
Ultimate Limit State Analysis of a
Segmented Tunnel Lining

- Results of full-scale tests compared to finite element analysis -

 

 

Arjan Luttikholt
Delft, July 4, 2007





Ultimate Limit State Analysis of a Segmented Tunnel Lining

- Results of full-scale tests compared to finite element analysis -

Arjan Luttikholt
Section Structural Engineering - Concrete Structures

Faculty of Civil Engineering and Geosciences
Delft University of Technology

Keywords:
Segmented tunnel lining, experiments, numerical simulations,

DIANA, full-scale test, ULS, failure load, beam model,
plane stress model, ring interaction

July 4, 2007





Preface

This research was carried out as a Master Thesis at the Section of Concrete Structures at
Delft University of Technology in cooperation with TNO Built Environment and Geosciences.
With this assignment I got a chance to work on a very interesting and unique project. It gave
me the opportunity to combine two subjects that I enjoyed most during my study, structural
engineering and concrete structures.

I would like to thank the members of my examination committee for sharing their knowledge
and for their help and support during the realization of this thesis. I address special thanks
to Joop den Uijl who was my supervisor and gave me the chance to work on such a fantas-
tic research project. He gave me advice and support throughout the process of writing this
master thesis. I also want to thank Adri Vervuurt who gave me the opportunity to carry out
this master thesis at TNO and for discussing varies problems and difficulties with me. Fur-
thermore I would like to tank all the employees from TNO for creating a pleasant atmosphere
to work in, especially Henco Burggraaf and Ton van Overbeek who made me familiar with
DIANA. Ane de Boer from the RWS Bouwdienst I would like to thank for given his review
and recommendations on improving the FE calculations. I also appreciate the interesting dis-
cussions with the members of the CUR/COB commission TC151 of which this research is part.

Delft, July 4, 2007
Arjan Luttikholt

Examination Committee:
Prof.dr.ir. J.C. Walraven, TU Delft - Section Structural Engineering - Concrete Structures
Ir. J.A. den Uijl, TU Delft - Section Structural Engineering - Concrete Structures
Dr.ir. A.H.J.M. Vervuurt, TNO Built Environment and Geosciences
Dr.ir. C.B.M. Blom, TU Delft - Section Structural Engineering - Concrete Structures
Ir. A. de Boer, Rijkswaterstaat Bouwdienst
Dr.ir. P.C.J. Hoogenboom, TU Delft - Section Structural Engineering - Structural Mechanics
Ir. L.J.M. Houben, TU Delft

Delft University of Technology
Faculty of Civil Engineering and Geosciences
Section Structural Engineering - Concrete Structures

i



ii



Summary

Due to the fact that the Netherlands is increasingly crowded and due to the continuing grow-
ing demand for mobility, a great interest is taken in underground construction. Because of
low hindrances during construction and lack of space in populated areas, shield driven tun-
nels are becoming more popular whereas its application in soft soils is relatively new. In the
early constructed tunnels measurements showed that stresses in the construction phase were
considerably higher than expected. Because of these measurements and unexpected damage
in constructed tunnels a full-scale test set-up was build at Delft University of Technology for
obtaining knowledge on the lining behaviour. The initial test program aimed at providing
data for the validation of FE models in the Serviceability Limit State and for investigating
the effect of some specific construction steps on the lining behaviour.

The most recent tests performed aimed at providing data regarding the tunnel behaviour
under ovalisation loads in the Ultimate Limit State. For determining the effectiveness of the
ring joints and the interaction between neighbouring rings two tests have been performed.
In the first experiment carried out a high axial force was applied contrarily to the second
experiment in which a low axial force was applied. The goal of this master thesis is to gain
understanding in the behaviour of the lining in the ULS load conditions. To achieve this,
this thesis starts with various theoretical concepts, validated with experimental results, for
describing segment joint rotations and describing shear and slip of the ring joints. Also dif-
ferent failure mechanisms are analysed regarding failure of the soil behind the lining as well
as failure of the lining itself.

For obtaining a clear view of the lining deformations during the two experiments and for un-
derstanding its behaviour especially at failure, the deformed shape of the lining is calculated
for every load step based on the measured joint rotations and the measured segment curva-
tures. Subsequently the deformations are split into the contributions of the joint rotations
and the segment curvatures. The calculated deformations show a very good agreement with
the deformations obtained with externally measured displacements in the linear branch of
loading. Discrepancies in the non-linear branch give an indication for the level of concrete
cracking in a certain ring.

It turned out that in the first experiment, in which a high axial force was applied, deforma-
tions in the top and bottom ring were mainly due to joint rotations and segment curvatures.
The joint rotations in the middle ring were significantly lower whereas a large share of de-
formations were caused by concrete cracking. Because of the high frictional capacity of the
ring joints, the segments in the middle ring were loaded additionally due to the bending
moments transferred from the neighbouring rings. The segments in the middle ring were
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therefore loaded until their bending moment capacity was reached at 36 kN/Jack. Failure
was initiated by cracking of the critical concrete segments in the middle ring and followed by
an ongoing rotation of segment joints in adjoining rings.

In the second experiment a weak axial interaction was present leading to a sudden increase in
the ovalisation measured at 22 kN/Jack. Failure of the lining was obtained by failure of the
segment joints that was observed in all three rings almost simultaneously. Before the critical
segments were loaded to their bending moment capacity the shear strength of the plywood
sheets was reached leading to slip of the ring joints, and subsequently, failure of the lining.

From numerical analyses of a single tunnel segment it became clear that due to a low rein-
forcement ratio the bending capacity of segments is affected strongly by the concrete tension
softening properties. Due to mesh dependency in bending and uncertain tension softening pa-
rameters, four different sets of material properties for modelling concrete fracture are adopted,
validated and later on implemented in the complete lining model.

For modelling the lining behaviour in the ULS a 1D FE model is developed. The model con-
tains three rings each composed of 7 segments and 1 key segment. The segments are modelled
with beam elements and interface elements representing the plywood sheets at the ring joints.
Both components are assigned with non-linear material properties. The segment joints are
modelled using a single beam element with rotational properties according to Janssen. To
validate numerical calculations a more sophisticated 2D plane stress model is developed in
which the joints and stresses are analysed in more detail. Comparing the deformations in
the segments and the rotations in the joints show that between both models a very good
agreement is found. The initiation and propagation of cracks seems to be more realistically
modelled by the 2D model. Because of the low computation time and the ability to analyse
the structural behaviour more easily, the 1D beam model is adopted for further simulating
and studying the lining behaviour.

Due to the detailed analyses of the lining and decompositioning of the deformations it was
possible to closely compare the numerical results with experimentally obtained data. Rota-
tions in the joints as well as strains measured on the concrete surfaces are found to match
almost exactly with FE results simulating the first experiment. By simulating the rotational
behaviour of the segment joints it is found that the used Janssen concept may be used, with
reduced initial stiffness according to earlier performed experiments. It is shown that there is
a substantial contribution of the tension softening branch to the load bearing capacity of the
lining.

The second experiment is characterized by a low axial force and by cracked segments at the
start of loading. To simulate this experiment the first experiment is simulated to obtain a
damaged lining after which the slip level of the interface elements is adjusted. By performing
several calculations it turned out that a slip level of 50 kN to 70 kN results in an acceptable
estimate of the load bearing capacity. The strains in the concrete segments and the rotations
in the joints again show a good agreement compared to the experimentally obtained data.
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Samenvatting

Door bevolkingsgroei en toenemende vraag naar mobiliteit in Nederland groeit de interesse
naar ondergrondse constructies. De beperkte hinder tijdens constructie en gebrek aan ruimte
in dicht bebouwde gebieden leidt tot het steeds aantrekkelijker worden van geboorde tun-
nels. Metingen in de eerste tunnels die op deze manier in Nederland zijn gebouwd lieten zien
dat spanningen tijdens de constructie aanzienlijk hoger waren dan oorspronkelijk gedacht.
Vanwege deze metingen en onverwachte schades in gebouwde tunnels is een proefopstelling
geplaatst bij de Technische Universiteit Delft waarin tunnelringen op ware grootte beproefd
konden worden. Het initile test programma was gericht op het vergaren van data voor het
valideren van EE modellen onder gebruiksbelastingen en om het effect van enkele specifieke
constructiestappen op het globale gedrag te onderzoeken.

Recent uitgevoerde experimenten waren gericht op het verkrijgen van inzicht in het construc-
tieve gedrag van de lining onder ovaliserende belastingen in de uiterste grenstoestand. Voor
het bepalen van de effectiviteit van de ringvoegen en de interactie tussen naastliggende rin-
gen zijn twee verschillende proeven uitgevoerd. In de eerste proef is een hoge axiale kracht
aangebracht in tegenstelling tot de tweede proef waarin een lage axiale kracht is aangebracht.
Het doel van dit rapport is het opdoen van kennis in het constructieve gedrag van de lining
in de uiterste grenstoestand. Om dit te bereiken wordt in dit rapport begonnen met een
beschrijving van het theoretische en experimentele gedrag van zowel langs- als ringvoegen.
Verschillende bezwijkmechanismen met betrekking tot het falen van de lining als ook het falen
van de achterliggende grond worden beschreven.

Voor het verkrijgen van een helder beeld van de vervormingen en voor het verduidelijken van
het gedrag van de lining gedurende de twee experimenten, vooral tijdens bezwijken, is de
vervormde toestand van de lining voor elke belastingsstap berekend. Deze berekeningen zijn
gebaseerd op de gemeten rotaties in de voegen en de gemeten krommingen in de segmenten.
De ovaliserende vervormingen zijn vervolgens opgedeeld in een aandeel voegrotaties en een
aandeel segmentkrommingen. De berekende vervormingen blijken goed overeen te komen met
extern gemeten ovalisaties in de lineaire tak van belasten. Afwijkingen in de niet-lineaire tak
geven een indicatie voor het niveau van scheurvormingen van de segmenten in een ring.

Tijdens het belasten van de eerst uitgevoerde proef, waarin een hoge axiale kracht aanwezig
was, bleek dat de vervormingen in de bovenste en onderste ring voornamelijk bestonden uit
rotaties in de voegen en krommingen in de segmenten. Voegrotaties in de middelste ring
waren significant lager en een aanzienlijk deel van de vervormingen werd veroorzaakt door
scheurvormingen in de segmenten. Door de hoge wrijvingscapaciteit van de ringvoegen was
het voor de segmenten in de middelste ring mogelijk om additionele buigende momenten,
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afkomstig uit naastliggende ringen, op te nemen. Deze segmenten konden daardoor belast
worden totdat de buigcapaciteit bereikt werd bij 36 kN/Jack. Bezwijken is daarbij genitieerd
door scheurvorming in de kritieke segmenten in de middelste ring en een doorgaande rotatie
van de voegen in naastliggende ringen.

In de tweede proef was een lage axiale interactie aanwezig waardoor een plotselinge toename
in verplaatsingen bij een belasting van 22 kN/Jack werd waargenomen. De triplex plaatjes
tussen de ringen waren niet in staat om de additionele buigende momenten in de langsvoegen
over te brengen naar naastliggende segmenten. Alvorens de kritieke segmenten tot hun buig-
capaciteit belast konden worden werd de schuifkracht in de ringvoegen bereikt en bezweek de
lining.

Uit numerieke analyses van een enkel tunnel segment werd het duidelijk dat vanwege een
laag wapeningspercentage de buigcapaciteit van de betonnen segmenten sterk afhankelijk is
van de eigenschappen van het beton onder trek. Als gevolg van de mesh afhankelijkheid en
als gevolg van de onbekende softening eigenschappen, zijn vier verschillende combinaties van
materiaal eigenschappen voor het modelleren van beton gebruikt en later gemplementeerd in
het complete tunnel model.

Om het gedrag van de lining beter te begrijpen is een 1D EE model ontwikkeld. Dit model
bestaat uit drie ringen elk opgebouwd uit 7 segmenten en 1 sluitsteen. De segmenten zijn
gemodelleerd met balk elementen en met interface elementen die de triplex plaatjes repre-
senteren, waarbij aan beide onderdelen niet-lineaire eigenschappen zijn toegekend. De seg-
mentvoegen zijn gemodelleerd door gebruik te maken van een enkel balk element welke de
rotatie eigenschappen volgens Janssen bezit. Om de numerieke berekeningen te valideren is
een meer geavanceerd 2D model ontwikkeld waarin de voegen en de spanningen gedetailleerd
geanalyseerd kunnen worden. De vervormingen in de segmenten en de rotaties in de voegen
blijken goed met elkaar overeen te komen. De ontwikkeling van scheurvorming lijkt beter
beschreven te worden door het 2D model. Vanwege de korte berekeningstijd en de interpre-
teerbaarheid van de resultaten is het 1D model gebruikt bij de verder uitgevoerde simulaties.

Door de gedetailleerde analyse van de lining en het scheiden van vervormingen in een aandeel
voegrotaties en een aandeel segmentkrommingen is het mogelijk om de numerieke resultaten
nauwkeurig te vergelijken met de experimenteel verkregen data. Rotaties in de voegen als ook
de rekken gemeten op de betonnen segmenten blijken goed overeen te komen met resultaten
van het EE model bij het simuleren van de eerste proef. Het is bewezen dat de Janssen relatie,
met gereduceerde initile stijfheid zoals gebleken uit eerder uitgevoerde proeven, gebruikt kan
worden. Ook is aangetoond dat de eigenschappen van beton onder trek een aanzienlijke bij-
drage leveren met betrekking tot de draagkracht van de totale lining.

De tweede proef wordt gekenmerkt door een relatief lage axiale belasting en het al gescheurd
zijn van enkele segmenten. Om deze proef met een EE model te simuleren moet eerst de
beschadigde lining worden verkregen door de eerste proef te simuleren waarna de schuif-
sterkte van het triplex wordt aangepast. Door vervolgens enkele berekeningen uit te voeren
waarin de schuifsterkte van het triplex wordt gevarieerd is de schuifsterkte geschat op 50 kN
tot 70 kN . Wederom komen de rekken in de betonnen segmenten net als de rotaties in de
voegen goed overeen met experimenteel gevonden waarden.

vi



vii



viii



Contents

I Literature Survey xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement and objective . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 General introduction to shield driven tunnels 5
2.1 Tunnel lining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Concrete segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Segment joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ring joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Forces in a segmented tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Ring action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Beam action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Structural design models . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Theoretical behaviour of segment joints . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Moment-rotation relation according to Janssen . . . . . . . . . . . . . 13
2.3.2 Moment-rotation relation according to Gladwell . . . . . . . . . . . . 14

2.4 Theoretical behaviour of ring joints . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Experimental research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Segment joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Ring joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Ultimate Limit State analysis 25
3.1 Failure mechanisms of lining due to ovalisation . . . . . . . . . . . . . . . . . 25
3.2 Snap through of a joint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Non-linearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II Analysis of Test Data 29

4 Description of tests and test set-up 31
4.1 Load on the lining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Conducted measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Earlier performed tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



5 Experimental results 37
5.1 Ovalisation deformation of lining . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Global observed lining behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1 Experiment C01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Experiment C02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Comparing experiment C01 and C02 . . . . . . . . . . . . . . . . . . 48

6 Critical Cross-Sections 51
6.1 Compression strains in experiment C01 . . . . . . . . . . . . . . . . . . . . . 51
6.2 Compression strains in experiment C02 . . . . . . . . . . . . . . . . . . . . . 54

III Numerical Analysis 55

7 Numerical analysis 57
7.1 Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Different element types for the modelling of a tunnel lining . . . . . . 57
7.1.2 Results of earlier constructed FE models of tunnel linings . . . . . . . 61

7.2 Single tunnel segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2.1 Bending moment-curvature relation of a tunnel segment . . . . . . . 62
7.2.2 Softening behaviour of concrete . . . . . . . . . . . . . . . . . . . . . 65

7.3 Simplified tunnel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Description of FE Models 75
8.1 1D FE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Geometry of FE Model . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.1.2 Material properties of FE Model . . . . . . . . . . . . . . . . . . . . . 78

8.2 2D FE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2.1 Geometry of FE Model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.2.2 Material properties of FE Model . . . . . . . . . . . . . . . . . . . . . 83

9 Results of FE calculations 85
9.1 Comparison between the 1D and 2D FE models . . . . . . . . . . . . . . . . . 85
9.2 Results of 1D FE analysis compared to experimental results of C01 . . . . . 89

9.2.1 External deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2.2 Compression strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2.3 Segment joint rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2.4 Additional capacity of segment joints . . . . . . . . . . . . . . . . . . 93
9.2.5 Cracking pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

10 Structural behaviour of the lining 97
10.1 Experiment C01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

10.1.1 Redistribution of bending moments . . . . . . . . . . . . . . . . . . . 97
10.1.2 Increase of normal force . . . . . . . . . . . . . . . . . . . . . . . . . . 100
10.1.3 Load bearing capacity of the lining . . . . . . . . . . . . . . . . . . . 102
10.1.4 Ring interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.2 Experiment C02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2.1 Redistribution of bending moments . . . . . . . . . . . . . . . . . . . 107

x



10.2.2 Ring interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11 Conclusions and recommendations 111
11.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115

IV Appendices 119

A Numbering and positioning of measurement devices 121

B Calculation deformations of lining 125

C Deformations of lining in experiment C01 129

D Deformations of lining in experiment C02 133

E Ovalisational deformation of lining 137

F FE results compared to experimentally obtained data 143

G Validating numerical analysis of a single tunnel segment 153

H Comparison of bending moments between experiment C01 and C02 157

I Data on CD 161

xi



xii



List of Symbols

E Young’s modulus [N/mm2]
Esteel Young’s modulus of reinforcement steel [N/mm2]
Fn Normal force in a segment [N ]
FShear Shear strength of plywood sheet [N ]
Gf Fracture energy [Nm/m2]
Novalisation Normal force due to non-uniform radial load [N ]
Sr;max Maximum crack spacing [mm]
W Crack width of concrete [mm]

b Width of a segment [mm]
c Concrete cover to the reinforcement [mm]
d Distance between LVDT’s located on a joint [mm]
dmax Maximum aggregate size [mm]
ft Tensile strength concrete [N/mm2]
h Height of the reduced joint thickness [mm]
hcr Crack bandwidth [mm]
k1 Coefficient which takes account of the

bond properties of the bonded reinforcement [−]
k2 Coefficient which takes account for the distribution of strain [−]
m Enlargement factor joint rotations [−]
t Segment thickness [mm]

β Shear retention factor [−]
εcr
u Ultimate crack strain [−]

φ Bar diameter [mm]
µ Friction coefficient [−]
ν Lateral contraction coefficient [−]
σy Yield stress of reinforcement steel [N/mm2]

xiii





Part I

Literature Survey

xv





Chapter 1

Introduction

1.1 Background

In 1994, the Dutch government established the Centre for Underground Buildings (COB)
to explore the possibilities for underground constructions in the Netherlands. One of the
structures with a high potential in crowded areas are segmented tunnels, but are difficult to
accomplish in soft soils. To gain knowledge on the behaviour of segmented tunnels, different
shield driven tunnels, which were experimental, were financed. The first tunnel constructed
this way was the Second Heinenoordtunnel in 1997. During the construction of this project a
lot of measurements were performed to provide information on how the tunnel was behaving
in Dutch soil. Analysis of the strain distribution during construction showed that stresses
were higher than expected. In the second tunnel constructed, the Botlek Railway Tunnel,
damages appeared which could not be explained very well.

