-
1))*(((wav(j)^2+alpha_2^2-1)^2/(12*(1-
nu^2)))*(t/r)^2+(alpha_2^4/(wav(j)^2+alpha_2^2)^2)); 
  
 n_wav=find(q_minCEthetaP==min(q_minCEthetaP)); 
  
 n=wav(n_wav);    
    end 
end 
%   Elastic buckling pressure (N/mm^2) 
    q_CEthetaP=(((E*t)/r)/(n^2+k*alpha_2^2-1))*(((n^2+alpha_2^2-1)^2/(12*(1-
nu^2)))*(t/r)^2+(alpha_2^4/(n^2+alpha_2^2)^2)); 
     
%   Elastic hoop buckling stress of imperfect curved panel (N/mm^2) 
sigma_EthetaP=((q_CEthetaP*(r+0.5*t))/t)*K_theta; 
  
DELTA2=sigma_EthetaP/sigma_0; 
  
%   Plasticity reduction factor 
if (DELTA2<=0.55) 
        PHI2=1; 
    elseif (0.55<DELTA2 && DELTA2<=1.6) 
            PHI2=(0.45/DELTA2)+0.18; 
        elseif (1.6<DELTA2 && DELTA2<=6.25) 
                PHI2=1.31/(1+(1.15*DELTA2)); 
            else 
                PHI2=1/DELTA2;       
end 
     
sigma_CthetaP=PHI2*sigma_EthetaP; 
fprintf('\nThe critical buckling stress of a curved panel subjected to 
external pressure\n')  
fprintf('sigma_CthetaP = %.2f N/mm^2 \n',sigma_CthetaP) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%  Critical Buckling Stress for Axial Compression or Bending Moment (Section 
4 - 7.3) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
%   The critical buckling stress of ring and stringer-stiffened cylindrical  
%   shells subjected to axial compression or bending may be taken as: 
  
%   Reduced shell slenderness ratio 
    lambda_xP=sqrt(sigma_0/sigma_ExP); 



     
%   Reduced effective width of shell (mm) 
    if (lambda_xP>0.53) 
        s_e=(0.53/lambda_xP)*s; 
    else 
        s_e=s; 
    end 
  
A_s=(d_st*t_st)+(b_st*t_fst);                                                             
%   Cross sectional area of stringer stiffener (mm^2) 
  
switch stringerstiffener 
    case 1 
%   Distance from inner surface of shell to centroid of stringer stiffener 
y_st=(((d_st+(t_fst/2))*(t_fst*b_st))+((d_st/2)*(t_st*d_st)))/(A_s); 
  
%   Moment of inertia of stringer stiffener 
I_s=(1/3)*((t_st*y_st^3)+(b_st*((d_st+t_fst)-y_st)^3)-((b_st-
t_st)*(((d_st+t_fst)-y_st-t_fst)^3))); 
z_st=y_st; %r-y_st;                            %   Distance from centerline 
of shell to the centroid of stringer stiffener (mm) 
  
    case 2 
%   Distance from inner surface of shell to centroid of stringer stiffener 
y_st=(d_st+t_st)-((t_st*(2*d_st+b_st)+d_st^2))/(2*(d_st+b_st)); % Short edge 
of leg in contact with cylinder 
%y_st=(d_st+t_st)-((t_st*(2*d_st+b_st)+d_st^2))/(2*(d_st+b_st)); % Long edge 
of leg in contact with cylinder 
  
z_st=y_st; %r-y_st;                            %   Distance from centerline 
of shell to the centroid of stringer stiffener (mm) 
  
%   Moment of inertia of stringer stiffener 
I_s=(1/3)*((t_st*y_st^3)+(b_st*((d_st+t_st)-y_st)^3)-((b_st-
t_st)*(((d_st+t_st)-y_st-t_st)^3))); 
end 
  
%   Minimum moment of inertia of stringer stiffeners 
alpha_0=l/s; 
  
if A_s>0 
delta=A_s/(s*t); 
else 
    delta=0; 
end 
gamma_0=((2.6+(4.0*delta))*alpha_0^2)+(12.4*alpha_0)-(13.2*alpha_0^(0.5)); 
  
I_0=((s*t^3)/(12*(1-nu^2)))*gamma_0; 
  
%   Check moment of inertia of stringers 
    if (I_0<I_s) 
        sufficiency='OK'; 
    else 
        sufficiency='Insufficient'; 
    end 



fprintf('\nStringer moment of inertia = %s \n',sufficiency) 
  
  
%   Web of Stringer Stiffener Check 
if ((d_st/t_st)<=1.5*(E/sigma_0)^0.5); 
    sweb='OK'; 
else 
    sweb='Not OK'; 
end 
fprintf('\nStringer stiffener web d/t ratio check = %s \n',sweb) 
  
%   Imperial Factor 
    rho_xB=0.75;         
  
%   Moment of inertia of ring stiffener plus associated effective length of 
shell (mm^4) 
y_rs2=(((d_rs*t_w)*(t_frs+d_rs/2))+((l_eo*t)*(t_frs+d_rs+(t/2)))+(((b_rs*t_fr
s)*(t_frs/2))))/((t_frs*b_rs)+(d_rs*t_w)+(l_eo*t)); 
I_rss=(((l_eo*t^3)/12)+((l_eo*t)*((t_frs+d_rs+(t/2))-
y_rs2)^2))+(((t_w*d_rs^3)/12)+((d_rs*t_w)*(abs((t_frs+(d_rs/2))-
y_rs2))^2))+(((b_rs*t_frs^3)/12)+((b_rs*t_frs)*((abs((t_frs/2)-y_rs2))^2))); 
     
%   Moment of inertia of stringer stiffener plus associated effective shell 
%   plate width (mm^4) 
y_st2=(((d_st*t_st)*(t_fst+d_st/2))+((s_e*t)*(t_fst+d_st+(t/2)))+(((b_st*t_fs
t)*(t_fst/2))))/((t_fst*b_st)+(d_st*t_st)+(s_e*t));    % New centroidal axis 
I_se=(((s_e*t^3)/12)+((s_e*t)*((t_fst+d_st+(t/2))-
y_st2)^2))+(((t_st*d_st^3)/12)+((d_st*t_st)*(abs((t_fst+(d_st/2))-
y_st2))^2))+(((b_st*t_fst^3)/12)+((b_st*t_fst)*((abs((t_fst/2)-y_st2))^2)));     
     
%   Elastic compressive buckling stress of stringer-stiffened shell (N/mm2) 
    sigma_s=rho_xB*((0.605*E*(t/r))/(1+(A_s/(s*t)))); 
     
%   Elastic buckling stress of column (N/mm^2) 
    sigma_c=(pi^2*E*I_se)/(l^2*(A_s+s_e*t)); 
     