For gaining better insight in the structural behaviour, the project organisation High Speed
Line and the management group Betuweroute decided to conduct a series of full-scale tests.
In 1999, a test set-up, consisting out of three rings of the Botlek Railway Tunnel, was built
in the Stevin laboratory at the Delft University of Technology. In this facility, research was
performed on the behaviour of the lining under construction and service loads. Obtained
data was analysed and compared to Finite Element Models which led to the improvement of
the prediction of lining behaviour. This knowledge resulted in better segment design and was
valuable for the design and construction of other tunnelling projects to come.

After a few years the facility was handed over to TNO Built Environment and Geosciences
and the TU Delft to extend the research. Tests followed in which basic load cases and the
effects of inaccurate placed segments were studied. Measurements were evaluated and de-
tailed analyses were made, numerical models were validated and more knowledge on concrete
linings was obtained.

At the same time plans for more shield driven tunnels were undertaken and construction of
those projects started. During the construction of projects like the Sophia Railway Tunnel,
Western Scheldt Tunnel, Green Heart Tunnel and the tunnel underneath the Pannerdensch
canal a lot of new experiences regarding the execution were gained from which many things
were learned.
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Ultimate Limit State Analysis of a Segmented Tunnel Lining

During earlier tests it became clear that the joints have a large influence on the global be-
haviour of the lining. Because these tests were performed in the Serviceability Limit State
no insight in the Ultimate Limit State was obtained. To get insight in the behaviour of the
lining during extreme loading, the experiments were extended with a series of tests in the
Ultimate Limit State. Two tests were performed in which the lining was loaded by different
axial loadings, both with a uniform radial load followed by a non-uniform radial load.

1.2 Problem statement and objective

Most experiments in the full-scale test facility at the TU Delft were performed in the Service-
ability Limit State. In order to assess the safety level of a concrete lining, and the ultimate
load capacity, tests have been performed in the Ultimate Limit State. An important aspect
in the behaviour of the lining is the interaction between the concrete segments. The question
is how neighbouring rings and segments interact. Depending on the degree of cooperation,
every separate ring carries the radial load on its own or exchanges forces to adjoining rings.
In the first case, segment joints will be governing. In the second case, the segments itself will
be governing for the ring behaviour. The goal of this master thesis is to gain understanding
in the behaviour of the concrete lining in the Ultimate Limit State. What is the influence
of the joints and how can this be modelled? What are the failure mechanisms and when do
they occur? To gain this knowledge, test results are analysed and a FE model is developed.
To achieve this, theoretical models for the segment joints and properties of packing materials
are studied. With the aid of the developed FE model and the available test results, the influ-
ence of the joints and the interaction between rings on the ultimate load capacity is further
analysed.

1.3 Outline

This thesis is divided into three sections. The first section elaborates on the literature avail-
able regarding tunnel design. The second section is an analysis of obtained test data. Finally,
in the third section, a FE model is described and results are analysed.

To get a good impression of the studied subjects a literature study is performed. Chapter 2
starts with the treatment of the global forces on a segmented lining followed by a short de-
scription of the composition of a lining. The behaviour of the segment- and the ring joints
is treated as well as the properties of the different packing materials. The various existing
theoretical models for the behaviour of the joints are described. Also the behaviour of the
joints and the packing materials during experiments is summarized. In chapter 3 some con-
siderations are given regarding failure mechanisms of the lining and failure mechanisms of the
surrounding soil.

The second section presents an analysis of the obtained test data. Chapter 4 starts with the
description of the test set-up and the performed measurements followed by a review regarding
earlier performed experiments. In chapter 5 the global observed lining behaviour is elucidated
and in chapter 6 the test data is analysed in more detail. This data is collected mainly during
two experiments focusing on the behaviour of the lining in the ULS. The behaviour and failure
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Literature Survey

of the concrete lining is analysed in detail at which most attention is paid to the behaviour
of the joints and their effect on the migration of forces to adjoining rings.

The third section elaborates on the FE calculations. After a general introduction to FE
analyses, the most important aspects regarding tunnel modelling are discussed, like mesh
dependency and the behaviour of a single tunnel segment in chapter 7. The geometrical as
well as the physical properties of a 1D beam model and a 2D plane stress model are described
in chapter 8, followed by a comparison of the results of both models in chapter 9. The FE
models are compared to experimentally obtained results after which the structural behaviour
of the tunnel is analysed in more detail in chapter 10.

Throughout the report, references to segments and joints are made. It is very difficult to
get a clear picture in mind of the different parts of the model due to the three dimensional
configuration of the lining. Therefore, it is not always instantly clear what is meant by certain
references. To be able to better understand this report, it is useful to make a scale model of
the lining before reading it. In appendix A an A4-paper is included from which a scale model
can be folded.

In appendix I the content of the enclosed CD is described. On this CD the Excel sheets
used to calculate the deformed shape of the lining, the experimentally collected data and the
DIANA data and command files are found.
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Chapter 2

General introduction to shield
driven tunnels

2.1 Tunnel lining

In a tunnel a lining is needed to withstand soil- and water pressures. Previously, most
tunnels in the Netherlands were constructed using the cut and cover or sink method. Due to
hindrance during construction of an immersed tunnel and lack of space in populated areas,
the shield driven method became more popular. These shield driven tunnels are segmented
because of the soil conditions and are constructed mainly from reinforced concrete segments.
The excavation of the ground and the placement of the segments is carried out by a Tunnel
Boring Machine [Bickel et al. 1996]. Between the segments in a ring the segment joints are
situated and between two rings ring joints are situated. In the succeeding paragraphs the
main parts of the lining and their functions are treaded.

2.1.1 Concrete segments

The elements are prefabricated within rather tight tolerances. The dimensions of a segment
are chosen to be as large as possible, resulting in a minimum number of segments per ring,
with the aim of optimising the speed at which the tunnel boring machine advances. Also the
available space for transport and placement of the segments, as well as the maximum possible
extension of the jacks, determine the dimensions of the segments.

The thickness of the concrete segments is determined by the global structural behaviour of
the lining and the magnitude and configuration of the applied jack forces coming from the
TBM. The concrete segments are positioned in stretched bond. In this configuration there is
no ongoing joint in axial direction. If a strong interaction between rings is present, bending
moments in segment joints are transferred to segments in adjacent rings. This way the rota-
tion of segment joints is limited. Definitions mostly used in tunnel engineering are represented
graphically in figure 2.1.

In case of the Botlek Railway Tunnel 8 segments per ring are used, subdivided in 5 normal
segments, 2 counter segments and 1 key segment. The key segment is placed last and prefer-
ably near the top of a ring. The key element is wedge shaped (tapered) and smaller which
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Bolt pocket 

Counter segment 

Key segment  

Handle hole 

Ring joint  

Segment joint  

Dowel 

Segment  

Figure 2.1: Lining defenitions

makes its placement easier. The front face of a complete ring is not parallel to its back face
to be able to construct a curved alignment. This is shown exaggerated in figure 2.2.

The concrete segments are prefabricated and lightly reinforced to withstand bending moments
and splitting forces. These forces not only occur in the SLS but also during transport and
placement. Additional reinforcement is put on places where jack forces are introduced, handle
and bolt holes are located and around dowels.

Figure 2.2: Alignment of the lining

During construction the axial force is not present all the time. Alternately some jacks have
to be withdrawn to create space for the placement of a new segment. This will result in a
local temporarily loss of axial pressure leading to poor connections between some segments.
To ensure the segment positions, bolts are applied in the joints. After having assembled a
few rings, the withdrawal of jacks at the boring front will have no effect on axial forces in
the behind laying rings. At that moment the bolts become unnecessary and are removed for
making sure that they do not affect the structural behaviour.
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2.1.2 Segment joints

The contact line between succeeding segments in a single ring is indicated as a segment joint.
In practice, two different types of segment joints are used. The plane joint and the convex
joint which are illustrated in figure 2.3. The main difference between the convex and plane
joint is the ability to transfer bending moments. When in case of a plane joint a rotation
occurs, a moment, induced by normal forces, will try to close the gap. This means that a
plane joint is able to transfer bending moments. The disadvantage is that when large rota-
tions occur, the exterior parts of two segments make contact. This point contact will lead to
damage and water tightness is not longer guaranteed. When large rotations are expected a
convex joint can be considered which possesses a curved contact area. Caused by its geometry
no moments will be transferred and the joint will act like a hinge.

Figure 2.3: Plane joint (left) and two convex joints (middle and right)

In Baumann (1992) the behaviour of a plane and convex joint is described roughly. The field
of application for both joints is formulated depending on allowable joint rotations and normal
forces present in the lining. Having large joint rotations and large normal forces a convex
joint is preferable, because the risk of spalling of the concrete is limited. Due to a wider com-
pression zone of the concrete when a plane joint is applied, this joint will be more preferable
having small joint rotations and small normal forces. Existing tunnels in the Netherlands are
carried out with plane joints and having a limited width of the contact area.

In case of a plane joint, contact between two segments in a ring is mostly established by
concrete-to-concrete surface contact without packing material. This contact area will have a
reduced thickness in comparison with the segmental thickness. Through this contact area the
normal force will be introduced concentrated into the next segment.

Water tightness is provided by rubber gaskets. These gaskets are situated at the exterior part
of the joint. When a large rotation occurs the gaskets will be pressed or unpressed, depending
on its direction of rotation. When the gasket is unpressed, water is able to leak through the
joint. When this water contains surrounding soil this can lead to a decrease of support by
the ground and may cause failure.

2.1.3 Ring joints

In between two adjacent rings a ring joint is situated. Contact between two rings is estab-
lished, in two to five contact areas per segment, by concrete-to-concrete contact or via packing
materials. To prevent large deformations, segments are also equipped with dowels and sock-
ets. Different configurations for dowels and sockets are available. Small, non constructive,
dowels and sockets can be applied to make placement of the segments easier. They are not
reinforced and do not prevent large deformations. Under normal load conditions there will
be no contact between the dowels and sockets. Between the concrete surfaces kaubit is used
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to avoid damage of the concrete which might attack its durability.

When the normal contact areas are not able to resist the shear forces, large deformations
will take place. To prevent failure of the lining, structural dowels and sockets are applied.
To be able to carry the loads the dowels are reinforced and their dimensions are larger. In
radial and tangential direction generally a margin between the dowel and socket is present. In
tangential direction this margin is relatively large which will result in no interaction between
rings in this direction. In radial direction the margin is smaller but only when deformations
become to large shear forces will be carried by the dowels and sockets. Again, in most cases,
kaubit is used as a packing material to avoid damage when the two surfaces make contact.

The main contact between two rings is established by concrete-to-concrete contact or by
packing materials. These contact areas are located at several areas along the edge of a
segment. Concrete-to-concrete contact can introduce local peak stresses due to an unsmooth
surface. To prevent this from happening a packing material is mostly applied. In practice,
plywood or kaubit is placed between the two concrete surfaces as can be seen in figure 2.4.
This packing material will introduce the axial, tangential and radial force into the next ring.
These contact areas are placed in line with the hydraulic jacks coming from the TBM in order
to get a good transition of axial jack forces to adjacent rings.

Figure 2.4: Tunnel segments with kaubit used as a packing material (left) and plywood used as a
packing material (right)

Plywood as a packing material When different deformations between the segments in
two adjoining rings occur a shear force will develop in the plywood. Via friction between
the concrete and the plywood, cooperation between two rings will be established. The shear
strength of this connection is dependent on the axial force present in the lining and the friction
coefficient between concrete and plywood. Unknown are the long term effects regarding
durability. More properties of plywood as a packing material in ring joints are described in
Gijsbers and Hordijk (1997).

Kaubit as a packing material A bituminous material can also be placed in between
two concrete segments. This material, with a very low stiffness, will deform extremely when
compressed. The material will be squeezed until a rest thickness of approximately 0,2 mm
remains. When increasing the normal forces, the kaubit will be squeezed more resulting in a
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larger contact area. Because the concrete surface is not perfectly smooth, and almost no rest
thickness of the kaubit is left, concrete-to-concrete contact can occur resulting in a dramatic
change of the friction coefficient which may affect ring interaction extremely.

2.2 Forces in a segmented tunnel

Forces in a tunnel are caused by loadings on the tunnel during construction and usage. During
construction a lot of parameters affect the load conditions. The TBM will disturb ground and
water pressures and will put a large axial force on the tunnel lining by its jacks to push itself
forward. Behind the cutting wheel, grout is injected to close the gap between concrete lining
and surrounding soil. The tunnel will float in this grout when it is liquid and it will support
the lining when it is hardened. All these factors determine the resulting force on the lining in
the construction stage and eventually it might also have its influence on forces during usage.
A compact description of primary forces on the lining is given below. An extended coverage
of forces on a lining is found in Frissen et al. (1997).

Acting forces on a tunnel lining can be subdivided in axial, radial and tangential direction.
The axial force is caused by the applied jack forces during construction. To move the TBM
forward, these forces have to be large enough to overcome the pressure at the boring front
and friction between the TBM and soil. Subsequently the hydraulic jacks introduce this force
onto the segments in the latest ring build. Depending on the configuration used, 2 to 4 jacks
per segment are applied. The concentrated axial forces are spread in the segments and via
ring joints these forces are once again introduced into adjoining rings. Stresses due to the
jack forces decrease in time, because of time dependent effects like creep and relaxation of the
concrete and packing materials. How this axial force develops in time is not exactly known
but is estimated to be eventually 80 percent of the initial applied force [Koek 2004].

When constructing a tunnel below the water table, a water pressure is present and only acts in
radial direction on the lining. A low water table results in a low uniform radial load resulting
in a relatively high ovalisation load on the lining and is therefore governing in design. Also
the possibility of floating has to be omitted. When not enough overburden is present it can
be a problem to fulfil equilibrium.

Soil around the tunnel can load or unload (support) the lining. Depending on the deformations
of the lining, active or passive ground forces act on the lining. Undisturbed soil conditions are
generally used to determine soil pressures. Differences in vertical and horizontal core pres-
sures will result in a non-uniform load around the circumference. There are different ways to
model the interaction between lining and surrounding grout. Discrete springs can be placed
around the lining or a soil continuum can be modelled. The resulting soil forces on the lining
can be subdivided into a radial and a tangential component.

The concrete segments are assembled inside the TBM. These segments are placed on the
inside part of the exterior steel shield of the TBM until a complete ring is formed. When
the TBM moves on, the segments are pushed out of the protected shell and will gradually
be exposed to the surrounding grout. Caused by differences in diameter of the steel shield
and concrete lining, a gap will form on the exterior part of the concrete lining behind the
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TBM. This tail void has a thickness of approximately 10 to 15 centimetres. To prevent soil
settlements this gap is injected with grout which has the same or a little bit higher pressure
than the surrounding soil. Because the force distribution along the circumference of the lining
is very important, the injecting of grout should be performed in such a way that no negative
effects on internal lining forces are introduced [Blom 2002]. In practice, this is hard to achieve
and even harder to measure. Mostly it is assumed that the grout pressure is symmetrically
hydrostatic around the lining. When injected properly, the grout increases the capacity of a
lining. When recently injected, the water cement mixture is still liquid and causes an uplift
force which can result in floating of the lining and might cause additional stresses in the
lining. From observations during the construction of the Second Heinenoordtunnel it was
proved that additional stresses were introduced caused by floating of the lining. The axial
normal pressure in segments situated at the top were larger compared to the pressures found
at the bottom [Vervuurt and Gijsbers 1999]. At greater distance from the TBM a decrease
of this pressure was observed. This indicates that the lining undergoes an upward force just
after injecting. Extended analysis of the effect of grouting on the lining can be found in Peters
and Zafari (2000).

2.2.1 Ring action

In foreign countries most attention is paid to the behaviour of a single ring during design.
Because of the stretched bond layout of segments, non-uniform displacements between two
rings occur, resulting in an interaction. In that case, two adjoining rings are modelled and
analysed. Because the load everywhere along the track is the same, the tunnel can be designed
based on this analysis.

2.2.2 Beam action

Varying and soft soil conditions in the Netherlands may lead to non-uniform settlements.
When tunnelling through this soil the lining is loaded differently in axial direction. Effects
of these settlements on the lining can only be analysed when multiple rings are modelled.
The analysis of these varying load conditions in axial direction is called the beam action of
a lining. Only limited research is performed on the effects of these settlements and how this
can be modelled [Blom 1995] [Van Empel 1998]. Effects like opening and shear of the ring
joints, force introduction into segments and the influence of dowels and sockets have to be
included. In Visschedijk (1998) three dimensional beam and shell models are implemented
in which the ring joints are included. With these numerical models the effects like bending
moments in axial direction and shear of adjoining rings can be analysed very well. Also the
opening of ring joints can be investigated.

A simplified method for determining the forces caused by non-uniform settlements is a beam
continuously supported by springs, figure 2.5. These models cannot simulate the opening of
ring joints but they can predict bending moments in the lining in axial direction. To get
reliable answers equivalent material properties, determined from more complex analysis, have
to be assigned to the beam.
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Figure 2.5: Deformation of lining (left) and simplified modelling of beam action (right)

2.2.3 Structural design models

Different methods are available for designing a tunnel. From practice, the need for analytical
models is still present to get insight in the effects of different parameters. The problems with
these models arise when incorporating soil-lining interaction. Various analytical models have
been developed in time. Distinctions can be made between embedded and continuum models,
figure 2.6.
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Figure 2.6: Embedded spring model (left) and continuum model (right)

In 1964, Schulze and Duddeck developed a spring supported ring model. In this embedded
model the lining-ground stiffness relation is incorporated, as well as the influence of the ra-
dius and the depth of the tunnel. The ground support is modelled with radial and tangential
discrete springs along the circumference of the lining. The ring itself is homogeneous using
the linear elastic shell theory. With the aid of some simple equations the radial and tangential
load on the lining is derived from the primary pressures in the undisturbed soil. Subsequently
the maximum normal forces and moments, due to ovalisation, can by found in a graph devel-
oped by Schulze and Duddeck. These graphs are based on analytical as well as empirical (to
incorporate for ground-lining interaction) calculations. Clay and peat are not in the field of
application, so it is questionable whether this method can be applied in Dutch soil conditions
[Postma 1997]. In the described model only one ring is taken into account without segment
joints. To incorporate these joints an equivalent bending stiffness for the lining is applied to
estimate deformations. For more accurate solutions the joints can also be modelled as hinges
or rotational springs, but solutions can only be found numerically. Additional contributions to
this model were done in succeeding years, like the contribution of geometrical non-linearities
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[Windels 1966]. Refinements eventually resulted in the final paper of Duddeck [Duddeck and
Erdmann 1982] in which a complete description of many design models is made. Blom (2002)
also developed an analytical multiple segmented ring model including ring interaction and
non-linear effects of segment joints.