%   Elastic compressive buckling stress of imperfect stringer-stiffened 
%   shell (N/mm^2) 
    sigma_ExB=sigma_c+sigma_s; 
  
if (sigma_ExB<=P_r*sigma_0) 
    sigma_CxB=sigma_ExB; 
else 
    sigma_CxB=sigma_0*(1-P_r*(1-P_r)*(sigma_0/sigma_ExB)); 
end 
  
fprintf('\nThe critical buckling stress of ring and stringer-stiffened 
cylindrical shells subjected to axial compression\n')  
fprintf('sigma_CxB = %.2f N/mm^2 \n',sigma_CxB) 
  
  
%% 7    Ring and Stringer-stiffened shells 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



%  Critical Buckling Stress for External Pressure (Section 4 - 7.5) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%   The critical buckling stress for ring and stringer-stiffened  
%   cylindrical shells subjected to external pressure may be taken as: 
  
%   Geometrical parameter 
    g=2*pi*((l^2*A_s)/(N_s*I_s)); 
     
%   Effective pressure correction factor 
    if (g<=500) 
        K_p=0.25+((0.85/500)*g); 
    else 
        K_p=1.10; 
    end 
     
%   Collapse pressure of a stringer stiffener plus its associated shell 
%   plating (N/mm^2) 
    q_s=(16/(s*l^2))*A_s*abs(z_st)*sigma_0; %(16/(s*l^2))*A_s*abs(z_st-
(t/2))*sigma_0; 
  
%   Collapse hoop stress for a stringer stiffener plus its associated  
%   shell plating (N/mm^2) 
    sigma_sp=((q_s*(r+0.5*t))/t)*K_theta; 
     
sigma_CthetaB=min((sigma_CthetaR+sigma_sp)*K_p,sigma_0); 
  
fprintf('\nThe critical buckling stress for ring and stringer-stiffened 
cylindrical shells subjected to external pressure\n')  
fprintf('sigma_CthetaB = %.2f N/mm^2 \n',sigma_CthetaB) 
  
%%  Overall Critical Buckling Stress 
BUCK=[sigma_CxR,sigma_CthetaR,sigma_CxP,sigma_CthetaP,sigma_CxB,sigma_CthetaB
]; 
sigma_Cij=min(BUCK); 
fprintf('\nOverall Critical Buckling Stress\n')  
fprintf('sigma_Cij = %.2f N/mm^2 \n',sigma_Cij) 
  
  
%%   Factors 
  
%   Adjustment factor 
    if (sigma_Cij <= 0.55*sigma_0)  
        psi=0.833; 
    else 
        psi=0.629+0.371*(sigma_Cij/sigma_0); 
    end 
   
beta=(s/t)*sqrt((sigma_0/E));          %   Slenderness ratio ('b' has been 
replaced by 's', the short length of plate) 
  
  
eta=1; % 0.8*psi;                             %   Maximum allowable strength 
utilization factor of shell buckling (0.6 or 0.8 times psi) 



  
% NOTE: eta is based on factors of safety given in offshore installation 
% rules characterised by loading conditions. 
if A_s>0  
    delta=A_s/(s*t); 
elseif A_s<=0 
    delta=0; 
end 
  
%%  Longitudinal Stress 
%   Stress due to axial force 
    sigma_a=P/(2*pi*r*t*(1+delta));          
  
%   Stress due to bending moment     
    sigma_b=M/(pi*r^(2)*t*(1+delta));        
  
%   Longitudinal Stress 
    sigma_x=sigma_a+sigma_b; 
  
%%  Hoop Stress 
  
K_thetaR=(1-k*nu)/(1+(Abar_R/(t*(t_w+l*omegabar)))); 
  
%   The hoop stress may be taken as... 
%   At midway of shell between adjacent ring stiffeners: 
    sigma_theta=((q*(r+0.5*t))/t)*K_theta; 
     
%   The hoop stress may be taken as... 
%   At inner face of ring flange: 
    sigma_thetaR=((q*(r+0.5*t))/t)*(r/r_F)*K_thetaR; 
  
%%  Minimum moment of inertia of ring stiffeners 
I_r=((sigma_x*(1+delta)*t*r_R^4)/(500*E*l))+(((sigma_theta*r_R^2*l*t)/(2*E*K_
theta))*(1+((y_rs/(100*r))*(E/((eta*sigma_0)-sigma_thetaR)))));  
  
%   Check moment of inertia of ring stiffeners 
    if (I_r<I_rs) 
        ringsufficiency='OK'; 
    else 
        ringsufficiency='Insufficient'; 
    end 
fprintf('\nRing stiffener moment of inertia = %s \n',ringsufficiency) 
  
%%  Curved Panel Buckling Unity Check (Section 5.1) 
% The buckling limit state of curved panels between adjacent stiffeners can 
% be defined by the following equation 
  
  
%   Coefficient to reflect interaction between longitudinal and hoop 
%   stresses (negative values are acceptable) 
    phi_p=((0.4*(sigma_CxP+sigma_CthetaP))/sigma_0)-0.8; 
     



BSL=(sigma_x/(eta*sigma_CxP))^2-
(phi_p*(sigma_x/(eta*sigma_CxP))*((sigma_theta/(eta*sigma_CthetaP))))+(sigma_
theta/(eta*sigma_CthetaP))^2; 
fprintf('Curved Panel Buckling State Limit %.2f \n',BSL) 
  
if (BSL<=1) 
    Unity_Check='OK'; 
else 
    Unity_Check='Fail'; 
end 
fprintf('Curved Panel Unity Check: %s \n',Unity_Check) 
  
fprintf('\nFor Excel Spreadsheet: Unstiffened/Ring-stiffened\n') 
fprintf('Axial\n') 
fprintf('Knockdown Factor: %.2f \n',rho_xR) 
fprintf('Classical buckling stress (bay in axial compression): %.2f 
\n',sigma_CExR) 
fprintf('Elastic buckling stress: %.2f \n',sigma_ExR) 
fprintf('Critical buckling stress: %.2f \n',sigma_CxR) 
fprintf('Pressure\n') 
fprintf('Plasticity: %.2f \n',PHI) 
fprintf('Elastic hoop stress: %.2f \n',sigma_EthetaR) 
fprintf('Critical buckling stress: %.2f (N/mm^2)\n',sigma_CthetaR) 
  
fprintf('\nFor Excel Spreadsheet: Ring- & Stringer-stiffened Axial\n') 
fprintf('Axial\n') 
fprintf('Knockdown Factor: %.2f \n',rho_xB) 
fprintf('Elastic compressive buckling stress of stringer-stiffened shell: 
%.2f \n',sigma_s) 
fprintf('Elastic buckling stress of column: %.2f \n',sigma_c) 
fprintf('Elastic buckling stress: %.2f \n',sigma_ExB) 
fprintf('Critical buckling stress: %.2f \n',sigma_CxB) 
fprintf('Pressure\n') 
fprintf('Plasticity: %.2f \n',DELTA) 
fprintf('Critical buckling stress: %.2f (N/mm^2)\n',sigma_CthetaB) 
  
 
 



Appendix C 



fprintf('\n -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-') 
fprintf('\nEUROCODE\n') 
fprintf('Axial Buckling to Annex D: EC3, ENV 1993-1-6:1999\n') 
fprintf('External Pressure Buckling to Clause 5.3.4.5: EC 3: Design of steel 
structures - Silos, EN 1993-4-1') 
fprintf('\n -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- \n') 
  
%   Material Properties and Safety Factors 
f_yk=sigma_0; 
gamma_M1=1.1; 
alpha_n=0.8; 
  
ro=r+(t/2); 
ri=r-(t/2); 
  
A=2*pi*r*t; 
  
%   Loading 
F_x=P;                      %   Meridional Loading 
sigma_xEd=F_x/A;            %   Meridional Stress 
sigma_thetaEd=(q*r)/t;      %   Hoop Stress 
  
omega=l/sqrt(r*t); 
BC1=menu('First boundary condition:','Fixed','Pinned','Free'); 
BC2=menu('Second boundary condition:','Fixed','Pinned','Free'); 
Fabricationquality=menu('Fabrication Quality 
is:','Excellent','High','Normal'); 
pressure=menu('The Pressure on the cylinder is:','External','Internal'); 
  
switch Fabricationquality 
    case 1 
        Q=40; 
        alpha_theta=0.75; 
        alpha_tau=0.75; 
    case 2 
        Q=25; 
        alpha_theta=0.65; 
        alpha_tau=0.65; 
    case 3 
        Q=16; 
        alpha_theta=0.5; 
        alpha_tau=0.5; 
end 
  
%   Boundary Coniditions 
if (BC1==1 && BC2==1) 
    C_xb=6; 
elseif (BC1==1 && BC2==2) 
    C_xb=3; 
elseif (BC1==2 && BC2==2) 
    C_xb=1; 
end 
  
if (BC1==1 && BC2==1) 
    Case=1; 



elseif (BC1==1 && BC2==2) 
    Case=2; 
elseif (BC1==2 && BC2==2) 
    Case=3; 
elseif (BC1==1 && BC2==3) 
    Case=4; 
elseif (BC1==2 && BC2==3) 
    Case=5; 
elseif (BC1==3 && BC2==3) 
    Case=6; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Axial Buckling 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if (1.7<omega && omega<(r/(2*t))) 
    C_x=1; 
    Cylinderlength='medium'; 
elseif (omega<1.7) 
    C_x=1.36-(1.83/omega)+(2.07/omega^2); 
    Cylinderlength='short'; 
else 
    C_x=min((1+((0.2/C_xb)*(1-(2*omega*(t/r))))),0.6); 
    Cylinderlength='long'; 
end 
  
sigma_xRc=0.605*E*C_x*(t/r);        % The elastic critical meridional 
buckling stress 
  
deltawk=(1/Q)*sqrt(r/t)*t;          % The characteristic imperfection 
amplitude 
lambdabar_x=sqrt(f_yk/sigma_xRc);   % Relative shell slenderness in 
meridional direction 
  
switch pressure 
    case 1 
        alpha_x=0.62/(1+(1.91*(deltawk/t)^1.44));   % The meridional elastic 
imperfection reduction factor 
    case 2 
        alpha_x1=0.62/(1+(1.91*(deltawk/t)^1.44));   % The meridional elastic 
imperfection reduction factor 
        pbar=(q*r)/(t*sigma_xRc); 
  
        alpha_xpe=alpha_x1+(1-alpha_x1)*(pbar/(pbar+(0.3/alpha_x1^0.5)));   %   
A factor covering pressure-induced elastic stabilisation 
         
        s=(1/400)*(r/t); 
         
        alpha_xpp=(1-(pbar^2/lambdabar_x^4))*(1-
(1/(1.12+s^1.5)))*((s^2+(1.21*lambdabar_x^2))/(s*(s+1)));   %   A factor 
covering pressure-induced plastic stabilisation 
         
        alpha_xp=min(alpha_xpe,alpha_xpp); 
        alpha_x=alpha_xp; 
end 



  
beta_x=0.6; % The plastic range factor 
eta_x=1;    % The interaction exponent 
  
lambdabar_x0=0.2;   % The meridional squash limit slenderness 
lambdabar_xp=sqrt(alpha_x/(1-beta_x));    % Plastic limit relative 
slenderness 
  
%   Buckling reduction factor 
if (lambdabar_x<=lambdabar_x0) 
    Chi_x=1; 
elseif (lambdabar_x0<lambdabar_x && lambdabar_x<lambdabar_xp) 
    Chi_x=1-(beta_x*((lambdabar_x-lambdabar_x0)/(lambdabar_xp-
lambdabar_x0))^eta_x); 
elseif (lambdabar_xp<=lambdabar_x) 
    Chi_x=alpha_x/(lambdabar_x)^2; 
end 
  
sigma_xRk=Chi_x*f_yk;   % The characteristic buckling stress 
  
sigma_xRd=sigma_xRk/gamma_M1;   % The design buckling resistance 
  
fprintf('\nThe meridional design buckling resistance = %.2f N/mm^2 
\n',sigma_xRd) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Circumferential Local Panel Buckling 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Circumferential buckling satisfaction test 
% Cylinders need not be checked against circumferential shell buckling if 
they satisfy: 
  
omega2=l/sqrt(r*t); 
  
if (r/t)<=0.21*(sqrt(E/f_yk)) 
    circcheck='No'; 
else 
    circcheck='Yes'; 
end 
  
fprintf('\nCircumferential shell buckling check required: %s \n',circcheck) 
  
% C_theta 
 if Case==1 
        C_theta=1.5; 
    elseif Case==2 
        C_theta=1.25; 
    elseif Case==3 
        C_theta=1; 
    elseif Case==4 
        C_theta=0.6; 
    elseif Case==5 
        C_theta=0; 



    elseif Case==6 
        C_theta=0; 
 end 
     
% Short Cylinder 
if (omega2/C_theta)<20  
    if Case==1 
        C_thetas=1.5+(10/omega2^2)-(5/omega2^3); 
    elseif Case==2 
        C_thetas=1.25+(8/omega2^2)-(4/omega2^3); 
    elseif Case==3 
        C_thetas=1+(3/omega2^1.35); 
    elseif Case==4 
        C_thetas=0.6+(1/omega2^2)-(0.3/omega2^3); 
    end 
     
    % Critical circumferential buckling stress 
    sigma_thetaRc=0.92*E*(C_thetas/omega2)*(t/r); 
      