To model the ground load on a tunnel lining more accurate, a continuum model may be used.
A two dimensional rectangular elastic solid is modelled in which a cavity is included. These
models give more information on forces in the surrounding soil. The stress distribution in the
elastic soil around the cavity, as result of a uniform radial displacement or stress, is described
by Mindlin (1940). Later on, solutions for compressible materials [Verruijt 1997] and ovali-
sation loads [Strack 2000] were found. Because these calculations are based on a predefined
deformation of the lining, no soil-lining interaction is present. Mentioned documents do not
incorporate the effects of boring and injection grout which will affect the soil and water pres-
sures around the lining.

Most models described above only consider one ring. A German contractor (Wayss and Fre-
itag) developed a double ring model in which adjacent segments are coupled by bars. When
segment joints have different circumferential locations in adjoining rings this Wayss and Fre-
itag model is more realistic. Disadvantage is that this has to be solved using numerical
analysis, but still a lot of insight is gained caused by the simplicity of the model.

Detailed solutions can be produced when making finite element calculations. Ground and
tunnel lining, segmented or continuous, can be modelled very precisely and interaction be-
tween soil and the segments can be analysed in detail. Also the non-linear behaviour of soil
and lining can be taken into account. These models can be two or three dimensional and
an advanced interaction between segments can be implemented. In these more sophisticated
analyses it might be more difficult to provide insight and they are time consuming to develop.

2.3 Theoretical behaviour of segment joints

As previously emphasized, the joints in between the segments determine for the greater part
the behaviour of the global lining. A good understanding of the joint behaviour leads to an
improved understanding of test results and a more realistic analytical and numerical mod-
elling. The behaviour of segment joints is significantly affected by the normal force present in
the joint, caused by an uniform radial pressure on the lining. When bending moments stay
low, there is a compression force on the entire cross-section of the joint. No gap will form and
the bending moment only leads to minor additional rotations depending on the joint height
and joint thickness. If the height of the joint is almost equal to the segmental thickness, no
additional curvatures, leading to a rotation, will occur. However, when the height of the joint
is very small compared to the segmental thickness and the joint thickness is relatively large,
the curvatures in the joint will be high leading to large rotations in this still linear branch.

Only when the pressure on the outer side of the contact area becomes zero, a gap will form
leading to major additional rotations. Theoretically, this transition is reached when the
bending moment M = σ ∗W , in which σ is the stress caused by the normal force and W the
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section modulus of the joint. After that point, a severe rotation in the joint develops. The
capacity of the joint will theoretically be M = 1/2hFn and is dependent on the height h of
the joint and the normal force Fn present in the joint. The results of a FE calculation are
shown in figure 2.7 in which the two different stages (linear and non-linear) can be recognised.
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As previously emphasized, the joints in between the segments determine for the greater part the behaviour 
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Figure 2.7: FE model of segment joint including stress distribution caused by a normal force (left)
and rotation versus bending moment of the joint (right)

In the past, different theoretical models were developed to describe the joint behaviour with
the aim of getting realistic analytical and numerical lining models. In the following paragraphs
the Janssen and Gladwell relations are elucidated.

2.3.1 Moment-rotation relation according to Janssen

A simple theoretical model for describing the moment-rotation behaviour of segment joints
was developed by Janssen (1983). In the derivation, linear elastic material properties and full
concrete-to-concrete surface contact in the joint is assumed. Restrainment of the reinforce-
ment and three dimensional effects are not accounted for.

Figure 2.8: Modelling of a segment joint by Janssen, reality (left) and Janssen model (right)

Janssen represents the joint by an equivalent concrete beam in between two segments. This
concrete element simulates rotations in the joint and additional curvatures in the two adjoining
segments caused by the concentrated force introduction into the segments. To simulate the
rotations the concrete beam is not able to take tension forces and has dimensions equal to the
joint height, like drawn in figure 2.8. In the first branch of loading only compression stresses
are present because of the normal force. In the equivalent ‘beam’ a curvature will develop
resulting in a rotation. No tension is present and the joint stays closed. This is the linear
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branch of the Janssen relation. In reality, when the joint is very thin, only a very minor
additional rotation will occur. Because of the hypothesis that the joint has a length equal to
the height of the joint, according to Janssen, a rotation will develop taken into account for
the spread of load in the region of the joint. Regarding this, the Janssen relation will be more
accurate when describing a thick joint. The linear moment-rotation relation is described by
equation 2.1.

linear :
{

φ =
Mh

EI
= 12

M

Eh2b

}
M < 1/6Fnh ⇒ φ <

2Fn

Ehb
(2.1)

non− linear :

φ =
8Fn

9bhE

(
2M

Fnh
− 1
)
 M ≥ 1/6Fnh ⇒ φ ≥ 2Fn

Ehb
(2.2)

It is obvious that the stiffness of the joint is only affected by the Young’s modulus of the
concrete and the contact height of the joint. By increasing the bending moment, the joint
will open and a non-linear relation will occur. This non-linear branch will start as soon as
the normal force stays no longer within the core of the contact area. The transition between
the linear and the non-linear branch occurs theoretically at M = 1/6Fnh.

After this moment a less stiff behaviour is reached. At the opening side of the joint the
contact stresses are zero and a gap will form. In this non-linear branch the influence of the
normal force is present. The non-linear branch of the Janssen relation is given by equation 2.2.

Rotations are prohibited by adjacent segments if a strong interaction in axial direction is
present. When the moment reaches M = 1/2Nh the maximum moment capacity of the joint
is reached which implies an eternal rotation. The Janssen relation is graphically represented
in figure 2.9 for realistic geometrical properties of the joint.

In his derivation, Janssen considered a linear relation between strains and stresses. This
constitutive relation is assumed to be bi-linear for concrete. Blom calculated the influence
of this plastic behaviour of the concrete on Janssen’s relation. For large rotations a reduced
moment capacity compared to the original Janssen relation is found. When a large normal
force is present, the maximum concrete strength is reached earlier, compared to the situation
with a low normal force, resulting in an earlier decrease of rotational stiffness. In figure 2.9 it
is clearly shown that this relation will not reach the theoretical maximum moment as derived
previously. It has to be underlined that this reduced horizontal plateau will not always be
reached and is dependent on the concrete strength, the normal force and the bending moment
present in the joint.

2.3.2 Moment-rotation relation according to Gladwell

Janssen considered a linear stress distribution in the joint. From elasticity theory it is known
that this is not correct. In reality, a non-linear stress distribution over the cross-section
develops, where at the edge of the contact area the stresses reach infinity. Based on elasticity
theory, Gladwell (1980) developed a relation between the moment and rotation between two
flat surfaces, figure 2.10.
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relation. In reality, when the joint is very thin, only a very minor additional rotation will occur. Because of 
the hypothesis that the joint has a length equal to the height of the joint, a large rotation will develop taken 
into account for the spread of load in the region of the joint. Regarding this, the Janssen relation will be 
more accurate when describing a thick joint. The linear moment-rotation relation is described by equation 
(2.1).  
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It is obvious that the stiffness of the joint is only influenced by the Young’s modulus of the concrete and 
the contact height of the joint. With increasing bending moments the joint will open and a non-linear 
relation will occur. This non-linear branch will start as soon as the normal force stays no longer within the 
core of the contact area. The transition between the linear and non-linear branch occurs at a theoretical 
moment described by equation (2.2).  
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This rotation will be prohibited by adjacent segments if a good interaction in axial direction is present. 
When the moment will reach NhM 2

1= the maximum moment capacity of the joint is reached which 
implies an eternal rotation. The Janssen relation is graphically represented in figure 2.5 for realistic 
geometrical properties of the joint.  
 
In this derivation, Janssen considered a linear relation between strains and stresses. This constitutive 
relation is assumed to be bi-linear for concrete. Blom calculated the influence of this plastic behaviour of 
the concrete on Janssen’s relation, see the derivation in Annex B. For large rotations a reduced moment 
capacity compared to the original Janssen relation is found. When a large normal force is present the 
maximum concrete strength is reached earlier, compared to the situation with a low normal force, resulting 
in an earlier decrease of rotational stiffness.  In figure 2.5 it is clearly shown that this relation will not reach 
the theoretical maximum moment as derived previously. It has to be underlined that this reduced horizontal 
plateau will not always be reached and is dependent on the concrete strength and the normal force present 
in the joint.  
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 Figure2.5:  Moment-Rotation relation according to Janssen, Blom and Gladwell 
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Figure 2.9: Moment-rotation relation according to Janssen, Blom and Gladwell
(Normal force=1.700 kN , contact height joint=170 mm)
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2.3.2 Gladwell  
Janssen considered a linear stress distribution in the joint. From elasticity theory it is known that this is not 
correct. In reality, a non-linear stress distribution will develop where at the edge of the contact area the 
stresses will reach infinity. Based on elasticity theory, Gladwell [Gladwell (1980)] developed a relation 
between the moment and rotation between two flat surfaces, figure2.6.  
 Figure 2.6:  Flat punch pressed unsymmetrical into a half plane  
 
Contact stresses concentrate on the edges of the joint. This results in a more stiff rotational behaviour 
compared to a linear stress distribution as can be seen in figure 2.5. Just like Janssen, a linear and a non-
linear branch can be distinguished in the moment-rotation diagram. The initial Gladwell stiffness is heigher 
and the joint stays closed longer compared to Janssen. The linear relation is given in equation (2.4) and the 
non-linear relation is given in equation (2.5). The Gladwell relation in the non-linear branch approaches the 
asymptotical bending moment more quickly than the Janssen relation as can be seen from figure 2.5. For 
larger rotations the two relations approach each other and will finally reach the same asymptotical bending 
moment.  
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In Vliet (2006) 2D FE calculations of joints loaded by a bending moment are presented. In the FE model 
the material properties are linear elastic and plane section remain plane (Bernoulli). These analyses resulted 
in moment-rotation diagrams and were compared to the Janssen and Gladwell relations. The Janssen 
relation showed a lower stiffness. It turned out that the Gladwell relation is a very good approximation to 
the FE solution, but still there are some discrepancies. The discrepancies are caused by the influence of the 
reduced contact thickness in relation to the segmental thickness and are mostly influenced in the linear 
branch.  
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Figure 2.10: Flat punch pressed unsymmetrical into a half plane [Gladwell 1980]

Contact stresses concentrate on the edges of the joint. This results in a more stiff rotational
behaviour compared to a linear stress distribution as can be seen in figure 2.9. Just like
Janssen, a linear and a non-linear branch can be distinguished in the moment-rotation di-
agram. The initial Gladwell stiffness is higher and the joint stays closed longer compared
to Janssen. The linear relation is given in equation 2.3 and the non-linear relation is given
in equation 2.4. The Gladwell relation in the non-linear branch approaches the asymptoti-
cal bending moment more quickly than the Janssen relation as can be seen from figure 2.9.
For larger rotations the two relations approach each other and will finally reach the same
asymptotical bending moment.
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In Van Der Vliet (2006), 2D FE calculations of joints loaded by a normal force and a bending
moment are presented. In the FE model the material properties are linear elastic and plane
sections remain plane (Bernoulli). These analyses resulted in moment-rotation diagrams and
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were compared to the Janssen and Gladwell relations. It turned out that the Gladwell relation
is a very good approximation to the FE solution, but still there are some discrepancies. The
Janssen relation showed a lower stiffness. The discrepancies are caused by the influence of
the reduced contact thickness in relation to the segmental thickness and are mostly affected
in the linear branch.
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2.3.2 Gladwell  
Janssen considered a linear stress distribution in the joint. From elasticity theory it is known that this is not 
correct. In reality, a non-linear stress distribution will develop where at the edge of the contact area the 
stresses will reach infinity. Based on elasticity theory, Gladwell [Gladwell (1980)] developed a relation 
between the moment and rotation between two flat surfaces, figure2.6.  
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Contact stresses concentrate on the edges of the joint. This results in a more stiff rotational behaviour 
compared to a linear stress distribution as can be seen in figure 2.5. Just like Janssen, a linear and a non-
linear branch can be distinguished in the moment-rotation diagram. The initial Gladwell stiffness is heigher 
and the joint stays closed longer compared to Janssen. The linear relation is given in equation (2.4) and the 
non-linear relation is given in equation (2.5). The Gladwell relation in the non-linear branch approaches the 
asymptotical bending moment more quickly than the Janssen relation as can be seen from figure 2.5. For 
larger rotations the two relations approach each other and will finally reach the same asymptotical bending 
moment.  
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In Vliet (2006) 2D FE calculations of joints loaded by a bending moment are presented. In the FE model 
the material properties are linear elastic and plane section remain plane (Bernoulli). These analyses resulted 
in moment-rotation diagrams and were compared to the Janssen and Gladwell relations. The Janssen 
relation showed a lower stiffness. It turned out that the Gladwell relation is a very good approximation to 
the FE solution, but still there are some discrepancies. The discrepancies are caused by the influence of the 
reduced contact thickness in relation to the segmental thickness and are mostly influenced in the linear 
branch.  

 Figure 2.7:  FEM  Solutions compared to Janssen and Gladwell for 4.0
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Figure 2.11: FEM Solutions compared to Janssen and Gladwell for α = 170
170 = 1 (left) and for

α = 170
400 = 0, 4 (right)

In the FE calculations the influence of the reduced contact height is included via a factor α.
The relation between the contact thickness and the segmental thickness is α = contact thickness

segmental thickness .
For several values of α, FE analyses were carried out of which the results of two of them are
shown in figure 2.11 . When the segmental thickness is far greater than the contact thickness,
the parameter approaches zero. In this theoretical case the Gladwell relation approximates
the FE solution. When the segmental thickness is equal to the contact thickness, no rotations
are found in case of low bending moments. This is obvious because practically no joint is
present and no additional rotations occur when only compression stresses are present. When
the joint starts to open, the relation will closely follow the Gladwell relation and will finally
approach the same maximum bending moment.

The right graph in figure 2.11 is drawn for the geometrical properties of a joint present in the
Botlek Railway Tunnel. For this situation the Gladwell relation shows a very good approxi-
mation of the FE solution and can be used for the modelling of a tunnel lining. It has to be
emphasized that these curves are obtained only using analytical models and FE analysis and
are not based on experimental results.

When rotations increase, the segments rotate more and more around the edge of the contact
area. Increasing rotations even further will cause plastic behaviour and eventually this will
lead to cracking of the concrete at this spot. Rotations can increase until the joint reaches
a rotation of approximately 0,045 rad [Vervuurt 2006]. These analyses are carried out with
geometrical properties of the Botlek Railway Tunnel. At that point the outer parts of the
segments will touch resulting in strengthening. From there on the forces are mainly carried
by the edges of the concrete segments. In figure 2.12 the extreme rotations of two segments
and their effect on the moment-rotation relation is shown.

16



Literature Survey

 13

In the FE calculations this influence is included. The relation between the contact thickness and the 
segmental thickness is

 thicknesssegmental
icknesscontact th

=α . For several values ofα FE analysis were carried out of which 

the results of two of them are shown in figure 2.7. When the segmental thickness is far greater than the 
contact thickness, the α parameter approaches zero. In this theoretical case the Gladwell relation 
approximates the FE solution. When the segmental thickness is equal to the contact thickness, no rotations 
are found in case of low bending moments. This is obvious because practically no joint is present and no 
additional rotation occurs when only compression stresses occur. When the joint starts to open the relation 
will closely follow the Gladwell relation and will finally approach the same maximum bending moment.  
 
The right graph in figure 2.7 is drawn for the geometrical properties of a joint in the Botlek Railway 
Tunnel. For this situation the Gladwell relation shows a very good approximation for the FE solution and 
can be used for the modelling of a tunnel lining. When in another case α has a higher value it is sensible to 
reconsider this choice.  
 
When rotations increase the segments will rotate more and more around the edge of the contact area. 
Increasing rotations even further will cause plastic behaviour of the concrete and eventually this will lead to 
cracking of the concrete at this spot. Rotations can increase until the joint reaches a rotation of 
approximately 0,045 rad [Vervuurt (2006)]. These analyses are carried out with geometrical properties of 
the Botlek Railway Tunnel. At this point the outer parts of the segments will touch resulting in 
strengthening. From now on the forces will mainly be carried by the edges of the concrete segments. In 
figure 2.8 the extreme rotation of two segments and its effects on the moment-rotation relation is shown.  

 

 
In previously described relations, the non-linear branches are dependent on the normal force. Because of 
the ovalisation of the lining the normal force will have different values along the circumference of the 
lining. In the conducted experiments, the normal forces vary between 964 kN and 1072 kN when an 
ovalisational loading of 36 kN/m1 is applied per ring, possessing a width of 1.500 mm. This is the 
maximum applied ovalisational loading the lining is exposed to in the conducted experiments. The 
influence of these varying normal forces on the rotation according to Janssen and Gladwell is presented in 
figure 2.9. The discrepancies in bending moments are maximum 10 percent. However, when the bending 
moment is known and a rotation has to be found, the discrepancies are very severe depending on the stage 
of non linearity. Incorporating the effect of variable normal forces along the lining has to be considered in 
relation to the accuracy of a Janssen or Gladwell relation.  
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Figure 2.12: Extreme joint rotation resulting in touching of the outer edges of the segment (left)
and bending moment-rotation relation (right)

In previously described relations, the non-linear branches are dependent on the normal force.
Because of the ovalisation of the lining the normal force will have different values along the
circumference of the lining. In the conducted experiments, the normal forces vary between
964 kN and 1.072 kN when an ovalisational load of 36 kN/m1 is applied per ring, possessing a
width of 1.500 mm. This is the maximum applied ovalisation load which the lining is exposed
to in the conducted experiments. The influence of these varying normal forces on the rotation
according to Janssen and Gladwell is presented in figure 2.13. The bending moments reach
a 10% discrepancy. However, when the bending moment is known and a rotation has to be
found, the discrepancies are very severe depending on the stage of non-linearity. Incorporating
the effect of variable normal forces along the lining has to be considered in relation to the
accuracy of a Janssen or Gladwell relation.
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 Figure 2.9:  Janssen and Gladwell relation for different values of the normal force 
   (joint height=170mm)  

2.4 Theoretical behaviour of ring joints  
A ring joint is located in between segments of two adjoining rings. In this joint rotations and translations 
can occur. The rotations in this joint can be described by theories described in the previous paragraph. 
Between the two concrete surfaces a packing material can be applied. When no packing material is applied 
a concrete-to-concrete contact is present. This can result in high peak stresses because of an unsmooth 
surface. The friction in this joint will develop a shear force counteraction the radial and tangential 
deformations. Implicitly this also gives a resistance against rotations in this plane. The shear depends on the 
smoothness of the concrete area ( )µ , the normal force in the joint ( )nF and the area ( )A which makes contact. 
When a packing material is applied in between the two concrete surfaces, there will be two planes in which 
shear deformations between materials can occur. Depending on the packing material applied, a shear 
deformation inside the material can occur.  

Figure 2.13: Janssen and Gladwell relation for different values of the normal force
(joint height=170 mm)

2.4 Theoretical behaviour of ring joints

A ring joint is located in between segments of two adjoining rings. In this joint, rotations and
translations can occur. Between the two concrete surfaces a packing material may be applied.
When no packing material is applied a concrete-to-concrete contact is present. This can result
in high peak stresses because of an unsmooth surface. The friction in this joint, established
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by concrete-to-concrete contact, will develop a ‘shear’ force counteracting mutual radial and
tangential deformations. Implicitly this also gives a resistance against rotations in this plane.
The shear force depends on the smoothness of the concrete area, the normal force in the joint
and the area which makes contact. When a packing material is applied, in between the two
concrete surfaces, there will be two planes in which shear deformations between materials can
occur. Friction between the concrete and the plywood will develop a ‘shear’ force between
two rings counteraction mutual deformations. Depending on the packing material applied, a
shear deformation inside the packing material can also occur.

2.5 Experimental research

Joints between segments are loaded by normal forces, shear forces and bending moments.
The properties of the packing materials in between the segments will have a large influence
on the global behaviour of a tunnel ring. Various experiments have been carried out to
analyse the behaviour of these joints under different load conditions. These experiments could
validate existing analytical and numerical models and are valuable for numerical modelling
of a complete lining.

2.5.1 Segment joints

In Hordijk and Gijsbers (1996), experiments on segment joints without packing materials are
described. Two tunnel segments were loaded by increasing bending moments, under vari-
ous normal forces. The influence of bolts on the rotation capacity of joints is also studied.
Because a bolt is positioned only on one side of the segment, experiments were performed
on two rotational directions. This resulted in a total of four test specimens, one specimen
for testing, one without a bolt, one with a bolt in positive bending and one with a bolt in
negative bending. The used segments had a segmental thickness of 350 mm and a segmen-
tal width of 500 mm which is a third of the width used in the full-scale tunnel test. The
contact height of the joint is 158 mm, which results in a contact area of 158 x 500 mm2.
Elongations were measured in four points, two on every side of the segment, over a length of
50 mm, 600 mm and 1200 mm. A schematic overview of the test set-up is given in figure 2.14.

When raising the normal force to the desired level the measurements resulted in normal force-
deformation diagrams. After reaching a constant deformation the rotation test could start.
For the calculation of the rotations, the measurements directly over the joint, 50 mm are
used. The differences in measured rotations between 50, 600 and 1200 mm were very small so
the 50 mm data is a good representation of real occurring rotations in the joint. The normal
forces lay in a ranch varying between 0,2 kN/mm and 4,4 kN/mm. In the Botlek Railway
Tunnel an average normal force of 1,5 kN/mm is present [Vervuurt 2003] and in the full-scale
test a normal force of 0,7 kN/mm is present [Vervuurt and Den Uijl 2006]. These experiments
are thus representative and obtained moment-rotation diagrams are treated below.

Looking at the moment-rotation diagrams a linear and a non-linear branch is recognized just
like Janssen and Gladwell predicted. According to the theory the initial stiffness is indepen-
dent from the normal force. In the experiments the initial stiffness seems to be dependent
from the normal force. The initial rotation stiffness shows a steeper slope with increasing
normal forces, figure 2.15. This can be explained by the fact that the concrete contact areas
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are not smooth enough to guarantee ideal contact in the joint. With an increasing normal
force the contact area increases. In the treated theoretical models a full contact is supposed.
Because this is not feasible in practice, the initial stiffness will always be lower than the
theoretically derived stiffness. For low normal forces the discrepancies between the experi-
mental stiffnesses and theoretical stiffnesses are very large. In these areas the theoretically
derived initial stiffness according to Janssen or Gladwell cannot be used. For a normal force
in the ranch varying between 2 kN/mm and 3 kN/mm the Janssen relation shows a good
approximation to the found initial stiffness in the test results.

Figure 2.14: Schematic overview of test set-up
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2.5 Experimental research   
Joints between segments are loaded by normal forces, shear forces and bending moments. The properties of 
the packing materials in between the segments will have a large influence on the global behaviour of a 
tunnel ring. Various experiments have been carried out to analyse the behaviour of these joints under 
different loadings. These experiments could validate existing analytical and numerical models and are 
valuable for numerical modelling of the joints.  

2.5.1 Segment joints  
In Hordijk/Gijsbers (1996), experiments on segment joints without packing materials are described. Two 
tunnel segments were loaded by bending moments, under various normal forces. The influence of a bolt is 
also studied. Because a bolt is positioned only on one side of the segment, experiments were performed on 
two rotational directions. This resulted in a total of four test specimens, one specimen for testing, one 
without a bolt, one with a bolt in positive bending and one with a bolt in negative bending. The used 
segments had a segmental thickness of 350 mm and a segmental width of 500 mm which is a third of the 
width used in the full scale tunnel test. The contact height of the joint was 158 mm, which results in a 
contact area of 158 x 500 mm2. Elongations were measured in four points, two on every side of the 
segment, over a length of 50 mm, 600 mm and 1200 mm. When raising the normal force to the desired 
level these measurements resulted in normal force-deformation diagrams. After a constant deformation was 
reached the rotation test could start. For the calculation of the rotations, the measurements directly over the 
joint, 50 mm are used. The differences in measured rotations between 50, 600 and 1200 mm were very 
small so the 50 mm data is a good representation of real occurring rotations in the joint. The normal forces 
lie in a ranch from 0,2 kN/mm to 4,4 kN/mm. In the Botlek Railway Tunnel an average normal force of 2,2 
kN/mm is present [Vervuurt (2003)] and in the full scale test a normal force of 0,7 kN/mm is present 
[Vervuurt (2006)]. These experiments resulted in moment-rotation diagrams which be treated below.  
 
In the moment-rotation diagrams a linear and a non-linear branch can be recognized just like Janssen 
predicted. The initial rotation stiffness shows a steeper slope with increasing normal forces, figure 2.10. 
This can be explained by the fact that the concrete contact areas are not smooth enough to guarantee ideal 
contact in the joint. With an increasing normal force the contact area will increase. In the treated theoretical 
models a full contact is supposed. Because this is not feasible in practice, the initial stiffness will always be 
lower than theoretically derived stiffness. For low normal forces the discrepancies between test stiffness 
and theoretical stiffness are very large. In these areas a Janssen or Gladwell relation cannot be used. For a 
normal force in the ranch of 2 to 3 kN/mm the Janssen relation shows a good approximation of the found 
initial stiffness of the test results.  
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 Figure 2.10:  Initial rotational stiffness depending on the normal force    
   [Hordijk/Gijsbers  (1996)]  

Figure 2.15: Initial rotational stiffness depending on the normal force [Hordijk and Gijsbers 1996]

Hordijk and Gijsbers (1996) concluded that for large rotations the results are in accordance
with Janssen which means that Janssen may be used for modelling the joint behaviour. When
having a closer look at the results, figure 2.16, Janssen shows a too weak behaviour, especially
for rotations below 0,002 rad the moments are not described very well. Only for the highest
normal force Janssen shows a good overall relation but it is questionable what the influences
of discrepancies in rotational behaviour, for low normal forces, are in practice. The experi-
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mental results are also compared to theoretical models derived from Gladwell in figure 2.16.
Gladwell predicts larger bending moments than the test results show and the initial stiffness
is for all normal forces too high. From these tests it seems that Janssen predicts rotational
behaviour more accurate than Gladwell.
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 Figure 2.11:  Test results [Hordijk/Gijsbers (1996)] compared to Janssen 
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 Figure 2.12:  Test results [Hordijk/Gijsbers (1996)] compared to Gladwell 
 
[Hordijk/Gijsbers (1996) concludes that for large rotations the results are in accordance with Janssen which 
means that Janssen may be used for modelling the joint behaviour. When having a closer look at the results, 
figure 2.11, Janssen shows a too weak behaviour, especially for rotations below 0,002 the moments are not 
described very well. Only for the highest normal force Janssen shows a good overall relation. It is 
questionable what the influences of large discrepancies in rotational behaviour for low normal forces are in 
practice. The results for larger rotations are also compared to theoretical models derived from Gladwell in 
figure 2.12. Gladwell predicts larger bending moments than the test results show and the initial stiffness is 
for all normal forces too high.  
 
According to Hordijk/Gijsbers (1996), the initial rotational stiffness was hardly influenced by the presence 
of the bolts. The ultimate moment of joints with a bolt is higher than joints without a bolt. This increase of 
maximum moment is in the order of 20 kNm/m and decreases with an increasing normal force. From this 
can be concluded that the influence of bolts is of minor importance on the rotations.  
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[Hordijk/Gijsbers (1996) concludes that for large rotations the results are in accordance with Janssen which 
means that Janssen may be used for modelling the joint behaviour. When having a closer look at the results, 
figure 2.11, Janssen shows a too weak behaviour, especially for rotations below 0,002 the moments are not 
described very well. Only for the highest normal force Janssen shows a good overall relation. It is 
questionable what the influences of large discrepancies in rotational behaviour for low normal forces are in 
practice. The results for larger rotations are also compared to theoretical models derived from Gladwell in 
figure 2.12. Gladwell predicts larger bending moments than the test results show and the initial stiffness is 
for all normal forces too high.  
 
According to Hordijk/Gijsbers (1996), the initial rotational stiffness was hardly influenced by the presence 
of the bolts. The ultimate moment of joints with a bolt is higher than joints without a bolt. This increase of 
maximum moment is in the order of 20 kNm/m and decreases with an increasing normal force. From this 
can be concluded that the influence of bolts is of minor importance on the rotations.  

Figure 2.16: Test results [Hordijk and Gijsbers 1996] compared to Janssen (left) and compared to
Gladwell (right)

According to Hordijk and Gijsbers (1996), the initial rotational stiffness was hardly affected
by the presence of bolts. The ultimate bending moment of joints with a bolt is higher than
joints without a bolt. This increase in maximum bending moment capacity is in the order
of 20 kNm/m and decreases with an increasing normal force. From these tests it can be
concluded that the influence of bolts is of minor importance on the rotations.

2.5.2 Ring joints

The ring joints exist of contact surfaces between the elements and of dowels and sockets, from
which the latter one is not making contact. The shear behaviour of the contact surfaces is of
major importance for the migration of bending moments to adjacent rings. When the bend-
ing moment capacity of a segment joint is reached, additional moments can be transferred to
adjacent segments resulting in a higher load bearing capacity of the overall lining.

Experimental research on the shear stiffness between rings is described in Gijsbers and Hordijk
(1997). Both kaubit as well as plywood as a packing material is tested. Also the failure of
the dowels is tested. The shear behaviour of the contact areas was only investigated in the
radial direction.

The specimen on which the shear behaviour of the shear connection is tested consists out of
3 unreinforced concrete blocks with two joints on both sides of the middle block (obtained
‘shear’ forces therefore have to be divided by two). In this joint kaubit or plywood with a
thickness of 2 mm and dimensions 150 x 150 mm2, is used as a packing material in between
the concrete surfaces. The middle block is pushed out under a normal force and deformations
are measured. The experiment was performed deformation controlled. Results of performed
tests are described in the next paragraphs and a schematic overview of the test set-up is given
in figure 2.17.
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Figure 2.17: Schematic overview of test set-up

Kaubit as a packing material

A normal force was applied and increased to a maximum of 135 kN , 270 kN or 405 kN in
30 minutes. This value was kept constant in the coming two hours and displacements were
measured every 10 minutes. Subsequently the shear tests were performed. In the first 30
minutes the thickness of the kaubit decreased and was squeezed out of the joint. This contin-
ued during the next two hours until no ongoing deformation was measured and a remaining
thickness of 0,2 - 0,3 mm was left. After these 2,5 hours the shear test started. The applied
normal force was of little influence on the maximum shear force which could be transferred.
The speed in which the displacement is applied is of influence on the maximum shear force
which can be transferred. These experiments resulted in different friction coefficients for dif-
ferent deformation velocities. The lower the deformation velocity is, the lower the friction
coefficient. For very low velocities the friction coefficient is negligible. In figure 2.18 the re-
sults of a deformation controlled experiment with a deformation velocity of 0,1 mm/minute
and a normal force of 270 kN is presented. From the graph it can be concluded that kaubit
practically cannot transfer shear forces.

Caused by the decreasing thickness of the kaubit sheets, the underlying concrete surfaces are
making contact. This means that in a joint these areas co-operate in transferring forces. How
much the concrete will co-operate is dependent on how the contact between the concrete sur-
faces is established, how smooth the concrete surface is and on the magnitude of the applied
normal force. For those areas in which the concrete makes contact, a friction coefficient of 0,4
to 0,5 can be applied and a much higher shear force can be transferred to the neighbouring
segment.
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2.5.2 Ring joints  
The ring joints exist of contact surfaces between the elements and dowels and sockets. The shear behaviour 
of the contact surfaces is of mayor importance for the migration of bending moments to adjacent rings. 
When the moment capacity of a segment joint is reached, additional moments can be transferred to adjacent 
segments resulting in a higher loading capacity of the overall lining.  
 
Experimental research on the shear stiffness between rings is described in [Gijsbers (1997)]. Both kaubit as 
well as plywood as a packing material is tested. Also the failure of the dowels is tested. The shear 
behaviour of the contact areas and dowels was only investigated in the radial direction.  
 
The specimen on which the shear behaviour of the shear connection is tested consists out of 3 unreinforced 
concrete blocks with two ring joints on both sides of the middle block. In this joint kaubit or plywood with 
a thickness of 2 mm and dimensions 150 x 150mm, is used as a packing material in between the concrete 
surfaces. The middle block will be pushed out under a normal force and deformations will be measured. 
The experiment was deformation controlled. Results of performed test are described below.  

2.5.2.1 Kaubit as a packing material  
A normal force was applied and increased to a maximum of 135 kN, 270 kN or 405 kN in 30 minutes. This 
value was kept constant in the coming two hours and displacements were measured every 10 minutes. 
Subsequently the shear tests were performed. In the first 30 minutes the thickness of the kaubit decreased 
and was squeezed out of the joint. This continued during the next two hours till no ongoing deformation 
was measured and a remaining thickness of 0,2 – 0,3 mm was left. After this 2,5 hours the shear test 
started. The applied normal force was of little influence on the maximum shear force which could be 
transferred. The speed in which the displacement is applied is of influence on the maximum shear force 
which can be transferred. These experiments resulted in different friction coefficients for different 
deformation velocities. The lower the deformation velocity is, the lower the friction coefficient. For very 
low velocities the friction coefficient is negligible. In figure 2.13 the result of a deformation controlled 
experiment with a deformation velocity of 0,1mm/minute and a normal force of 270 kN is presented. From 
the graph it can be concluded that kaubit practically cannot transfer shear forces.  
 
Because of the decreasing thickness of the kaubit plates, the underlying concrete surfaces will make 
contact. This means that in a joint these areas will co-operate in transferring forces. How much the concrete 
will co-operate is dependent on how the contact between the concrete surfaces is established, how smooth 
the concrete surface is and on the magnitude of the applied normal force. For those areas in which the 
concrete will make contact a friction coefficient of 0,4 to 0,5 can be applied and a much higher shear force 
can be transferred to next segment.  
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 Figure 2.13: Force-Deformation diagram kaubit experiment [Gijsbers/Hordijk (1997)]  
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2.5.2.2 Plywood as a packing material  
A total of 3 specimens were tested in which plywood was used between the concrete cubes. A normal force 
was gradually increased to a maximum of 780kN and kept constant during another thirty minutes. Every 10 
minutes deformations were measured and after an hour a total axial deformation of 0,8 to 1,0 mm was 
measured in test 1, 2 and 3. After an hour the shear test started. The tests resulted in friction coefficients. 
These friction coefficients were dependent on the normal forces and the applied displacements. These tests 
are short term and no information is available on the behaviour of plywood in long term situations. Half of 
the thickness of the packing material will remain which implies that the concrete edges of the segments will 
not make contact as it did when using kaubit. Result is that normal- and shear forces will still be introduced 
into the next segments concentrated. The concrete edges of the segments will not make contact so no peak 
stresses or damage can occur.  
 
The tests were deformation controlled using a constant deformation velocity of 0,1 mm/minute. The results 
of these tests are shown in figure 2.14. The three specimens were each loaded with different normal forces. 
The top values were all reached before a deformation of 0,5 mm was applied. When gradually increasing 
the deformation after this top value, the shear force will decrease and eventually reach 75 percent of its top 
value. At that point a deformation of 4 mm is reached. Gijsbers/Hordijk concludes that the shearing in the 
joint will take place in one of the two contact surfaces. No shearing deformation took place in the plywood 
itself. Friction coefficients were calculated at the top value of the shear force and at a deformation of 4 mm. 
The friction coefficient turns out to be dependent on the normal force and the applied deformation and lies 
in the ranch of 0,30 to 0,53 for a deformation of 4 mm. These values can be found in table 2.1. Friction 
coefficients found during the experiment are comparable with friction coefficients found for smooth 
concrete surfaces shearing against each other without packing materials.  
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 Figure 2.14:  Force-Deformation diagram plywood experiment for three different values of  
   the normal force [Gijsbers/Hordijk (1997)]  
 

Normal Force 
[kN] Maximum At 4 mm Maximum At 4 mm 
260 362 275 0,70 0,53
520 531 418 0,51 0,40
780 644 462 0,41 0,30

Horizontal Force Friction coefficient 

 
 

 Table 2.1:  Results of shearing plywood experiment [Gijsbers/Hordijk (1997)]  
 

Figure 2.18: Force-deformation diagram for kaubit (left) and for plywood (right, with different values
of the normal force) [Gijsbers and Hordijk 1997]

Plywood as a packing material

A total of 3 specimens were tested in which plywood was used between the concrete cubes. A
normal force was gradually increased to a maximum of 260 kN , 520 kN or 780 kN and kept
constant during another thirty minutes. Every 10 minutes deformations were measured and
after one hour a total axial deformation of 0,8 to 1,0 mm was measured in test 1, 2 and 3.
After one hour the shear test started. The tests resulted in friction coefficients. These friction
coefficients were dependent on the normal forces and the applied displacements. These tests
are short term and no information is available on the behaviour of plywood in long term
situations. Half of the thickness of the packing material will remain which implies that the
concrete edges of the segments will not make contact as it did when using kaubit. Result is
that normal- and shear forces are still introduced into the next segments concentrated. The
concrete surfaces of the segments are not making contact so no peak stresses or damages occur.