% Medium length cylinder 
elseif (20<=(omega2/C_theta) && (omega2/C_theta)<=1.63*(r/t)) 
    if Case==1 
        C_theta=1.5; 
    elseif Case==2 
        C_theta=1.25; 
    elseif Case==3 
        C_theta=1; 
    elseif Case==4 
        C_theta=0.6; 
    elseif Case==5 
        C_theta=0; 
    elseif Case==6 
        C_theta=0; 
    end 
  
    % Critical circumferential buckling stress 
    sigma_thetaRc=0.92*E*(C_theta/omega2)*(t/r);  
     
% Long cylinder 
elseif (omega2/C_theta)>1.63*(r/t) 
  
% Critical circumferential buckling stress 
    sigma_thetaRc=E*(t/r)^2*(0.275+(2.03*((C_theta/omega2)*(r/t))^4)); 
  
end 
beta_theta=0.6; % The plastic range factor 
eta_theta=1;    % The interaction exponent 
  
lambdabar_theta=sqrt(f_yk/sigma_thetaRc);  % Relative shell slenderness in 
circumferential direction 
lambdabar_theta0=0.4;   % The circumferential squash limit slenderness 
lambdabar_thetap=sqrt(alpha_theta/(1-beta_theta));    % Plastic limit 
relative slenderness 
  
if (lambdabar_theta<=lambdabar_theta0) 



    Chi_theta=1; 
elseif (lambdabar_theta0<lambdabar_theta && lambdabar_theta<lambdabar_thetap) 
    Chi_theta=1-(beta_theta*((lambdabar_theta-
lambdabar_theta0)/(lambdabar_thetap-lambdabar_theta0))^eta_theta); 
elseif (lambdabar_thetap<=lambdabar_theta) 
    Chi_theta=alpha_theta/(lambdabar_theta)^2; 
end 
  
sigma_thetaRk=Chi_theta*f_yk;   % The characteristic buckling stress 
  
sigma_thetaRd=sigma_thetaRk/gamma_M1;   % The design buckling resistance 
  
  
%   The following variables are defined in Page 57 1993-4-1 - Silos 
%   NOTE 1: The above properties for the stiffeners (A, I, It etc.) relate to 
the stiffener section alone: no 
%   allowance can be made for an “effective” section including parts of the 
shell wall. 
  
  
% According to Eurocode: The wall should be designed for the same external 
pressure buckling criteria as the unstiffened 
% wall unless a more rigorous calculation is necessary. 
G=E/(2*(1+nu)); %   Shearing Property 
  
% For caluclation of D, the following is assumed. 
l1=1000; 
l_i=l;        %   is the half wavelength of the potential buckle in the 
vertical direction 
A_r=A_R;    %22.51;  %ABS=A_R        %   is the cross-sectional area of a 
ring stiffener 
I_rs=I_rs;    %13.4418;   %ABS=I_r        %   is the second moment of area of 
a ring stiffener about the vertical axis (Changed from I_r to match ABS) 
d_r=l;  %180;    %ABS=l        %   is the separation between ring stiffeners 
e_r=y_rs;   %+(t/2); %9.0916;        %ABS=y_rs+(t/2)%   is the outward 
eccentricity from the shell middle surface of a ring stiffener 
y_st=(((d_st+(t_fst/2))*(t_fst*b_st))+((d_st/2)*(t_st*d_st)))/(A_s); 
e_s=z_st;   %6.7;    %ABS=z_st        %   is the outward eccentricity from 
the shell middle surface of a stringer stiffener 
  
%   Distance from inner surface of shell to centroid of stringer stiffener 
y_st=(((d_st+(t_fst/2))*(t_fst*b_st))+((d_st/2)*(t_st*d_st)))/(A_s); 
A_s=(d_st*t_st)+(b_st*t_fst); 
z_st=y_st; 
  
C_phi=(E*t);          %   is the sheeting stretching stiffness in the axial 
direction 
C_theta=E*t;      %   is the sheeting stretching stiffness in the 
circumferential direction 
C_phitheta=0.38*E*t;     %   is the sheeting stretching stiffness in membrane 
shear  
  
D_phi=(1/12)*E*t^3/((1-nu^2));      %(E*Ixx)/(2*pi*r);      
%(1/12)*E*t^3/((1-nu^2));  %   *(1+(1/4)*pi^2*t^2/l1^2));          %   is the 
sheeting flexural rigidity in the axial direction 



D_theta=(1/12)*E*t^3/((1-nu^2));       %0.13*E*t^3;       %   
(1/12)*E*t^3/((1-nu^2));    %   0.13*E*t^3;        %   is the sheeting 
flexural rigidity in the circumferential direction 
D_phitheta=2*D_theta;     %(G*t^3)/12; %2*dphi %   (1/12)*E*t^3/((1-
nu^2)*(1+(1/4)*pi^2*t^2/l1^2));     %   is the sheeting twisting flexural 
rigidity in twisting 
  
vec_l=1:d_r; 
  
C11=C_phi+(E*A_s/d_s); 
C12=nu*sqrt(C_phi*C_theta); 
C14=(e_s*E*A_s)/(r*d_s); 
  
C22=C_theta+((E*A_r)/(d_r)); 
C25=(e_r*E*A_r)/(r*d_r); 
  
C33=C_phitheta; 
  
C44=(D_phi+((E*I_s)/(d_s))+((E*A_s*e_s^2)/(d_s)))/r^2; 
C45=0;  %(nu*sqrt(D_phi*D_theta))/r^2; 
  
C55=(D_theta+((E*I_rs)/d_r)+((E*A_r*e_r^2)/d_r))/r^2; 
  
C66=(D_phitheta+(0.5*(((G*I_ts)/d_s)+((G*I_tr)/d_r))))/r^2; 
  
% 5.3.4.5 Buckling under external pressure, partial vacuum or wind 
for j=1:20; 
    n(j)=0+j; 
  
omega(j)=(pi*r)/(n(j)*l_i); 
  
A1(j)=n(j)^4*(omega(j)^4*C44 + 2*omega(j)^2*(C45+C66) + C55)+ C22 + 
2*n(j)^2*C25; 
A2(j)=((2*omega(j)^2)* 
(C12+C33)*(C22+n(j)^2*C25)*(C12+n(j)^2*omega(j)^2*C14))-
(((omega(j)^2*C11)+C33)*(C22+n(j)^2*C25)^2 )-(omega(j)^2*(C22 
+omega(j)^2*C33)*(C12+n(j)^2*omega(j)^2*C14)^2);  
A3(j)=((omega(j)^2*C11 + C33)*(C22 + C25 + omega(j)^2*C33))-omega(j)^2*(C12 + 
C33)^2; 
  
P_nRcrumin(j)=(1/(r*n(j)^2))*(A1(j)+(A2(j)/A3(j))); 
n_wav=find(P_nRcrumin==min(P_nRcrumin));    %   
min(P_nRcrumin(P_nRcrumin>0));              % 
end 
n=n_wav; 
  
  
circ=2*pi*r; 
omega=(pi*r)/(n*l_i); 
  