Normal Force Horizontal Shear Force Friction Coefficient
[kN] Maximum At 4 mm Maximum At 4 mm
260 362 275 0,70 0,53
520 531 418 0,51 0,40
780 644 462 0,41 0,30

Table 2.1: Results of ring joints loaded by shear forces [Gijsbers and Hordijk 1997]

The tests were deformation controlled using a constant deformation velocity of 0,1 mm/minute.
The results of these tests are shown in figure 2.18. The three specimens were each loaded
with different normal forces. The top values of the shear force were all reached before a
deformation of 0,5 mm was applied. When gradually increasing the deformation beyond this
top value, the shear force will decrease and eventually reach 75% of its top value. At that
point a deformation of 4 mm is reached. Gijsbers and Hordijk (1997) concluded that shear
in the joint takes place in one of the two contact surfaces. No notable shear deformation
took place in the plywood itself. Friction coefficients were calculated at the top value of the
shear force and at a deformation of 4 mm. The friction coefficient turns out to be dependent
on the normal force and the applied deformation and lies in the ranch of 0,30 and 0,53 for
a deformation of 4 mm. These values can be found in table 2.1. Friction coefficients found
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during the experiment are comparable with friction coefficients found for smooth concrete
surfaces shearing against each other without packing materials.

A deformation of approximately 0,3 mm results in the largest shear force. When gradually
increasing the deformation, the shear force will decrease and eventually reach 75% of its top
value. At that point a deformation of 4 mm is reached. This behaviour can be described
by a bi-linear relation shown in figure 2.19. The initial stiffness is mostly given a value of
106N/mm and the strength is determined with equation 2.5. F − shear is the horizontal
branch in the bi-linear relation and is dependent on the normal force, Fn, present in the joint.

FShear = 4F 1/3
n (2.5)
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Figure 2.19: Experimentally obtained shear forces compared to bi-linear relations in which shear
strength is determined by formula 2.5

Dowels in ring joints

Dowels and sockets were also tested. These elements are not installed for transferring forces
under normal load conditions. Only when deformations become large, and the plywood is
not able to carry the shear force anymore, the dowels and sockets make contact and become
active in transferring forces. One dowel laying in a socket is loaded by a deformation until
failure occurred. After a deformation of 5 mm forces began to grow which is the moment that
the dowel touches the outside of the recess in which the dowel is resting. At that moment
the stiffness increases enormously until failure occurred. When the segments are not placed
exactly in one line, the mutual deformations between the dowel and the socket before making
contact may obviously deviate. The dowel had a circular shape with a diameter of 70 mm.
This relatively small dowel measured a failure capacity of 140 kN at a deformation of 2 mm.
The strength of the joint is determined by the strength of the recess in which the dowel is
placed. No damage was found on the dowel after dismantling of the test specimen. The value
at which failure occurs is heavily influenced by the tensile strength of the applied concrete
[Gijsbers and Hordijk 1997].
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Chapter 3

Ultimate Limit State analysis

Structural analyses and experiments performed in the past were mostly focused on the Ser-
viceability Limit State. In this paragraph theoretical ideas about the behaviour and failure
mechanisms of a lining in the Ultimate Limit State are described.

A tunnel can fail because of different mechanisms. In this section failure and failure mech-
anisms due to uniform radial and ovalisation radial loading, caused by soil, water or grout
pressures, are discussed. In general the soil behind the lining or the lining itself can fail.
Bakker (2000) describes the failure of a tunnel with regard to the soil behind the lining,
whereas Blom (2002) discusses failure and corresponding failure mechanisms of the lining
itself.

3.1 Failure mechanisms of lining due to ovalisation

When a horizontal ovalisation of the tunnel lining occurs, the soil at the left and right side of
the tunnel is compressed. Due to this compression a lateral stress increase will be observed,
which tends to diminish the difference between the vertical and horizontal soil stresses. A
flexible lining in stiff soil will deform by the soil stresses in such a way that the lining stresses
are mainly due to hoop compression. Bending moments in the lining would vanish and the
only mode of failure left would be compressive failure of the lining [Bakker 2000]. Problem
is that additional bending moments can be introduced due to large deformation effects. The
increase of these second order bending moments due to geometric effects might exceed the
decrease due to diminishing stress differences in the surrounding soil. Bakker (2000) investi-
gated the second order bending moments and concluded that for small deformations of the
lining bending moments would decrease and for larger deformations bending moments would
increase. For Dutch soil conditions, and realistic lining parameters, Bakker (2000) concluded
that bending moments decrease. This means that in case of horizontal ovalisation the ground
has a positive influence on the ultimate load bearing capacity of the lining.

Blom (2002) also described the behaviour of a lining in the ground subject to ovalisation
loads. When increasing the load, bending moments in the lining increase until somewhere in
the lining the bending moment capacity of a segment or a cross-section is reached. The active
load can still increase without an excessive increase in deformations of the lining. More plastic
hinges will develop and deformations grow. Blom (2002), just like Bakker (2000), emphasizes
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that the increasing loads are fully compensated by the soil and that the ring stays stable.
The ULS will thus not be determined by the bending capacity but by the normal capacity of
a segment.

3.2 Snap through of a joint

In the lining both normal forces and bending moments are present, which is comparable to
an eccentrically loaded column. This means that local instability like buckling can occur.
When the deformations become relatively large and the ring itself is not able to resist the
normal force anymore, segments can snap through which means failure of the lining. Blom
describes this snap through mechanism for a single ring partially supported by soil, figure
3.1. A geometrical and physical non-linear calculation is set up in which a segmented ring
is loaded by an uniform radial load and an increasing ovalisation radial load. The lining is
partially supported by springs at the sides of the ring. Increasing the ovalisation radial load
results in increasing bending moments until a plastic hinge develops in the bottom of the
lining. The ring stays stable when further increasing the load until two more plastic hinges
develop at the same time at the top of the ring. In between those two plastic hinges there is
a segment joint which will snap through. Blom calculated that the increase of the load from
the first plastic hinge to the snap through is a factor three. This mechanism is calculated to
happen when the top of the ring undergoes a displacement of 650 mm.
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2.6 Ultimate Limit state analysis  
Structural analysis and experiments performed in the past were mostly focused on the Serviceability Limit 
State. In this paragraph theoretical ideas about the behaviour and failure mechanisms of a lining in the 
Ultimate Limit State are described.  
 
A tunnel can fail because of different mechanisms. In this section failure and failure mechanisms due to 
uniform radial and ovalisational radial loading, caused by soil, water or grout pressures, will be discussed. 
In general the soil behind the lining or the lining itself can fail. Bakker (2006) describes the failure of a 
tunnel with regard to the soil behind the lining and the lining itself.  
 
When a horizontal ovalisation of the tunnel lining occurs, the soil at the left and right side of the tunnel will 
be compressed. Due to this compression a lateral stress increase will be observed, which tends to diminish 
the difference between the vertical and horizontal soil stresses. A flexible lining in stiff soil will deform by 
the soil stresses in such a way that the lining stresses are mainly due to hoop compression. Bending 
moments in the lining would vanish and the only mode of failure left would be compressive failure of the 
lining [Bakker (2000)]. Problem is that additional bending moments can be introduced due to large 
deformation effects. The increase of these second order bending moments due to geometric effects might 
exceed the decrease due to diminishing stress differences in the surrounding soil. Bakker (2000) 
investigated the second order bending moments and concluded that for small deformations of the lining 
bending moments would decrease and for larger deformations bending moments would increase. For Dutch 
soil conditions, and realistic lining parameters, Bakker (2000) concluded that bending moments decrease. 
This means that in case of horizontal ovalisation the ground has a positive influence on the ultimate load 
capacity of the lining.  
 
Blom also describes the loading of a lining in the ground by ovalisation loading [Blom (2002)]. When 
increasing the loading bending moments in the lining will increase until somewhere in the lining the 
bending moment capacity of a segment is reached. The active loading can still increase without an 
excessive increase of the deformation of the lining. More plastic hinges will develop and deformations 
grow. Blom (2002), just like Bakker (2000), emphasizes that the increasing loadings are fully compensated 
by the soil and that the ring stays stable. The ULS will thus not be determined by the bending capacity but 
by the normal capacity of a segment.  

 

 
In the lining both normal forces and bending moments are present, which is comparable to an eccentrically 
loaded column. This means that local instability like buckling can occur. When the deformations become 
relatively large and the ring itself is not able to resist the normal force anymore a segments can snap 
through which means failure of the lining. Blom describes this snap through mechanism for a single ring 
partially supported by soil, figure 2.16. A geometrical and physical non-linear calculation is set up in which 
a segmented ring is loaded by a uniform radial loading and an increasing ovalisation radial loading. The 

Figure 2.16: Model of lining loaded by ovalisation loading (top) and failure mechanism (bottom)  Figure 3.1: Model of lining loaded by ovalisation load (left) and failure mechanism (right)

In the full-scale tunnel set-up at Delft University of Technology the forces on the lining caused
by the soil are simulated using hydraulic jacks. These jacks apply an uniform radial force and
an ovalisation radial force on the tunnel lining. The ovalisation radial force increases load at
the top and bottom of the lining and decreases load at both sides of the lining. As described
above, the soil positively reacts on this force and supports the lining. In the test facility the
influence of the ground is not present which leads to no resistance against the ovalisation
radial load. This is Bloms case described above, in which the spring stiffness is set to zero.
When no ground is present a different failure mechanism develops. Because segment joints
have a low resistance against bending, plastic hinges can be expected here.

When the moment capacity of a segment or segment joint is reached an increase in rotations
is observed in the single ring model, which results in large deformations. In reality, as well as
in the full-scale test, the radial movement of the lining of a single ring interacts with adjoining
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rings. Large deformations are limited by the migration of forces to adjoining rings.

When large deformations occur the water tightness of the lining is not ensured. Because of
shear of adjoining rings the gaskets begin to open and water can flow to the inside of the
tunnel. This water contains soil leading to a reduced support of the lining at that spot and
may cause failure. These deformations are prescribed in the SLS but because of serious safety
concerns it can be an ULS condition.

In building practice and in linear analysis the existence of one plastic hinge is considered to
be the maximum capacity of the tunnel lining. When doing non-linear analysis the loading
can still increase without collapse. Increasing the load even further results in more plastic
hinges until instability of the lining occurs. Blom proved that a high plastic reserve is present
in a lining.

3.3 Non-linearities

In Vollema (1996), the influences of geometrical non-linearities are analysed. This research
concluded that the influence of geometrical non-linearities do not have to be taken into ac-
count. However, the load in this research was based on the SLS in which deformations are
relatively small. When performing ULS analyses the influence of geometrical non-linearities
have to be investigated. Because of high normal forces present in the concrete, a small defor-
mation can cause significant bending moments. In Blom (2002), a comparison for a single ring
between linear and non-linear behaviour, physical and geometrical, for joints and segments is
performed. When the ring is fully embedded in the soil, modelled by springs, there will be
no failure. Only the rate of increase in deformations in the various analysis is different, figure
3.2(right). Increasing ovalisation loads is compensated by soil reactions just like described in
the previous paragraph. Failure is not initialized by reaching the ultimate bending capacity
but by reaching the normal capacity.

     20 

lining is partially supported by springs at the sides of the ring. Increasing the ovalisation radial loading 
results in increasing bending moments until a plastic hinge develops in the bottom of the lining. The ring 
stays stable when further increasing the load till two more plastic hinges develop at the same time at the top 
of the ring. In between those two plastic hinges there is a segment joint which will snap through. Blom 
calculated that the increase of the loading from the first plastic hinge to the snap through is a factor three. 
This mechanism is calculated to happen when the top of the ring undergoes a displacement of 650 mm.  
 
In the full scale tunnel set up at the Delft University of Technology the forces on the lining caused by the 
soil are simulated using hydraulic jacks. These jacks apply a uniform radial force and an ovalisation radial 
force on the tunnel lining. The ovalisation radial force increases load at the top and bottom of the lining and 
decreases load at both sides of the lining. As described above the soil will positively react on this force and 
support the lining. In the test facility the influence of the ground is not present which will lead to no 
resistance against the ovalisation radial loading. This is Bloms case in which the spring stiffness is set to 
zero. When no ground is present a different failure mechanism will develop. Because segment joints have a 
low resistance against bending, plastic hinges can be expected here.    
 
When the moment capacity of a segment or segment joint is reached an increases in rotations is observed in 
the single ring model, which results in large deformations. In reality, as well as in the full scale test, the 
radial movement of the lining of a single ring interacts with adjoining rings. Large deformations will be 
limited by the migration of forces to adjoining rings.  
 
When large deformations occur the water tightness of the lining is not ensured. Because of shearing of 
adjoining rings the gaskets will begin to open and water can flow to the inside of the tunnel. This water will 
contain soil which leads to a reduced support of the lining at that spot and causes failure. These 
deformations are prescribed in the SLS but because of this it can be an ULS condition.  
 
In building practice and in linear analysis the existence of one plastic hinge is considered to be the 
maximum capacity of the tunnel lining. When doing non-linear analysis the loading can still increase 
without collapse. Increasing the loading further will result in more plastic hinges till instability of the lining 
occurs. Blom proved that a high plastic reserve is present in a lining.  

2.6.1 Geometric non-linearity’s  
In [Vollema (1996)] the influences of geometrical non-linearity’s are analysed. This research concluded 
that the influence of geometrical non-linearity’s do not have to be taken into account. However, the loading 
in this research was based on the Serviceability Limit State in which deformations will be relatively small. 
When performing Ultimate Limit State analyses the influence of geometrical non-linearity’s have to be 
investigated. Because of high normal forces present in the concrete, a small deformation can cause 
significant bending moments. In [Blom (2002)] a comparison for a single ring between linear and non-
linear behaviour, physical and geometrical, for joints and segments is made. When the ring is fully 
embedded in the soil, modelled by springs, there will be no failure. Only the slope of the different analysis 
is different, figure 2.17. Increasing ovalisation loading is compensated by soil reactions just like described 
in the previous paragraph. Failure will not be initialized by reaching the ultimate bending capacity but the 
normal capacity.  

 
Figure 2.17:  Ovalisation loading as function of the radial deformation for lining without soil (left) and 
  lining with soil (right)  Figure 3.2: Ovalisation load plotted as a function of the radial deformation for lining without soil

(left) and lining with soil (right), deformation curves plotted for different conditions of
the segments and joints (Linear or Non-Linear)

In the ULS, failure is defined as the situation where deformations increase to infinity so a large
influence of non-linear behaviour is expected. A tunnel deforming is resisted by surrounding
soil. In the full-scale test facility no soil, which can have a positive influence on deformations,
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is present. This means a large influence of non-linearities. Blom made a comparison between
different material analyses for a lining without the support of soil, figure 3.2 (left). Neglecting
the non-linear behaviour of the segment joints overestimates the capacity of the ring with more
than a factor two. If a geometrical and physical linear calculation is made, but the plastic
moment of the segment joints is involved, the maximum loading found is equal to the full non-
linear analysis. Including only non-linear joint stiffnesses gives a good approximation of the
ultimate load capacity. The discrepancies between predicted and ‘real’ occurring deformations
increase when the load approximates the ultimate load bearing capacity of the lining.
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Chapter 4

Description of tests and test set-up

The full-scale test set-up consists of segments from the Botlek Railway Tunnel and was situ-
ated at the Stevin II Laboratory of the Delft University of Technology. A detailed description
of the set-up is found in Blom and Oosterhout (2000). The set-up contains three rings, with
a width of 1.500 mm, which are situated in a vertical position, omitting the effect of gravity.
Each ring is built up out of 7 segments and a keystone with a system radius of 4.525 mm
and a segmental thickness of 400 mm. Joints between the segments are placed in a stretched
bond alignment resulting in segment joints on the same circumferential location in the top
and bottom ring. The three key-stones are situated differently in each ring. In the ring joints
plywood sheets are used as a packing material. In the segment joints no packing material is
used resulting in a concrete-to-concrete surface contact.
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3 Analyse data  

3.1 Description of tests and test setup   
The full scale test set-up consists out of segments from the Botlek Railway Tunnel and was situated at the 
Stevin II Laboratory of the Delft University of Technology. A detailed description of the set-up is found in 
Blom/Oosterhout (2000). The set-up contains three rings, with a width of 1.500 mm, which are situated in a 
vertical position, omitting the effect of gravity. Each ring has 7 segments and a keystone with a system 
radius of 4.525 mm and a segmental thickness of 400 mm. Joints between the segments are placed in a 
stretched bond alignment. The top and bottom ring have joints at the same circumferential locations. The 
three key-stones are situated differently in each ring. In the ring joints triplex is used as a packing material. 
In the segment joints no packing material is used which results in a concrete-to-concrete surface contact.  
 

 
Figure 3.1:   Top view of test set-up in the Stevin Laboratory of the Delft University of Technology (a)  
  and close-up of radial and axial jacks (b)  
 
The test specimen can be loaded in a radial and axial direction. Per ring 28 radial jacks are present. Each 
jack delivers its force via a steel profile and two Azobé plates onto the concrete, figure 3.1. The reaction 
forces from the 3*28 radial jacks are carried by a steel frame outside the concrete lining. Axial pressure is 
delivered by 14 jacks situated on top of the segments in ring 3. Via Dywidag bars the reaction forces are 
coupled to steel plates on which the segments in the bottom ring are resting. These 14 steel plates allow for 
radial and tangential movements. Four of those plates only allow for radial translation and counteract 
tangential translations by hydraulic jacks. This way a rigid body rotation is prevented. A schematic 
overview of the lining including the surrounding structure, numbering of the jacks and external 
measurements equipment is given in figure 3.2.  

3.1.1 Loading  
The specimen will be loaded by axial and radial forces, of which the radial forces are subdivided in a 
uniform and an ovalisational part. The experiment is force controlled. In practice the axial forces are 
determined by the driving force of the TBM. The uniform part of the radial force is mainly determined by 
the depth at which the tunnel is located while the ovalisational part of the radial loading is determined by 
the kind of ground in which the tunnel is situated. The effects of ovalisational loading are studied for two 
different values of the axial force.  
 
During the start of the experiment a uniform radial and axial loading is applied in steps. After approximate 
10 steps a uniform radial load of 225 kN per jack, which results in a normal force of 1002 kN per ring, is 

Figure 4.1: Top view of test set-up in the Stevin Laboratory of the Delft University of Technology
(left) and close-up of radial and axial jacks (right)

The test specimen is loaded in a radial and axial direction. Per ring, 28 radial jacks are
present. Each jack applies the force via a steel profile and two Azob blocks onto the concrete,
as seen in figure 4.1. The reaction forces from the 3×28 radial jacks are carried by a steel
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frame outside the concrete lining. Axial pressure is provided by 14 jacks situated on top of
the segments in the upper ring. Via Dywidag bars the reaction forces from the axial jacks
are coupled to steel plates on which the segments in the bottom ring rest. These 14 steel
plates allow for radial and tangential movements. Four of those plates only allow for radial
translation and counteract tangential translations by hydraulic jacks. This way a rigid body
rotation is prevented. A schematic overview of the lining including the surrounding structure,
numbering of the jacks and external measurement equipment is given in figure 4.3.

4.1 Load on the lining

The ultimate ovalisation load capacity of the lining is determined for two different values of
the axial force. A high axial force results probably in a strong interaction between the three
rings leading to concrete failure. A low axial force results in a weak interaction between the
three rings, probably resulting in failure due to slip of the ring joints and an ongoing rotation
of the segment joints.

The specimen is loaded by axial and radial forces, of which the radial forces are subdivided
in a uniform and an ovalisation part. In figure 4.2 the different load steps on the lining are
represented graphically for both experiments. The experiment is force controlled. In practice
the axial forces are determined by the driving force of the TBM. The uniform part of the
radial force is mainly determined by the depth at which the tunnel is located, whereas the
ovalisation part of the radial load is determined by the kind of soil in which the tunnel is
situated. The effects of ovalisation loads are studied for two different values of the axial force.

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50
Stepnumber 

Fo
rc

e 
in

 ra
di

al
 ja

ck
 [k

N
]. 

0

100

200

300

400

500

600

700

800

900

1000

Fo
rc

e 
in

 a
xi

al
 ja

ck
 [k

N
]. 

Ovalisational radial force 
Uniform radial force 
Axial force (Secondary Axis) 

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50
Stepnumber 

Fo
rc

e 
in

 ra
di

al
 ja

ck
 [k

N
]. 

0

100

200

300

400

500

600

700

800

900

1000

Fo
rc

e 
in

 a
xi

al
 ja

ck
 [k

N
]. 

Ovalisational radial force 
Uniform radial force 
Axial force (Secondary Axis) 

Figure 4.2: Overview of load on lining during experiment C01 (left) and experiment C02 (right) as
a function of the step number, calculated from oil pressures in jacks

In the tests, first a uniform radial and axial load is applied in steps. After approximate 10
steps a uniform radial load of 225 kN per jack is present. This results in a normal force of
1002 kN/ring in tangential direction. A force of 225 kN/Jack corresponds to half of the
average uniform radial force which is acting on the Botlek Railway Tunnel and corresponds
to a shallow position of the lining.

The axial force applied varies in the two experiments. In the first experiment a relatively high
force of 800 kN per jack is applied, producing a strong interaction between the three rings.
This force is equivalent to half the average force at the Botlek Railway Tunnel. In the second
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experiment the axial jacks deliver 100 kN onto the segments, representing an equivalent force
of one sixteenth of the average force present at the Botlek Railway Tunnel.

After applying the uniform radial and axial load, these loads are kept constant. In the
following steps an ovalisation load is put onto the lining. The ovalisation load is applied by
locally increasing or decreasing the radial jack forces resulting in a sinusoidal (cos 2θ) shape
along the circumference of the lining. The maximum values are located between axial jacks
8/9 and 22/23. Minimum values are reached between axial jacks 1/2 and 15/16, see figure 4.3
for numbering. With each step the load is raised, until failure occurs. The failure can be the
excessive cracking of concrete or the snapping through of a joint between two segments. In
the first experiment the maximum load is reached at an ovalisation load equivalent to about
15% of the applied uniform radial load. In the second experiment this relative ovalisation
load is about 10%.
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present. A force of 225 kN per jack corresponds to one third of the average uniform radial force at the 
Botlek Railway Tunnel.  
 
The axial force applied deviates between the two experiments. In the first experiment a relatively high force 
of 800 kN per jack is applied, producing a good interaction between the three rings. This force is equivalent 
to half the average force at the Botlek Railway Tunnel. In the second experiment the axial jacks deliver 100 
kN onto the segments representing and equivalent force of one sixteenth of the average force at the Botlek 
Railway Tunnel.  
 
During the remainder of the experiment the uniform and axial loading is kept constant. In the following 
steps an ovalisation loading is put onto the lining. The ovalisational loading is applied by locally increasing 
or decreasing the radial jack forces resulting in a sinusoidal (cos2θ) shape along the circumference of the 
lining. The maximums are located between axial jacks 8/9 and 22/23. Minimum values are reached 
between axial jacks 1/2 and 15/16 (figure 3.2). With each step the loading is raised. Loading continuous 
until failure occurs. The failure can be the excessive cracking of concrete or the snapping through of a joint 
between two segments. In the first experiment the maximum loading is reached at an ovalisational loading 
which is equivalent to 15% of the applied uniform radial loading. In the second experiment this relative 
ovalisational loading is 10%.  
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Figure 3.2:  Schematic overview of test specimen and steel frame, including jack numbering and  
  numbering of external measurements equipment 

3.1.2 Conducted measurements  
During the experiments a lot of data is collected. The results of the measurements can be used to verify 
calculations and to validate numerical simulations. The loading is determined and controlled by measuring 
oil pressures and pressure boxes. After a force step is applied, data from all the measurement equipment 
will be stored.  
 
To be able to analyse the behaviour of segments and joints, measurement equipment is placed on the 
concrete lining. Every concrete segment is fitted out with strain gauges, as can be seen in figure 3.2, on 
three different places on both sides of the concrete. They are placed in a vertical and horizontal direction to 
determine axial and radial strains. The top ring is also suited out with diagonal gauges to be able to 
calculate principal stress/strain directions. From the data the curvature in the segment can be determined. 

Numbering of equipment in test set-up  
- Radial jacks  

- In circumference direction equal to 
numbering of columns  

- In height i-1, i-2 and i-3 for respectively 
 bottom, middle and top ring  

- Axial jacks AXi 
- Active supports Ai 
- Ring 1, 2 and 3, respectively bottom, middle and 

top ring  
- Position of key-segment:  

- Ring 1 at AX1 
- Ring 2 at AX2  
- Ring 3 at AX9  

- Position of segment joints in ring 1: AX1 (key 
segment), AX3, AX5, AX7, AX9, AX11, AX13  

- Position of segment joints in ring 2: AX2 (key 
segment), AX4, AX6, AX8, AX10, AX12, AX14  

- Position of segment joints in ring 3: AX1, AX3, 
AX5, AX7, AX9 (key segment), AX11, AX13  

- Radial force recorders Ki-Ki+2, in respectively 
ring 1, 2 and ring 3 
- Radial deformation recorders lining TUi-i+2, 

in respectively ring 1, 2 and ring 3  
- Radial deformation recorders steel frame 

eFRi-i+2, in respectively ring 1, 2 and ring 3  

Figure 4.3: Schematic overview of test specimen and surrounding steel frame, including jack num-
bering and numbering of external measurement equipment

4.2 Conducted measurements

During the experiments a lot of data is collected. The results of the measurements are
used to verify calculations and to validate numerical simulations. The load is determined
and controlled by measuring oil pressures in the jacks and by deriving forces from installed
pressure boxes. After a force step is applied, data from all the measurement equipment is
stored. To obtain a visual representation of the location of measurement equipment and
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their belonging numbers, a schematic overview of the measurement equipment numbers is
given in Appendix A.

For analysing the behaviour of segments and joints, measurement equipment is placed on the
concrete lining as can be seen in figure 4.4. Every concrete segment is equipped with strain
gauges on three different places on both sides of the concrete. They are placed in a vertical and
horizontal direction to determine axial and radial strains. The top ring is also equipped with
diagonal gauges to be able to calculate principal stress/strain directions. From the data the
curvature in the segments can be determined. Based on the curvatures the bending moment
can be determined. For uncracked cross-sections this can be calculated by using a bending
stiffness belonging to a certain normal force. If a segment is cracked it is more difficult
to determine the actual bending moment. Perhaps a decisive answer can be found using
numerical simulations of a single reinforced concrete segment. Still it is questionable whether
the collected strain data gives a good representation of the real curvature. Nevertheless,
comparing two experiments or comparing curvatures of different segments this data can be
used very well.
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Based on the curvatures the bending moment can be determined. For uncracked cross sections this can be 
calculated by EIM κ= and using a bending stiffness belonging to a certain normal force. If a segment is 
cracked it is more difficult to determine the actual bending moment. Perhaps a decisive answer can be 
found using numerical simulations of a single reinforced concrete segment. Still it is questionable whether 
the collected strain data gives a good representation of the real curvature. Nevertheless, comparing two 
experiments or comparing curvatures of different segments these data can be used very well.  
 

 
Figure 3.2:  Measurement equipment placed around key segment(left) and schematic overview of  
  positioning of measurements equipment on the concrete segments of the lining (right),  
  strain equipment (right top) and deformation equipment (right bottom)  
 
Over a joint, strain recorders are placed to be able to determine the rotations between the segments. Each 
segment joints is fitted out with two strain recorders on both sides of the segment. The two ring joints are 
also fitted out with strain recorders. Along the circumference a total of 32 recorders on both sides of the 
lining are placed. This data can give information on the compression of the plywood and axial rotations. In 
the most critical segment joints the deformations are recorded continuously to be able to lower loading 
before collapse will take place. This opens the possibility to analyse the segments, especially the dowels, 
afterwards and to be able to do further research.  
 
Inside the concrete lining a laser device is situated to measure deformations. This rotating device measured 
the radial deformations on 6 different levels of the tunnel as a function of the circumferential angle. Every 
rotation ended up with approximately 100.000 measurements with a accuracy of 0,1 millimetres. Because 
of its configuration no rigid body translations and rotations can be observed. A bigger problem is that the 
radial deformations of the lining are not known per point but as a function of the circumferential angle. Due 
to tangential translations of the lining the exact deformation behaviour can not be easily analysed using this 
data. On the other hand, looking at this data, a good image of the global lining deformation can be obtained. 
In Vervuurt/Den Uijl (2006) curvatures for one segment are determined from the strain and laser 
measurements. The results are compared showing discrepancies. The data from the laser device gives 
higher curvatures compared to the curvatures determined by the strain devices. For the non-linear stage 
these discrepancies are significant but are smaller in the linear stage. Compared to analytical ring moments 
the laser data shows a better agreement.  
 
On four locations, outside of the concrete lining where maximum radial deformations are expected, radial 
deformation measurements take place.  

ππππππππ

Figure 4.4: Measurement equipment placed around key segment (left) and schematic overview of
positioning of measurement equipment on the concrete segments of the lining (right),
strain gauges (right top) and LVDT’s (right bottom)

Over a joint, LVDT devices are placed to be able to determine mutual rotations between
the segments. Each segment joint is equipped with two LVDT devices on both sides of the
segment. By dividing the measured differences in elongation of two LVDT’s on each side
of the joint by the segment thickness, the rotation in the joint is obtained. The two ring
joints are also equipped with LVDT devices. Along the circumference a total of 32 devices
on both sides of the lining are placed. This data can give information on the compression
of the plywood and axial rotations. In the most critical segment joints the deformations are
recorded continuously to be able to recognise the starting of failure and lower load before an
‘explosive’ collapse takes place heavily damaging the segments. This offers the possibility to
analyse the segments afterwards, especially the dowels, and to be able to perform other tests.

Inside the concrete lining a laser device is situated to measure deformations. This rotating
device measured the radial deformations on 6 different levels of the tunnel as a function of the
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circumferential angle. Every rotation ended up with approximately 100.000 measurements
with an accuracy of 0,1 mm. Because of its configuration no rigid body translations and
rotations can be observed and the radial deformations of the lining are not known per point
but as a function of the circumferential angle. Due to tangential translations of the lining
the exact deformation behaviour can not be easily analysed by using this data. On the other
hand, looking at this data, a good image of the global lining deformation can be obtained.
In Vervuurt and Den Uijl (2006) curvatures for one segment are determined from the strain
and laser measurements. The results are compared showing discrepancies. The data from
the laser device gives higher curvatures compared to the curvatures determined by the strain
devices. This might be explained by the fact that strain gauges on the tensile side of the
concrete do not give reliable output, caused by cracking of the concrete. For the non-linear
stage these discrepancies are significant but are smaller in the linear stage. Compared to
analytical ring moments the laser data shows a good agreement.

On four locations, outside of the concrete lining, where maximum radial deformations are ex-
pected, radial deformation measurements take place. In figure 4.3 this equipment is indicated
with TU1-TU12. This data gives a good representation of ovalisation deformations.

4.3 Earlier performed tests

The full-scale test facility was used from 1999 to august of 2005. In table 4.1 a chronologic
overview of performed tests is given. The first series of tests involved the so called load at once
tests, in which all three rings were equally loaded by uniform and ovalisation radial loading.
Only SLS loads were put onto the lining and the results were useful to verify analytical mod-
els. In Blom (2002) a comparison between radial deformations of the lining and a developed
analytical solution is performed for coupled segmented rings and a very good agreement is
found. Comparing the strains on the concrete elements, corrected for axial forces and lateral
contraction, with the analytical solutions and the 3D FE model, also showed a good compar-
ison.

Being able to predict the forces and stresses in the lining very well under SLS loading, the
tests continued with the sequential loading test. In these tests the bottom and middle ring
were loaded simultaneously by uniform and ovalisation loads causing these two rings to de-
form. Since an axial pressure is present the non-loaded top ring also deforms due to the ring
interaction. After this taken place the top ring is loaded by uniform and ovalisation loads.
Finally, the top ring is deformed by ‘additional’ and ‘direct’ deformations. This test simu-
lated the moment the new assembled ring is pushed out of the protecting steel shield of the
TBM. During this process the lining is gradually loaded by the surrounding soil leading to
unequal deformations of the lining in axial direction. From the experiments Blom concluded
that when the top ring is loaded, 40% of the loading is remaining in the top ring, and 60% is
migrating to the middle and bottom ring. Of this 60% a part of 40% remains in the middle
ring, whereas 20% migrates to the bottom ring. Again, a good agreement between measured
values and the analytical solution, frame analysis and 3D FEM analysis was found.

Basic load cases were tested again and described in Vervuurt (2003). These tests were per-
formed in the SLS and compared to numerical models using shell elements and implementing
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normal force dependent, non-linear rotational springs. A good agreement was observed be-
tween the FE model and the experiment. Discrepancies found between the FE model and the
experiment were in the order of 10%.

Shortly after completing previous tests, the effect of the inaccurate placement of segments
was studied. In these tests, one segment was inaccurately placed width a gap of 2 mm or
4 mm. In both cases cracking of the segment was observed. As can be expected, the cracks in
the 4 mm case were more severe. Concluded was that the maximum allowable gap between
two segments is 2 mm in order to prevent unacceptable cracking.

1999 2000 2001 2002 2003 2004 2005

Load at once test (Blom 2002) SLS xxx

Sequential loading (Blom 2002) Constr. xxx

Basic load cases (Blom 2002) SLS xxx xxx

Inaccurate placed segments (Vervuurt 2003) SLS xxx xxx

Ultimate load capacity (Vervuurt and Den Uijl 2006) ULS xxx

Table 4.1: Chronologic overview of earlier performed tests

36



Chapter 5

Experimental results

The analysis of the experimental results is an important issue. A careful look at the data
can give a lot of insight in the behaviour of the lining. During loading different stages can be
distinguished. These parts are elucidated separately below, starting with an analysis of the
global lining behaviour.

Most critical cross-sections along the circumference of the lining are cross-sections in which
bending moments are maximal, caused by the ovalisational loading, or cross-section in which
one or two joints are located. In the four points in which bending moments are maximal,
the segments and joints are aligned differently resulting in less or more critical cross-sections.
On the other hand, cross-sections in which lower bending moments are present can also be
critical caused by the presence of joints.

Two of the four cross-sections on the lining possessing maximum bending moments are fitted
out with one or two joints. These two cross-section are located at -0,5π and +0,5π, see figure
5.1. The cross-section at -0,5π is fitted out with segment joints in two out of a total of three
rings whereas the cross-section at +0,5π is fitted out with one segment joint. The cross-section
containing two joints is most critical and reaches its bending moment capacity first. The other
two points on the lining possessing a maximum bending moment, are located at 0π and -1π
and do not include a joint at that particular cross-section. The segment joints are located
just besides the line possessing a maximum bending moment. On one side a cross-section
containing one joint and on the other side a cross-section containing two segment joints is
present. Obviously the cross-section containing two segment joints is most critical and is
shown in figure 5.2. Recapitulating, there are three cross-sections (at -0,5π, 0,07π and 0,93π)
containing two segment joints and are loaded with high bending moments. If plastic hinges
develop somewhere in the lining it is expected that they will start in these cross-sections.

5.1 Ovalisation deformation of lining

To get an accurate understanding of the behaviour of the lining, it is important to know how
the lining deforms during the two experiments. For this purpose the laser measurements can
be used very well. Disadvantage is that it cannot be derived what portion of deformations is
caused by joint rotations and what portion is caused by curvatures in the segments. To be
able to say something about these portions, the deformations of the lining can be calculated
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3.2 Test results  
The analysis of the experimental results is an important issue. A careful look at the data can give a lot of 
insight in the behaviour of the lining. During the loading different stages can be distinguished. These parts 
will be separate threaded starting with an analysis of the global lining behaviour.  
 
Most critical cross sections along the circumference of the lining are the sections in which the moments are 
maximum, caused by the ovalisational loading. In these four areas the segments and joints are aligned 
differently. It is expected that an interaction between the rings will establish because of high ovalisational 
loadings. Especially in these four critical areas it is interesting to study the interaction between the rings.  

 

Figure 3.3:  Critical cross sections in tunnel lining, one segment and two joints at circumferential  
  position -0,5π  in figure 3.2 (left), two segments and one joint at circumferential position  
  +0,5π  in figure 3.2 (right)  

3.2.1 Deformation of lining  
To get a good understanding in the behaviour of the lining it is important to know how the lining deformed 
during the two experiments. For this purpose the laser measurements can be used very well. Disadvantage 
is that it cannot be derived what portion of deformations is caused by joint rotations and what portion is 
caused by curvatures in the segments. To be able to say something about these portions, the deformations 
of the lining can be calculated based on joint- and segment measurements performed during the 
experiments.  
 
It is assumed that most deformations are caused by rotations located in the segment joints. To calculate the 
deformed shape of the lining, based on joint rotations, the segments are represented by straight lines 
between the joints. When no loading is put onto the lining the angle between the lines connected with a 
joint is given in equation (3.1). The angle between two lines of which one line represents a key segment 
will be somewhat lower.  
    o

0; 4,51
7

360
==jφ       (3.1) 

From the recorded deformations, on both sides of a joint, a rotation in a joint can be calculated, equation 
(3.2). Add this rotation to the rotation found in equation (3.1) and the angle between two segments is 
known. When multiplied by an enlargement factor m , small deformations can be made visible.  

    
h

ll insideoutside
measuredj

∆−∆
=;φ     (3.2) 

    measuredjjj m ;0; φφφ +=      (3.3) 
The rotations of the eight joints in a single ring can now be calculated. In theory, the summation of the 
eight measured rotations, measuredj;φ , should be zero. To represent the deformed shape of the lining more 
accurate a correction factor is included in the joint rotation which spread out the error caused by inaccurate 
measurements. A new definition of the joint rotation is given in equation (3.5).  

Figure 5.1: Critical cross-sections in tunnel lining, one segment and two joints at circumferential
position -0,5π (left), two segments and one joint at circumferential position +0,5π (right)

  

Figure 5.2: Critical cross-sections in tunnel lining shown by green line, one segment and two joints
at circumferential position 0,93π (left) and at 0,07π (right), red line is cross-section with
maximum bending moment
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based on joint- and segment measurements performed during the experiments.

It is assumed that most deformations are caused by rotations located in the segment joints.
To calculate the deformed shape of the lining, based on joint rotations, the segments are
represented by straight lines between the joints. When no load is put onto the lining the
angle between the lines connected with a joint is given in equation 5.1. The angle between
two lines of which one line represents a key segment will be somewhat lower.