A1=n^4*(omega^4*C44 + 2*omega^2*(C45+C66) + C55)+ C22 + 2*n^2*C25; 
A2=((2*omega^2)* (C12+C33)*(C22+n^2*C25)*(C12+n^2*omega^2*C14))-
(((omega^2*C11)+C33)*(C22+n^2*C25)^2 )-(omega^2*(C22 
+omega^2*C33)*(C12+n^2*omega^2*C14)^2); 



A3=((omega^2*C11 + C33)*(C22 + C25 + omega^2*C33))-omega^2*(C12 + C33)^2; 
  
P_nRcru=(1/(r*n^2))*(A1+(A2/A3)); 
P_nRd=alpha_n*P_nRcru/gamma_M1; 
  
% The critical buckling stress resultant (Meridional Loading) 
for k=1:20; 
nb(k)=0+k; 
  
omegab(k)=(pi*r)/(nb(k)*l_i); 
  
A1b(k)=nb(k)^4*(omegab(k)^4*C44 + 2*omegab(k)^2*(C45+C66) + C55)+ C22 + 
2*nb(k)^2*C25; 
A2b(k)=((2*omegab(k)^2)* 
(C12+C33)*(C22+nb(k)^2*C25)*(C12+nb(k)^2*omegab(k)^2*C14))-
(((omegab(k)^2*C11)+C33)*(C22+nb(k)^2*C25)^2 )-(omegab(k)^2*(C22 
+omegab(k)^2*C33)*(C12+nb(k)^2*omegab(k)^2*C14)^2); 
A3b(k)=((omegab(k)^2*C11 + C33)*(C22 + C25 + omegab(k)^2*C33))-
omegab(k)^2*(C12 + C33)^2; 
  
n_xRcrmin(k)=(1/(nb(k)^2*omegab(k)^2))*(A1b(k)+(A2b(k)/A3b(k))); 
  
n_wavb=find(n_xRcrmin==min(n_xRcrmin)); 
end 
nb=n_wavb; 
  
circ=2*pi*r; 
omegab=(pi*r)/(nb*l_i); 
  
A1b=nb^4*(omegab^4*C44 + 2*omegab^2*(C45+C66) + C55)+ C22 + 2*nb^2*C25; 
A2b=((2*omegab^2)* (C12+C33)*(C22+nb^2*C25)*(C12+nb^2*omegab^2*C14))-
(((omegab^2*C11)+C33)*(C22+nb^2*C25)^2 )-(omegab^2*(C22 
+omegab^2*C33)*(C12+nb^2*omegab^2*C14)^2); 
A3b=((omegab^2*C11 + C33)*(C22 + C25 + omegab^2*C33))-omegab^2*(C12 + C33)^2; 
  
n_xRcr=(1/(nb^2*omegab^2))*(A1b+(A2b/A3b)); 
  
tm=t+(A_s/s); 
  
lambdaglob=sqrt((tm*sigma_0)/n_xRcr); 
n_xRk=lambdaglob*tm*sigma_0; 
  
N_xRk=n_xRk/t; 
n_xRd1=alpha_x*n_xRcr/gamma_M1; 
n_xRd2=(A_s*sigma_0)/gamma_M1; 
n_xRd=min(n_xRd1,n_xRd2); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   ECCS - Simplified 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
phi_eccs=1/(1+(A_s/s*t)); 
Qeccs=25; 
deltawkeccs=(1/Qeccs)*sqrt(r/tm)*tm; 



  
alpha_xeccs=0.62/(1+(1.91*(deltawkeccs/tm)^1.44)); 
  
n_xRcreccs=((pi^2*E*I_se)/(l^2*s))+phi_eccs*tm*alpha_xeccs*sigma_xRc; 
  
lambdaglobeccs=sqrt((tm*sigma_0)/n_xRcreccs); 
n_xRkeccs=lambdaglobeccs*tm*sigma_0; 
  
N_xRkeccs=n_xRkeccs/t; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fprintf('\nFor Excel Spreadsheet: Annex D\n') 
fprintf('Knockdown Factor: %.2f \n',Chi_x) 
fprintf('Critical elastic buckling stress for meridional loading: %.2f 
\n',sigma_xRc) 
fprintf('Characteristic buckling stress for meridional loading: %.2f 
\n',sigma_xRk) 
fprintf('Design buckling resistance for meridional loading: %.2f 
\n',sigma_xRd) 
fprintf('\nThe characteristic buckling stress for uniform external 
pressure:%.2f N/mm^2',sigma_thetaRk) 
fprintf('\nThe design buckling resistance for uniform external pressure:%.2f 
N/mm^2\n',sigma_thetaRd) 
  
  
fprintf('\nFor Excel Spreadsheet: Rigorous method') 
fprintf('\nThe partial safety factor: %.2f \n',gamma_M1) 
fprintf('Imperfection reduction factor: %.2f \n',alpha_n) 
fprintf('The critical buckling stress resultant for meridional loading: %.2f 
(N/mm)\n',n_xRcr) 
fprintf('The characterstic buckling stress resultant for meridional loading: 
%.2f (N/mm)\n',n_xRk) 
fprintf('The characterstic buckling stress for meridional loading: %.2f 
(N/mm^2)\n',N_xRk) 
fprintf('The design maximum meridional loading: %.2f (N/mm)\n',n_xRd) 
fprintf('\nThe critical buckling stress for uniform external pressure: %.2f 
(N/mm^2)\n',P_nRcru) 
fprintf('The design maximum external pressure: %.2f (N/mm^2)\n',P_nRd) 
  
fprintf('\nFor Excel Spreadsheet: ECCS Simplified Method') 
fprintf('\nThe ECCS characterstic buckling stress for meridional loading: 
%.2f (N/mm^2)\n',N_xRkeccs) 
% Excel 
filename1='output1.xlsx'; 
outA=[A1, A2, A3, A_r, A_s, C11, C12, C14, C22, C25, C33, C44, C45, C55, C66, 
C_phi, C_phitheta, C_theta, D_phi, D_phitheta, D_theta, E, G, I_rs, I_s, 
I_tr, I_ts, P_nRcru, P_nRcrumin, d_r, d_s, e_r, e_s, j, l1, l_i, n, n_wav, 
nu, omega, r, t]'; 
% xlswrite(filename1,outA) 
  
%fprintf('\nUnity Check 1: %.2f \n', UC1) 
%fprintf('\nUnity Check: %s \n',UC1check) 
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Ansys Element Types

The f ollowing elements were used i n the finite element analyses, the given i nformation i s 

taken from the Ansys Element Library (Ansys 13.0 Help System, SAS IP Inc., 2010), for 

further information readers are advised to consult this document.

BEAM188 Element Description

BEAM188 is suitable for analysing slender to moderately stubby/thick beam structures.

The element is based on Timoshenko beam theory which includes shear-deformation effects.