φj;initial =
360
7

= 51, 4deg (5.1)

From the recorded deformations, on both sides of a joint, a rotation in a joint is calculated,
equation 5.2. The values ∆loutside and ∆linside are the recorded displacements with LVDT’s
on both sides of a segment. Add up this rotation to the rotation found in equation 5.1 and
the angle between two segments is known. When multiplied by an enlargement factor m,
small deformations can be made visible, equation 5.3.

φj;measured =
∆loutside −∆linside

d
(5.2)

φj = φj;initial + mφj;measured (5.3)

The rotations of the eight joints in a single ring can now be calculated. In theory, the sum-
mation of the eight measured rotations,

∑n=8
j=1 φj;measured, should be zero, but in practice

deviations caused by inaccurate measurements occur. To represent the deformed shape of the
lining more accurate a correction factor is included in the joint rotation which spread out the
error. The corrected measured joint rotation is given in equation 5.4 and the new definition
of the complete joint rotation is given in equation 5.5.

Figure 5.3: Clarification of calculation to determine deformed shape of lining based on joint rotations
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φj;measured;cor = φj;measured

(
1−

∑n=8
j=1 φj;measured∑n=8

j=1 |φj;measured|

)
(5.4)

φj;cor = φj;initial + mφj;measured;cor (5.5)

When the distance between the joints is known, a line can be plotted representing the deformed
lining, based on the eight calculated joint rotations. The straight distance between two joints
is calculated from equation 5.6. When calculating the distance between two points, from
which one or two points are a joint between a counter segment and a key segment, another
formula has to be used. For clarification of symbols see figure 5.3.

ls = 2 ∗ 4525 ∗ sin

(
360
14

)
(5.6)

When drawing the deformed shape of the line one has to start with segment one. To be able
to determine the position of the next joint, the position and angle of the first segment has to
be calculated from equation 5.7 .

ϕs =
Xj+1 −Xj

Yj+1 − Yj
(5.7)

Based on the distance between two neighbouring joints, the initial angle of a segment and a
joint rotation the X- and Y-coordinate of the next joint is calculated with equations 5.8 and
5.9.

Xj = Xj−1 + sin (ϕs + φj−1;cor) ∗ ls (5.8)

Yj = Yj−1 + cos (ϕs + φj−1;cor) ∗ ls (5.9)

With equation 5.8 and 5.9 the coordinates of every joint are calculated. Because of the inac-
curacy of the data the lining might not form a closed line. To overcome these discrepancies,
the coordinates are corrected once again. The gap at the end of the line is divided in an
X-distance and a Y-distance and equally spread over the eight joints resulting in a closed
line.

Xj;cor = Xj−1 + [sin (ϕs + φj−1;cor) ∗ ls] +
∆XXgap

8
(5.10)

Yj;cor = Yj−1 + [cos (ϕs + φj−1;cor) ∗ ls] +
∆YY gap

8
(5.11)

Based on the new coordinates the deformations of the lining can be plotted. When the curva-
tures in the segments are also incorporated a more accurate plot of the deformed lining can be
calculated. These calculations are based on the same principals as the derivation previously
shown, only now the coordinates of more points are calculated. These additional points are
the locations where in the experiments strain gauges are situated. Based on strains on both
sides of the concrete segments curvatures are calculated. Multiplying these curvatures with
an influence length, figure 5.4, the rotation in a point is determined. From these rotations
the coordinates of points along the circumference of the lining can be plotted. The influence
length of the curvatures in a segment are shown in figure 5.4. Having calculated joint and
segment rotations a correcting is carried out just as explained in equations 5.4, 5.10 and 5.11,
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Figure 5.4: Influence length of curvatures in a segment

only now 30 points are involved.

The deformations are plotted starting from joint number one. The plotted line will also return
to this point and the deformed shape of the lining is observed. Problem is that the deformed
shape has to be repositioned in the correct position. Because little information about the
position of the shape can be derived from measurements, the shape is centered to the middle
of the undeformed lining and rotated in such a way that deformations of two joints are on
a horizontal line. This principle is graphically shown in figure 5.5. It has to be emphasized
that this rotation is not based on measurements. The figures only represent the shape of the
deformations.
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Figure 3.5:  Positioning of deformed shape shown for ring 3, not rotated (left) and rotated (right)  
 
From the performed calculations the deformed shape of the lining can be made visible. Moreover the 
deformations caused by joint rotations and deformations caused by segment curvatures can be analysed 
separately. This will increase understanding in lining behaviour and is more valuable compared to laser 
measurements.  
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Figure 5.5: Positioning of deformed shape shown for ring 3, not rotated (left) and rotated (right)

From the performed calculations the deformed shape of the lining can be made visible. More-
over the deformations caused by joint rotations and deformations caused by segment curva-
tures can be analysed separately. This will increase understanding in lining behaviour and
is more valuable compared to laser measurements. In Appendix B a spreadsheet is included
from which the calculation of deformations of ring 1 for a particular load step is clarified.
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5.2 Global observed lining behaviour

The geometry of each of the three rings is symmetrical with respect to the y-axis when the
keystone is not considered. Deformations and strains are also found to be symmetrical with
respect to this axis. In figure 5.6 the maximum deformations of the lining are drawn for
experiment C01 and C02. These deformations are based on the measured rotations in the
joints and the measured strains on the surfaces of the segments. As can be seen from these
figures, it is clear how the load acted on the lining. Deformed states of lining in other load
steps can be found in appendix C for experiment C01 and in appendix D for experiment C02.
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Figure 5.6: Deformed shape of lining, step 30, enlargement factor 50, experiment C01 (left) and
experiment C02 (right)

In the left figure (figure 5.6) the maximum deformations of the first experiment are shown. It
can be concluded that less deformations occur in experiment C01 compared to C02. This is
a result of the stronger interaction between the three rings caused by the high axial pressure.
Also a reduced stiffness of some segments, as a result of previously developed cracks in C01,
has consequences for the deformations in experiment C02.

From the picture shown above it is seen that deformations of the top and bottom ring are
larger compared to the middle ring. During the full-scale experiment this is not noticed and
later on in this chapter the reason for these apparent deviations in deformations is explained.
The rings which have joints placed on the same circumferential location, ring 1 and ring 3,
deform almost exactly the same in C01. In the second experiment this conclusion is incorrect
although ring 1 and 3 still deform more compared to ring 2. An explanation for the smaller
deformations of ring 1 is the fact that four of the 8 joints in this ring encounter more resistance
due to the fact that the active tangential supports are attached to the lining at these joints.

The behaviour of the lining can be represented by showing the maximum deformation of the
lining plotted versus the applied ovalisation load. In figure 5.7 (C01) and figure 5.8 (C02)
the average deformation of four points on the lining, which possess maximum deformation,
are shown. This ovalisation is based on measurement devices placed on four points outside
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of the lining and only measures radial deformations. In figure 4.3 this equipment is indicated
with TU1 to TU12. This equipment reached its limiting measuring distance at the end of the
second experiment resulting in unreliable values in this branch. For this branch the deforma-
tions are based on data collected from the laser measurements.

In experiment C01 a non-linear branch in deformations is reached after an ovalisation load
of 25 kN/Jack. At 36 kN/Jack a horizontal plateau is reached, indicating failure. For the
second experiment non-linear effects are noticed at 15 kN/Jack and a plateau is reached at
24 kN/Jack.

Deformations are caused by joint rotations and segment curvatures. In the figures 5.7 and 5.8
the ovalisation deformations only caused by joint rotations, based on calculations described
in chapter 5.1, are given. In the linear branch of experiment C01, 43% of total ovalisation
deformations are caused by joint rotations increasing to 55% when maximum load is reached.
The part of deformations that is caused by joint rotations, increases even further to 58% when
the load is reduced to zero again.
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Figure 5.7: Average total ovalisational deformation of three rings plotted and subdivided into de-
formation only caused by joint rotations and caused by joint rotations and segment
curvatures, experiment C01

In the first stage of the second experiment the part of deformations caused by joint rotations
is exactly the same compared to the first experiment. When increasing the load, the ovalisa-
tion by joints starts to increase more compared to C01 at 15 kN/Jack. At failure, the joint
rotations dominate deformations by about 90%. This percentage is measured after slip of the
ring joints has taken place.

The rotations in the joints are responsible for deformations in the lining. Approaching de-
formations more accurate the curvatures in the segments have to be incorporated. Based on
calculations described in chapter 5.1 an ovalisation deformation based on joint rotations and
segment curvatures is plotted in figure 5.7 for experiment C01 and 5.8 for experiment C02.
This should result in an improved approach of measured deformations. In fact, it should be
the deformation which is measured with the radial equipment outside the lining (TU1-TU12),
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Figure 5.8: Average total ovalisational deformation of three rings plotted and subdivided into de-
formation only caused by joint rotations and caused by joint rotations and segment
curvatures, experiment C02)

but this is clearly not the case. Although the ovalisation deformation based on joint rotations
and segment curvature approaches the measurements (TU1-TU12) more accurate, in the non-
linear branch discrepancies are recognised. This is expected to be the result of cracking of
the segments. When a crack originates near a strain gauge the measured strain drops al-
though deformations grow located in the crack. This is the reason why a complete ovalisation
deformation can not be calculated based on joint and segment measurements. Nevertheless,
including segment curvatures a very good image of the deformations is formed.

In the second experiment a severe increase in deformations takes place between 20 kN/Jack
and 25 kN/Jack. The joint rotations increase in this branch whereas the strains do not in-
crease proportional to the joint rotations. From figure 5.8 it can be concluded that an ongoing
rotation of the joints is almost completely responsible for the increase in deformations.

In the first experiment, compared to the second experiment, joint rotations are less responsi-
ble for overall deformations. The deformations based on strain measurements are larger but
not increasing very rapidly, caused by the fact that cracking occurs which cannot be measured
but was observed during the experiment.

5.2.1 Experiment C01

In the previous analyses the deformations are calculated as the averages of the three rings.
In this section the behaviour of the separate rings for experiment C01 is studied. In figure
5.9 the deformations of the lining, caused by joint rotations and measured with TU1-TU12,
are outlined per separate ring. As previously mentioned the deformations of ring 2, based on
joint and segment measurements, seem to be smaller compared to ring 1 and ring 3. This is
not noticeable out of results from measurements outside the lining. These measurements say
that all three rings deform more or less the same. It is expected that cracks are responsible
for this discrepancy as is explained in the following paragraphs.
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In figure 5.9, total ovalisation deformations and deformations based on joint rotations, are
presented per separate ring. What is interesting to see in this picture is the portion of joint
rotations which is responsible for the overall deformations. The joint rotations in ring 1 and
ring 3 possess 45-70% of total deformations. Especially in the non-linear branch mainly the
joint rotations are responsible for the total deformations. Joint rotations in ring 2 possess
only 25% of total deformations and remain constant during the whole test and don’t deviate
more than 1%. Even more interesting is the minor increase in joint deformations in ring 2 at
maximum loading although a severe increase in total deformations is observed. The segment
curvatures in ring 2 are thus far greater compared to ring 1 and ring 3. Because ring 2 devi-
ates from the other two rings a close up of this ring is presented in figure 5.10. In this graph
the different available test results are compared to each other.
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Figure 5.9: Ovalisational deformation of lining, experiment C01, deformations plotted separately for
each ring, total deformation plotted and deformation only caused by joint rotations

In figure 5.10 the results of the calculated deformations based on joint rotations and segment
curvatures, in the linear branch, are exactly the same as measured by radial equipment. This
similarity indicates that reliable deformations are calculated based on joint rotations and
segment curvatures. The moment that the load reaches 18 kN/Jack a discrepancy between
calculated and measured deformations starts to appear. Investigating all strain gauges along
the circumference of ring 2 learned that at that moment the strain in segment 7 drops all
of a sudden. Before the drop occurred a very large strain was measured in this segment. It
turned out that a longitudinal crack was already present in the middle of this segment. The
abrupt drop of strains can be explained by a sudden further development of the crack. When
this crack starts to become more severe the rotation of the complete segment is not measured
anymore by the strain gauges and localizes in the crack. At that moment the deformation
calculated starts to deviate from the measured deformation (TU1-TU12). The difference be-
tween this calculated deformation, based on joint rotations and segment curvatures, and the
deformation, measured by radial deformation equipment, can say something about the order
of cracking in a ring.
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Figure 5.10: Deformation of ring 2, total deformation, deformation caused by joint rotations and
deformation caused by joint rotations and segment curvatures, experiment C01

It is clearly confirmed that in ring 2 the joint rotations are very small compared to ring 1
and ring 3, and that the main deformations are caused by segment curvatures. In figure 5.10
an excessive increase in segment curvatures, as well as cracking, is shown in the final stages
of loading. Observations during the experiment also confirmed the cracking of ring 2 during
the experiment. When looking at the calculated deformations, based on joint rotations and
segment curvatures, for the two neighbouring rings (Appendix E), only minor deviations from
the deformations measured by the equipment outside the lining are noticed. This means that
cracking is not dominating in the two outer rings, which is confirmed by observations of these
rings during the experiment. In ring 1 and ring 3 the deformations are mainly caused by
joint rotations. In ring 3 this part is even larger than in ring 1 which can be explained by
the fact that ring 1 is somewhat more restrained by its active supports leading to little bit
more segment forces. The curvatures of the segments do increase in these two rings but not
as severe as they did in ring 2. Also the difference between the curvatures and the measured
deformations is small, concluding that no severe cracking of the segments took place in the
top and bottom ring. It can also be said that these segments did not reach their maximum
capacity.

It has to be concluded that a strong interaction between the three rings was established. The
cross-sections which possess two segment joints are the weakest spots and started to rotate
heavily. Because of the strong axial interaction, the segments in ring 2 have to follow these
rotations. In the final stages of loading an ongoing rotation of joints in the top and bottom
ring starts to take place which is followed by the segments in the middle ring. This failure is
accompanied by cracking of the segments in the middle ring.

The strong axial interaction, because of a relatively high axial force, resulted in the migration
of forces to the middle ring. Eventually this ring was loaded until its maximum capacity was
reached. At that moment no additional forces from the two adjoining rings could be carried
resulting in failure.
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5.2.2 Experiment C02

In this section the behaviour of the separate rings in experiment C02 is studied. In figure
5.11 the deformations of the lining, caused by joint rotations, are outlined per separate ring.
Most deformations in experiment C02 are observed in ring 3 and ring 1. These are two rings
with the same circumferential configuration of the joints, except for the key segment, so they
should possess the same deformations. In experiment C01 the deformations of ring 1 and
ring 3 were almost equal. In this experiment ring 3 shows larger deformations. Again this
can be explained by the fact that the bottom ring encounters some hindrance from its active
supports. Caused by the low axial interaction between the three rings different deformations
of the separate rings took place.
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Figure 5.11: Ovalisational deformation of lining, experiment C02, deformations plotted seperatly for
each ring, total deformation plotted and deformation only caused by joint rotations

From figure 5.11 it can be concluded that in this experiment the joint rotations are governing
regarding overall deformations. Especially in ring 1 and ring 3 the joints are responsible for
the largest rotations. Just like in the first experiment, the joint rotations in ring 2 are smaller
compared to ring 1 and 3, although this difference between the three rings in experiment C02
is less. In figure 5.12 the relations between joint rotations and segment curvatures are graphi-
cally presented for ring 2. In Appendix E, the results of these calculations and measurements
are shown for all three rings separately. When comparing the calculated deformations, based
on joint rotations and segment curvatures, with the measured radial deformations (TU1-
TU12) no discrepancies are found in the early start of the linear branch. Compared to the
first experiment a deviation between the two lines start to occur earlier which can be ex-
plained by the fact that the segments were already cracked.

In the middle ring the joint rotations possess a smaller part compared to ring 1 and 3. The
percentage of rotations caused by joint rotations is more or less equal as calculated for the first
experiment. This means again that forces from ring 1 and 3 are transferred to and carried by
ring 2. Until 22 kN/Jack of ovalisation load a strong interaction between the three rings is
observed. After this loading is reached, a sudden increase in deformations is observed. When
looking at figure 5.12 it learns that contrarily to C01 at which cracking initiated failure of
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the lining, the joints are responsible for this jump. The deformations caused by the joints
show a severe increase which is not observed in the deformations by strains or cracking. This
behaviour of sudden in crease in joint rotations is found in all three rings.

Ring 3 deforms the most out of the three rings and joint rotations govern the overall defor-
mations. The localised rotations in the joint result in different radial deformations between
ring 2 and 3 which result in interaction forces. The rotations are transferred to ring 2 leading
to segment curvatures in this ring. From observations during the experiment it was found
that additional cracks developed in this middle ring. At 22 kN/Jack the interaction forces
could not be transferred to the second ring any longer and slip of the ring joints took place.

Figure 5.12: Deformation of ring 2, total deformation, deformation caused by joint rotations and
deformation caused by joint rotations and segment curvatures, experiment C02

Because of slip of the ring joints a redistribution of forces in the lining is expected. Defor-
mations and joint rotations increase until a new equilibrium situation is reached. This new
equilibrium situation could possibly be reached by the participation of the structural dowels,
but this has to be further investigated.

The joints in ring 1 and 2 also show a sudden increase in rotations although these are less
severe compared to ring 3. From measurements it is concluded that the strains in the second
ring also increase after slipping of the ring joints. This increase in strains is not as severe as
the increase in joint rotations but it is indicating that the interaction forces in the ring joints
remain or increase during slip of the ring joints. No unloading of the concrete segments after
slip is noticed.

5.2.3 Comparing experiment C01 and C02

Based on figures 5.10 and 5.12 the portion of joint rotations, segment curvatures and cracking
responsible for deformations is shown for ring 2. Both experiments show that in ring 1 and
ring 3 joint rotations are governing for overall deformations. Because of the stretched bond
layout of the segments, and interaction between the three rings, these joint rotations are
transferred to ring 2 leading to large segment curvatures in ring 2. This is exactly what is
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shown in the two graphs, in ring 2 the segment curvatures are governing instead of joint
rotations. The difference in deformations caused by joint rotations between the three rings,
is smaller in experiment C02 compared to C01, indicating that the interaction between the
three rings was not optimal in the second experiment. Due to a less cooperation between the
three rings in experiment C02 the lining did not fail by the excessive cracking of the segments
but by an ongoing rotation of the joints.
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Chapter 6

Critical Cross-Sections

In the previous chapters the global behaviour of the lining was treated. It was clear that
three points on the lining started to rotate heavily during loading. These points were the
cross-sections containing two segment joints and one concrete segment. If somewhere in the
lining the maximum bending moment capacity of segments is reached than it will be in one of
these cross-sections. To further investigate the behaviour in these sections the strain gauges
located on the segments may be used. Due to large curvatures in these segments the con-
crete is cracked. Strain gauges on the tensile side of the concrete will therefore measure very
high strains or very low strains depending on the location of the cracks in comparison to
the location of the strain gauges. As a result, the curvatures cannot be easily determined in
these sections and only the compression strains are reliable. Therefore, only the strains on
the compression side of the concrete are investigated in this chapter.