The element provides options for unrestrained warping and restrained warping of cross-

sections. The element is a linear, quadratic, or cubic two-node beam element in 3-D.

BEAM188 has six or seven degrees of freedom at each node. These include translations in

the x, y, and z directions and rotations about the x, y, and z directions. A seventh degree

of freedom (warping magnitude) is optional. This element is well-suited for linear, large

rotation, and/or large strain nonlinear applications. The element includes stress stiffness

terms, by default, in any analysis with large deflection. The provided stress-stiffness terms

enable the elements to analyse flexural, lateral, and torsional stability problems (using

eigenvalue buckling, or collapse studies with arc length methods or nonlinear stabilization).

Elasticity, plasticity, creep and other nonlinear material models are supported. A cross-

section associated with this element type can be a built-up section referencing more than

one material.

SURF156 Element Description

SURF156 may be used for applying line pressure loads on structures. It may be overlaid

onto the edge of any 3-D element. The element is applicable to 3-D structural analyses.

Various loads and surface effects may exist simultaneously.

Figure 1: SURF156 Geometry



SHELL181 Element Description

SHELL181 is suitable for analysing thin to moderately-thick shell structures. It is a four-

node element with six degrees of freedom at each node: translations in the x,y, and z

directions, and rotations about the x, y, and z-axes. (If the membrane option is used, the

element has translational degrees of freedom only). The degenerate triangular option should

only be used as filler elements in mesh generation. SHELL181 is well-suited for linear, large

rotation, and/or large strain nonlinear applications. Change in shell thickness is accounted

for in nonlinear analyses. In the element domain, both full and reduced integration schemes

are supported. SHELL181 accounts for follower (load stiffness) effects of distributed pres-

sures. SHELL181 may be used for layered applications for modelling composite shells or

sandwich construction. The accuracy in modelling composite shells is governed bythe first-

order shear-deformation theory (usually referred to as Mindlin-Reissner shell theory).The

element formulation is based on logarithmic strain and true stress measures. The element

kinematics allow for finite membrane strains (stretching). However, the curvature changes

within a time increment are assumed to be small.

Figure 2: SHELL181 Geometry
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Contents
Units

Model (E4)
Geometry

Surface Body
Coordinate Systems
Connections

Contacts
Mesh
Static Structural (E5)

Analysis Settings
Loads
Solution (E6)

Solution Information
Newton-Raphson Residual Force

Results
Force Reaction

Material Data
Structural Steel

Report Not Finalized
Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in 
error. View first state problem. To finalize this report, edit objects as needed and solve the analyses. 

Units
TABLE 1

Model (E4)

Unit System Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle Degrees

Rotational Velocity rad/s
Temperature Celsius

Geometry

TABLE 2
Model (E4) > Geometry

Object Name Geometry
State Fully Defined

Definition

Source C:\Masters\Thesis\Matlab\Verification of Code\2-1C\Non-Linear\Non-Linear
(Perfect)_files\dp0\SYS-2\DM\SYS-2.agdb

Type DesignModeler
Length Unit Millimeters

Element Control Program Controlled
Display Style Part Color

Bounding Box
Length X 1142.8 mm
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TABLE 3
Model (E4) > Geometry > Parts

Length Y 9910. mm
Length Z 1142.8 mm

Properties
Volume 6.9733e+007 mm³

Mass 547.4 kg
Surface Area(approx.) 3.5578e+007 mm²

Scale Factor Value 1.
Statistics

Bodies 1
Active Bodies 1

Nodes 41760
Elements 41640

Mesh Metric None
Preferences

Parameter Processing Yes
Personal Parameter Key DS

CAD Attribute Transfer Yes
CAD Attribute Prefixes SDFEA;DDM

Named Selection
Processing No

Material Properties
Transfer No

CAD Associativity Yes
Import Coordinate 

Systems No

Reader Save Part File No
Import Using Instances Yes

Do Smart Update Yes
Attach File Via Temp File Yes

Temporary Directory C:\Users\Eoin\AppData\Local\Temp
Analysis Type 3-D

Enclosure and Symmetry
Processing Yes

Object Name Surface Body
State Meshed

Graphics Properties
Visible Yes

Glow 0
Shininess 1

Transparency 1
Specularity 1

Definition
Suppressed No

Stiffness Behavior Flexible
Coordinate System Default Coordinate System

Reference Temperature By Environment
Thickness 1.96 mm

Thickness Mode Refresh on Update
Offset Type Middle(Membrane)

Material
Assignment Structural Steel

Nonlinear Effects Yes
Thermal Strain Effects Yes

Bounding Box
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Length X 1142.8 mm
Length Y 9910. mm
Length Z 1142.8 mm

Properties
Volume 6.9733e+007 mm³

Mass 547.4 kg
Centroid X -3.908e-004 mm
Centroid Y 4955. mm
Centroid Z 1.1803e-002 mm

Moment of Inertia Ip1 4.5639e+009 kg·mm²
Moment of Inertia Ip2 1.7774e+008 kg·mm²
Moment of Inertia Ip3 4.5639e+009 kg·mm²

Surface Area(approx.) 3.5578e+007 mm²
Statistics

Nodes 41760
Elements 41640

Mesh Metric None

Coordinate Systems

TABLE 4
Model (E4) > Coordinate Systems > Coordinate System

Object Name Global Coordinate System
State Fully Defined

Definition
Type Cartesian

Coordinate System ID 0.
Origin

Origin X 0. mm
Origin Y 0. mm
Origin Z 0. mm
Directional Vectors

X Axis Data [ 1. 0. 0. ]
Y Axis Data [ 0. 1. 0. ]
Z Axis Data [ 0. 0. 1. ]

Connections

TABLE 5
Model (E4) > Connections

TABLE 6
Model (E4) > Connections > Contacts

Object Name Connections
State Fully Defined

Auto Detection
Generate Automatic Connection On Refresh Yes

Transparency
Enabled Yes

Object Name Contacts
State Fully Defined

Definition
Connection Type Contact

Scope
Scoping Method Geometry Selection

Geometry All Bodies
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Auto Detection
Tolerance Type Slider

Tolerance Slider 0.
Tolerance Value 25.102 mm

Face/Face Yes
Face/Edge Yes
Edge/Edge Yes

Priority Include All
Group By Bodies

Search Across Bodies

Mesh

TABLE 7
Model (E4) > Mesh

Object Name Mesh
State Solved

Defaults
Physics Preference Mechanical

Relevance 0
Sizing

Use Advanced Size Function On: Curvature
Relevance Center Coarse

Initial Size Seed Active Assembly
Smoothing Medium

Span Angle Center Coarse
Curvature Normal Angle Default (30.0 °)

Min Size 10.0 mm
Max Face Size 30.0 mm

Growth Rate Default
Minimum Edge Length 80.170 mm

Inflation
Use Automatic Inflation None

Inflation Option Smooth Transition
Transition Ratio 0.272

Maximum Layers 2
Growth Rate 1.2

Inflation Algorithm Pre
View Advanced Options No

Advanced
Shape Checking Standard Mechanical

Element Midside Nodes Program Controlled
Number of Retries Default (4)

Extra Retries For Assembly Yes
Rigid Body Behavior Dimensionally Reduced

Mesh Morphing Disabled
Defeaturing

Use Sheet Thickness for Pinch No
Pinch Tolerance Default (9.0 mm)

Generate Pinch on Refresh No
Sheet Loop Removal No

Automatic Mesh Based Defeaturing On
Defeaturing Tolerance Default (7.50 mm)

Statistics
Nodes 41760

Elements 41640
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Static Structural (E5)
TABLE 8

Model (E4) > Analysis

TABLE 9
Model (E4) > Static Structural (E5) > Analysis Settings

Mesh Metric None

Object Name Static Structural (E5)
State Not Solved

Definition
Physics Type Structural
Analysis Type Static Structural
Solver Target Mechanical APDL

Options
Environment Temperature 22. °C

Generate Input Only No

Object Name Analysis Settings
State Fully Defined

Restart Analysis
Restart Type Program Controlled

Load Step 1
Substep 38

Time 0.76 s
Step Controls

Number Of Steps 1.
Current Step Number 1.

Step End Time 1. s
Auto Time Stepping On

Define By Substeps
Initial Substeps 50.

Minimum Substeps 50.
Maximum Substeps 50.

Solver Controls
Solver Type Program Controlled

Weak Springs Program Controlled
Large Deflection On

Inertia Relief Off
Restart Controls

Generate Restart Points Program Controlled
Retain Files After Full

Solve No

Nonlinear Controls
Force Convergence Program Controlled

Moment Convergence Program Controlled
Displacement
Convergence Program Controlled

Rotation Convergence Program Controlled
Line Search Program Controlled
Stabilization Off

Output Controls
Calculate Stress Yes
Calculate Strain Yes

Calculate Contact No
Calculate Results At All Time Points
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TABLE 10
Model (E4) > Static Structural (E5) > Loads

FIGURE 1
Model (E4) > Static Structural (E5) > Displacement

Cache Results in 
Memory (Beta) Never

Analysis Data Management

Solver Files Directory C:\Masters\Thesis\Matlab\Verification of Code\2-1C\Non-Linear\Non-Linear
(Perfect)_files\dp0\SYS-2\MECH\

Future Analysis None
Scratch Solver Files

Directory
Save MAPDL db No

Delete Unneeded Files Yes
Nonlinear Solution Yes

Solver Units Active System
Solver Unit System nmm

Object Name Displacement Simply Supported Displacement 2
State Fully Defined

Scope
Scoping Method Geometry Selection

Geometry 1 Edge
Definition

ID (Beta) 646 648 650
Type Displacement Simply Supported Displacement

Define By Components Components
Coordinate System Global Coordinate System Global Coordinate System

X Component 0. mm (ramped) Free
Y Component Free -15. mm (ramped)
Z Component 0. mm (ramped) Free

Suppressed No
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FIGURE 2
Model (E4) > Static Structural (E5) > Displacement 2

TABLE 11
Model (E4) > Static Structural (E5) > Command Snippet

Model (E4) > Static Structural (E5) > Commands (APDL)
NSEL,S,LOC,Y,-7.5,7.5
D,ALL,,0,,,,UX,UY,UZ,,,
CPINTF,UY,50

NSEL,S,LOC,Y,221.1,236.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50

NSEL,S,LOC,Y,449.7,464.7

Object Name Commands (APDL)
State Fully Defined

File
File Name
File Status File not found

Definition
Suppressed No

Target Mechanical APDL
Input Arguments

ARG1
ARG2
ARG3
ARG4
ARG5
ARG6
ARG7
ARG8
ARG9

Page 8 of 18Project

17/01/2013file:///C:/Users/Eoin/AppData/Roaming/Ansys/v130/Mechanical_Report/Mechanical_...



D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50

NSEL,S,LOC,Y,678.3,693.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50

NSEL,S,LOC,Y,906.9,921.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50

NSEL,S,LOC,Y,1135.5,1150.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,1364.1,1379.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,1592.7,1607.7
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,1821.3,1836.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,2049.9,2064.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,2278.5,2293.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,2507.1,2522.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,2735.7,2750.7
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,2964.3,2979.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,3192.9,3207.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,3421.5,3436.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,3650.1,3665.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,3878.7,3893.7
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,4107.3,4122.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,4335.9,4350.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,4564.5,4579.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,4793.1,4808.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,1

NSEL,S,LOC,Y,5021.7,5036.7
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D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,1

NSEL,S,LOC,Y,5250.3,5265.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,1

NSEL,S,LOC,Y,5478.9,5493.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,5707.5,5722.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,5936.1,5951.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,6164.7,6179.7
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,6393.3,6408.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,6621.9,6636.9
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,6850.5,6865.5
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,7079.1,7094.1
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,7307.7,7322.7
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,7536.3,7551.3
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,7764.90000000001,7779.90000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,7993.50000000001,8008.50000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,8222.10000000001,8237.10000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,8450.70000000001,8465.70000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,8679.30000000001,8694.30000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,8907.90000000001,8922.90000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,9136.50000000001,9151.50000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,9365.10000000001,9380.10000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
NSEL,S,LOC,Y,9593.70000000001,9608.70000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,50
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NSEL,S,LOC,Y,9822.30000000001,9837.30000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,10
NSEL,S,LOC,Y,9902.50000000001,9917.50000000001
D,ALL,,0,,,,UX,UZ,,,,
CPINTF,UY,10
NSEL,ALL

Solution (E6)

TABLE 12
Model (E4) > Static Structural (E5) > Solution

TABLE 13
Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information

FIGURE 3
Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information

FIGURE 4

Object Name Solution (E6)
State Solve Failed

Adaptive Mesh Refinement
Max Refinement Loops 1.

Refinement Depth 2.
Information

Status Solve Required, Restart Available

Object Name Solution Information
State Solve Failed

Solution Information
Solution Output Force Convergence

Newton-Raphson Residuals 1
Update Interval 2.5 s
Display Points All
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Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information

TABLE 14
Model (E4) > Static Structural (E5) > Solution (E6) > Solution Information > Results

TABLE 15
Model (E4) > Static Structural (E5) > Solution (E6) > Results

Object Name Newton-Raphson Residual Force
State Solved

Definition
Type Newton-Raphson Residual Force

Results
Minimum 1.1156e-030 N
Maximum 33338 N

Convergence
Criterion 1920. N

Value 4.036e+005 N
Information

Time 0.78 s
Load Step 1

Substep 39
Iteration Number 10

Object Name Total Deformation Directional Deformation
State Solved

Scope
Scoping Method Geometry Selection

Geometry All Bodies
Definition

Type Total Deformation Directional Deformation
By Time

Display Time 0.76 s
Calculate Time History Yes

Identifier
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FIGURE 5
Model (E4) > Static Structural (E5) > Solution (E6) > Total Deformation

TABLE 16
Model (E4) > Static Structural (E5) > Solution (E6) > Total Deformation

Orientation X Axis
Coordinate System Global Coordinate System

Results
Minimum 0. mm -0.40042 mm

Maximum 11.4 mm 0.40062 mm
Minimum Value Over Time

Minimum 0. mm -211.71 mm
Maximum 0. mm -5.904e-003 mm

Maximum Value Over Time
Minimum 0.3 mm 5.9053e-003 mm

Maximum 446.43 mm 291.71 mm
Information

Time 0.76 s
Load Step 1

Substep 38
Iteration Number 48

Time [s] Minimum [mm] Maximum [mm]
2.e-002 0.3
4.e-002 0.6
6.e-002 0.9
8.e-002 1.2

0.1 1.5
0.12 1.8
0.14 2.1
0.16 2.4
0.18 2.7
0.2 3.
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FIGURE 6
Model (E4) > Static Structural (E5) > Solution (E6) > Directional Deformation

0.22

0.

3.3
0.24 3.6
0.26 3.9
0.28 4.2
0.3 4.5

0.32 4.8
0.34 5.1
0.36 5.4
0.38 5.7
0.4 6.

0.42 6.3
0.44 6.6
0.46 6.9
0.48 7.2
0.5 7.5

0.52 7.8
0.54 8.1
0.56 8.4
0.58 8.7
0.6 9.

0.62 9.3
0.64 9.6
0.66 9.9
0.68 10.2
0.7 10.5

0.72 10.8
0.74 11.1
0.76 11.4

1. 446.43
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TABLE 17
Model (E4) > Static Structural (E5) > Solution (E6) > Directional Deformation

TABLE 18
Model (E4) > Static Structural (E5) > Solution (E6) > Probes

Time [s] Minimum [mm] Maximum [mm]
2.e-002 -5.904e-003 5.9053e-003
4.e-002 -1.1881e-002 1.1883e-002
6.e-002 -1.7883e-002 1.7887e-002
8.e-002 -2.3928e-002 2.3933e-002

0.1 -3.0016e-002 3.0022e-002
0.12 -3.6148e-002 3.6156e-002
0.14 -4.2326e-002 4.2336e-002
0.16 -4.8551e-002 4.8562e-002
0.18 -5.4823e-002 5.4836e-002
0.2 -6.1144e-002 6.1159e-002

0.22 -6.7516e-002 6.7532e-002
0.24 -7.3939e-002 7.3957e-002
0.26 -8.0416e-002 8.0435e-002
0.28 -8.6947e-002 8.6968e-002
0.3 -9.3534e-002 9.3557e-002

0.32 -0.10018 0.1002
0.34 -0.10688 0.10691
0.36 -0.11365 0.11368
0.38 -0.12048 0.12051
0.4 -0.12737 0.12741

0.42 -0.13434 0.13437
0.44 -0.14137 0.14141
0.46 -0.14847 0.14852
0.48 -0.15565 0.1557
0.5 -0.16291 0.16296

0.52 -0.17025 0.1703
0.54 -0.17768 0.17773
0.56 -0.18519 0.18524
0.58 -0.19279 0.19285
0.6 -0.20049 0.20055

0.62 -0.20829 0.20835
0.64 -0.21619 0.21626
0.66 -0.2242 0.22427
0.68 -0.23232 0.2324
0.7 -0.24056 0.24064

0.72 -0.24888 0.24897
0.74 -0.27482 0.27483
0.76 -0.40042 0.40062

1. -211.71 291.71

Object Name Force Reaction
State Solved

Definition
Type Force Reaction

Location Method Boundary Condition
Boundary Condition Simply Supported

Orientation Global Coordinate System
Options

Result Selection All
Display Time 0.76 s

Results
X Axis 0.23244 N

Page 15 of 18Project

17/01/2013file:///C:/Users/Eoin/AppData/Roaming/Ansys/v130/Mechanical_Report/Mechanical_...



FIGURE 7
Model (E4) > Static Structural (E5) > Solution (E6) > Force Reaction

Material Data

Y Axis 1.7692e+006 N
Z Axis 11.413 N

Total 1.7692e+006 N
Maximum Value Over Time

X Axis 0.23244 N
Y Axis 1.7692e+006 N
Z Axis 11.413 N

Total 1.7692e+006 N
Minimum Value Over Time

X Axis -5.1868e-002 N
Y Axis 0. N
Z Axis -8.8598e-002 N

Total 0. N
Information

Time 0.76 s
Load Step 1

Substep 38
Iteration Number 48

Structural Steel

TABLE 19
Structural Steel > Constants

Density 7.85e-006 kg mm^-3
Coefficient of Thermal Expansion 1.2e-005 C^-1

Specific Heat 4.34e+005 mJ kg^-1 C^-1
Thermal Conductivity 6.05e-002 W mm^-1 C^-1
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TABLE 20
Structural Steel > Compressive Ultimate Strength

TABLE 21
Structural Steel > Compressive Yield Strength

TABLE 22
Structural Steel > Tensile Yield Strength

TABLE 23
Structural Steel > Tensile Ultimate Strength

TABLE 24
Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

TABLE 25
Structural Steel > Alternating Stress Mean Stress

TABLE 26
Structural Steel > Strain-Life Parameters

TABLE 27
Structural Steel > Isotropic Elasticity

TABLE 28
Structural Steel > Isotropic Relative Permeability

Resistivity 1.7e-004 ohm mm

Compressive Ultimate Strength MPa
0

Compressive Yield Strength MPa
293.2

Tensile Yield Strength MPa
293.2

Tensile Ultimate Strength MPa
460

Reference Temperature C
22

Alternating Stress MPa Cycles Mean Stress MPa
3999 10 0
2827 20 0
1896 50 0
1413 100 0
1069 200 0
441 2000 0
262 10000 0
214 20000 0
138 1.e+005 0
114 2.e+005 0
86.2 1.e+006 0

Strength 
Coefficient MPa

Strength 
Exponent 

Ductility
Coefficient 

Ductility 
Exponent 

Cyclic Strength 
Coefficient MPa

Cyclic Strain 
Hardening Exponent

920 -0.106 0.213 -0.47 1000 0.2

Temperature C Young's Modulus MPa Poisson's Ratio Bulk Modulus MPa Shear Modulus MPa
2.16e+005 0.3 1.8e+005 83077

Relative Permeability
10000
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TABLE 29
Structural Steel > Bilinear Isotropic Hardening

Yield Strength MPa Tangent Modulus MPa Temperature C
293.2 145
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