6.1 Compression strains in experiment C01

The three critical cross-sections are located at a circumferential angle of -0,5π, 0,07π and at
0,93π. If a plastic hinge develops in one or more of these three sections this should be visible
by looking at the compression strains. In figure 6.1, the strains on the compression side of
the concrete are shown for the segments in the three critical cross-sections. The values are
taken from the strain gauges placed in the middle of the concrete segment. Strains only due
to ovalisation and uniform radial loads are shown by subtracting strains recorded at reference
step 10. The compression strain due to the normal force, introduced by the uniform radial
load is calculated manually and is subsequently added up resulting in the strain in the con-
crete without the influence of lateral contraction.

The strains in the three cross-sections are almost equal. A linear and a non-linear branch can
be distinguished in the curves. The transition between the linear and the non-linear branch
is the very early starting of cracking of the concrete. On the tensile side of the concrete the
tensile strength is reached and reinforcement will take over resulting in a smaller concrete
compression zone. To get the same resulting compression force, the strain has to increase
which is exactly what is seen in the graph. At an ovalisation load of 36 kN/Jack the maxi-
mum load is reached. At this point the load was kept constant while deformations were still
growing. The strain gauges show an increase in compression. This may be indicated as a
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plastic hinge developing. The plastic hinge develops at the same time in all three critical
cross-sections. When three plastic hinges are formed an instable lining is created implying
failure.

Two less critical cross-section are located at 0,36 π and at 0,64 π. These two cross-sections
are also composed of one segment and two segment joints and are exposed to 64% of the
bending moments (in a continuous lining) compared to the three most critical cross-sections.
The compression strains recorded on these two less critical segments are also included in
graph 6.1 and are more or less equal. All lines start to behave non-linear at a strain between
approximately 0,2%o and 0,3%o.
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Figure 6.1: Measured strain on the compression surface of some critical segments

The concrete segments are lightly reinforced possessing a reinforcement ratio of 0,16%. Ac-
cording to the Dutch code a minimum required amount of reinforcement for FeB500 and B45
of 0,21% is needed. Therefore, the tensile strength of the concrete is of major importance to
its structural behaviour. To investigate the influence of different tensile strengths, bending
calculations are performed using the σ-ε relations for concrete in tension as shown in figure
6.2. In the same figure, a bending moment-curvature relation for a single concrete tunnel
segment subjected to an increasing bending moment and a constant normal force is shown
for the same tensile strengths. From this graph it is concluded that even for very low tensile
strengths the maximum bending moment is reached before the steel yields. If the tensile
strength of the concrete is above the 4 N/mm2 the reinforcement is not able to take over
tensile forces at the moment of cracking. This behaviour might be very important regarding
structural behaviour of the lining.

For the bending moment-curvature relations in figure 6.2 also compression strains can be
derived. These compression strains are shown in figure 6.3. When comparing these different
graphs for different tensile strengths with figure 6.1, it is concluded that a good agreement
is found with tensile strengths around the 4 N/mm2. In the final branch of loading the
compression strains from the experiment do not follow the calculated strains. This can be
explained by the fact of a changing normal force in the segment, a different fracture energy
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Figure 6.2: Tensile stress-strain relation of concrete for different values of the tensile strength
(left) and bending moment-curvature relation for different values of the concrete ten-
sile strength (right)

of the concrete or by another bending moment present than expected.

If the concrete segments in the experiment behave like the bending moment-curvature re-
lation in figure 6.2 failure would be initiated by a sudden increase in deformations. When
the bending moment capacity of some segments is reached a severe increase in rotations will
be measured and reinforcement will start to yield. More important is the fact that this
reinforcement will not be able, even at large curvatures, to carry the full bending moment
again. At full capacity, before yielding of the steel, the concrete will start to crack heavily
and failure will occur. From observations during the experiment this behaviour is confirmed.
At 36 kN/Jack the load is not further increased due to the visible origination of cracks in
some segments. If the reinforcement was able to take over the tensile forces an equilibrium
situation should be reached and deformations should stop growing but even during unloading
of the lining deformations were increasing. This means that a tensile strength of around the
4 N/mm2 was present in the concrete and, that for calculating the bending moment capacity
of a single segment, the tensile strength is to be incorporated.
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Figure 6.3: Strain on the compression side of a single segment subject to normal force and an in-
creasing bending moment, results obtained from FE analyses
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6.2 Compression strains in experiment C02

In the previous paragraph it was concluded that a tensile strength of around the 4 N/mm2

was present in the concrete. The experiment ended with the excessive cracking of the con-
crete resulting in failure. At the start of the second experiment the critical segments are
thus cracked. From figure 6.2 it is clear that this might have a very large influence on the
behaviour of the segments. This different behaviour should be recognizable from the com-
pression strains on the same critical segments in the second experiment. In figure 6.4 the
results from the second experiment are compared with results from the first experiment. The
non-linear branch in the compression strain diagram is reached at a lower loading point. From
this it can be concluded that the tensile strength in the second experiment is lower than in
the first experiment. In the same graph the strains of the three sections are averaged and
compared to the FE calculations. To be able to compare these graphs the bending moments
in the lining are estimated based on a continuous lining. The total bending moment over the
three rings is calculated analytically with subtraction of the expected bending moments in
the neighbouring joints.

From the previous paragraphs it may be concluded that the different tensile strength in both
experiments is responsible for the larger ovalisation deformations in the second experiment.
Just like the compression strains found on the segments the ovalisation deformations found
in the second experiment are larger and the non-linear branch is initiated earlier. Whether
this is explained by the tensile strength of the concrete or by less interaction between the
neighbouring rings maybe clarified performing FE calculations, described in chapter 10.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 100 200 300 400 500 600
Ovalisational Loading [kN/Jack] 

C
om

pr
es

si
on

 S
tra

in
 [P

ro
m

ille
]. 

C01 Segment 5
C01 Segment 7
C01 Segment 3
C02 Segment 5
C02 Segment 7
C02 Segment 3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0 100 200 300 400 500 600 700
Bending Moment [kNm] 

C
om

pr
es

si
on

 S
tra

in
 [P

ro
m

ille
]. 

ft=0,1 [N/mm2] 
ft=2 [N/mm2] 
ft=4 [N/mm2] 
ft=6 [N/mm2] 
ft=8 [N/mm2] 
Compression strain C01 
Compression strain C02 

Figure 6.4: Compression strain in the three critical cross-sections in experiment C01 and experiment
C02 compared (left) and average compression strain in the critical cross-sections com-
pared to compression strains of FE calculations of a single segment for different values
of the tensile strength (right)
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Chapter 7

Numerical analysis

7.1 Finite element modelling

For developing a realistic tunnel model, two things have to be modelled for which different
possibilities are available. The modelling of the concrete lining and the modelling of the sur-
rounding soil. Due to the fact that no soil is present in the full-scale test set-up, the modelling
of soil is not treated here but is referred to Frissen et al. (1997). Boring through the soil
in cooperation with the injected grout finally determines the load on the tunnel lining. In
Verweij (1995), a complex FE analysis of this complete process of cutting and constructing
is performed. The FE model which is developed in this master thesis does not contain the
surrounding soil. The goal is to investigate the lining behaviour under an ovalisation load
similar to the experiments. If it is possible to simulate the test results and understand the
structural behaviour of the lining the next step could be including the surrounding soil. Be-
cause the structural behaviour is then known exactly the influence of the soil on structural
behaviour and deformations can be analysed.

7.1.1 Different element types for the modelling of a tunnel lining

In the following paragraphs different possibilities for modelling the three rings of the exper-
iment are summarized. The modelling of the segments can be performed in two or three
dimensions and different element types can be used. Correct modelling of the interaction
between the segments is vital for a realistic behaviour. The interaction occurs at the contact
areas in the segment and ring joints. Basically the segment joints can be left out simulating
a continuous ring, or the joints can be modelled as a hinge or be given a rotational stiffness.

Beam elements The easiest way to model a tunnel is to make use of beam elements.
In DIANA, basically three different types of elements may be used. The first types are the
classical beam elements with directly integrated cross-sections. The cross-sections must be
specified with the general parameters ‘area’ and ‘moment of inertia’ and therefore cannot be
used in physically non-linear analyses. The second types are the fully numerically integrated
classical beam elements. Because they are numerically integrated over their cross-section and
along their axis they may be used in geometrical and physical non-linear analyses. Both types
are based on the Bernoulli theory which does not take into account shear deformation and
in which it is assumed that the cross-sections remain plane and perpendicular to the slope of
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the beam axis. The third types of beam elements are based on the Mindlin-Reissner theory
which do account for shear deformation. They may also be used in geometrical and physical
non-linear analyses.

Figure 7.1: Characteristics of beam elements

To approximate the curved shape of the lining, higher order elements can be used. Fur-
thermore, two or three dimensional elements may be selected describing translations in two
or three directions. One dimensional elements possess two translational and one rotational
degrees of freedom per node. Thereby, bending moments in the two other directions are
neglected. Two dimensional elements possess three translational as well as three rotational
degrees of freedom per node and can account for bending in two local directions and tor-
sion. When restraining two rotational degrees of freedom this element will behave like the
one dimensional element. Using beam elements for a FE model of the lining will result in
a very simple model. The calculations do not need much computing power and the results
are very comprehensible and physical phenomena can be recognized. Advantage of the low
computing time is the possibility to change parameters and determine its influence on global
lining behaviour. Being able to perform a lot of calculations in a very short time opens the
possibility for doing probabilistic calculations like monte carlo.

Segment joints can easily be incorporated in the model by implementing linear or non-linear
rotating springs. To investigate the influence of interaction between multiple rings, ring joints
have to be modelled in between two tunnel rings. In existing models this interaction is mod-
elled using coupling bars. These bars should be given such a length and stiffness that they
behave like the actual joint and take forces in radial and tangential direction. They are lo-
cated at places where in practice the packing materials are applied. It is also possible to
model translational springs and assigning the ‘real’ stiffness of the ring joints.

Using beam elements results in simple FE models which give a lot of insight in occurring
forces. The models can easily be constructed and a lot of insight in the behaviour of the
construction is quickly gathered. Disadvantages are the limited possibilities for modelling of
contact areas and the analysis of stresses on a more detailed level.

Plane elements To analyse strains and stresses along the thickness of the segments, plane
elements may be used in which the coordinates of the element nodes must be in one flat
plane. These are two dimensional elements which can be in plane strain or in plane stress.
Plane stress elements are characterized by the fact that the stress components perpendicular
to the face are zero (σzz = 0) and may be applied if there is no out of plane bending. Plane
strain elements are characterized by the fact that the strain components perpendicular to the
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element face are zero (εzz = 0). Higher order elements may be used to get more accurate
results. Compared to beam models, these models require more elements and the interaction in
the joints is modelled differently. In the segment joints interface elements or contact elements
can be applied. More material properties have to be assigned to an interface element resulting
in a more realistic rotational behaviour. An advantage is the possibility to incorporate the
influence of normal forces on the rotational stiffness. In the ring joints interface elements can
describe the shear in radial and tangential direction as well as the resistance against rotation
implicitly. Because the surface of the contact area between two segments of two different rings
is modelled in two dimensions, the contact surface can also be modelled with two or three
dimensional interface elements leading to a more realistic introduction of interaction forces
into segments.

Shell elements To incorporate effects like the lateral contraction of concrete and axial
jack forces, shell elements can be implemented. The loads may act in any direction between
perpendicular to the surface and parallel to the surface. These elements describe forces in the
third direction, which are not described by beam or plane elements. Typical applications of
curved shell elements are the analysis of curved structures like shell roofs, storage tanks and
ship or aircraft hulls. When only considering a single ring when modelling a tunnel lining,
identical results will be found for beam models as well as for shell models. Shell models
approximate reality more accurate when investigating the behaviour of multiple coupled ad-
joining rings on which an axial force is applied. Solving is more time consuming compared to
plane elements but still results are comprehensible, bending moments as well as stresses and
strains are outputted. The joints in a tunnel lining can be modelled exactly the same way as
described previously.

Figure 7.2: Characteristics of shell elements

Solid elements Solid elements should give the most detailed answers but because of the
tendency to produce large systems of equations they are only used when other elements are
unsuitable or if inaccurate answers are produced. They are difficult to develop and solving
is time consuming. Because no bending moments but strains and stresses are outputted it
is difficult to understand the structural behaviour of the complete FE model. Typical appli-
cations of solid elements are the analysis of voluminous structures like concrete foundations
and off-shore structures, thick walls and floors, and soil masses. Just like for plane elements
interface elements are used for segment and ring joints when modelling a tunnel lining.
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Figure 7.3: Characteristics of solid elements

Modelling of the joints As previously described, the influence of joints on the global
lining behaviour is significant. Most accurate results can probably be reached by using three
dimensional models containing solid elements. This way the interaction between segments
can be modelled realistically. By using friction interface models at the contact areas the
resistance against shear and rotation is modelled. The concrete at these contact areas can be
modelled linear elastic but also non-linear to incorporate plasticity and cracks. The develop-
ment of these three dimensional interface elements is difficult and in combination with three
dimensional modelling of the lining a very large system of equations is built. An alternative
for getting realistic joint and segment behaviour is to only model the joints using complex
interface elements. The segments can be modelled using shell elements resulting in a signifi-
cant decrease in system size.

Easier would be to model the interaction by springs instead of interface elements. Segment
joints can be modelled by applying rotational springs. To obtain a realistic behaviour a
moment-rotation relation is implemented simulating reality. A non-linear Janssen or Glad-
well relation can therefore be implemented. Another option is to perform complex three
dimensional FE analyses on the rotational behaviour of a joint. In these models the effects of
reduced contact thicknesses and non-linear material properties are incorporated. The found
moment-rotation relation is accurate and can be simulated by a simple rotating spring that
can be implemented in another FE model.

A problem that arises is the fact that the implemented relation is only valid for a certain
normal force. When increasing the load the behaviour changes. Because of an ovalisation
load the normal force along the circumference of the lining is also non-uniform resulting in
different moment-rotation relations at different spots. Because the normal force has no in-
fluence on the rotational stiffness in the linear branch these elements can be used as long as
rotations do not become non-linear. When segment joints start to behave in the non-linear
branch it is questionable whether the rotating spring elements have to be changed by other
more accurate elements which do incorporate for changing normal forces. In a segment joint
also a radial deformation can take place resulting in shear of the contact areas. This effect can
be neglected by tying translational deformations or by implementing translational interface
elements.
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An alternative for modelling segment joints is to locate a single beam element in between
two segments. When giving this beam no tensile strength, the beam element can simulate
rotations according to Janssen for different normal forces. Also the effect of a reduced contact
thickness and plastic material behaviour can be implemented [Vervuurt 1997]. This method
is probably a good way of modelling segment joints in beam models but requires a lot of
testing to obtain accurate results and numerical stability might be a problem.

Just like for segment joints, the ring joints can be best modelled using three dimensional
interface elements. In reality a friction between concrete and plywood is present as well
as a shear force in the plywood itself. The material properties can be obtained from a
translation-elongation diagram obtained from experiments. In these joints also a rotation in
axial direction can take place. This can once again be modelled by a rotating spring or can
be neglected by tying rotational degrees of freedom.

7.1.2 Results of earlier constructed FE models of tunnel linings

In Vollema (1996) a comparison is made between the different possibilities described above to
model a tunnel lining. These comparisons are performed using linear elastic material proper-
ties. For the results distinctions are made between single and multiple ring models.

In single ring models the maximum bending moments and normal forces are found on the
quadrants of the lining. In multiple ring models maximum bending moments occur in cross-
sections with multiple joints. When all concrete segments and ring joints possess an infinite
stiffness, hardly any deviations in results are found between the different element models, just
like the number of rings modelled does not have any influence.

When modelling a single ring with or without segment joints a shell model shows a stiffer
response compared to beam models. This can be explained by the presence of membrane
forces in shell elements. For the model including joints, the shear force in shell models is
higher compared to beam models.

Larger bending moments are found when modelling two adjoining rings with beam elements,
coupled by springs at the position of the segment joints. This is explained by the fact that
the moment in two rings at a place of a segment joint has to be carried by one segment. At
the position of a ring joint, moments are transferred to the adjacent ring, which results in
higher bending moments in that segment. If the springs are moved a quarter of a segment,
lower moments were found because on the spots where a ring joint is present both segments
can carry the loading.

The positioning of the springs will have no effect [Vollema 1996] on maximum values for shear
forces. When using more springs a little bit higher shear forces are found. The number and
position of the springs is of major importance for bending moments and stresses. Using more
springs lowers bending moments in the segments. In all models no differences are found in
normal forces.
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7.2 Single tunnel segment

In the literature review the behaviour of the segment joints and the ring joints is extensively
outlined. Theoretical analyses as well as the results of experiments are described leading to
a good impression of their behaviour. Another important component of the lining are the
tunnel segments itself. In this chapter the behaviour of a single segment is analysed using FE
analysis.

The most important property of a single segment is the ultimate bending moment capacity.
This bending capacity is very easily calculated analytically by assuming that the concrete
takes all compression forces and the reinforcement carries all tensile forces. This results in a
bending moment capacity of the segment of 320 kNm. The assumption of not taking into
account the tensile capacity of concrete is based on the fact that at ultimate curvature most
of the concrete in the tensile zone is cracked and that the uncracked part of the tensile zone
is negligible small. In contrast to this approach, the tensile properties of the concrete tunnel
segments might not be negligible, depending on the reinforcement ratio. In the following
section the importance of the tensile properties are discussed and the bearing capacity of the
tunnel segments is estimated.

7.2.1 Bending moment-curvature relation of a tunnel segment

For studying the bending behaviour of a single tunnel segment, it is useful to plot a moment-
curvature relation. For this purpose a single segment is modelled as a straight beam with
length 4.000 mm, subject to a constant normal force and an increasing bending moment. This
segment is subdivided into 40 finite beam elements resulting in a constant element length of
100 mm. As previously mentioned, a very low amount of reinforcement is located in the seg-
ments. The effect of the amount of reinforcement on the bending moment-curvature relation
is presented graphically in figure 7.4.

In case no reinforcement is applied the concrete takes all tensile forces resulting in a maxi-
mum bending moment capacity of 338 kNm. After reaching this peak moment the bending
moments will drop with increasing curvature until the segment fails due to a fully developed
crack. For ‘normal’ amounts of reinforcement the reinforcement takes the tensile forces from
the concrete and the maximum bending moment is reached when the reinforcement reaches
its yield strength. The more reinforcement is applied, the higher the bending moment ca-
pacity will be. For the reinforcement amount as used in the tunnel segments, the amount
is just enough to take over the tensile forces in the concrete. At increasing curvatures the
stresses in the reinforcement cannot increase resulting in a constant, not increasing, bending
moment. Failure will occur the moment the ultimate strain of the reinforcement is reached,
or the moment the ultimate compression strain of the concrete is reached. The calculation of
the bending moment-curvature relations is performed taking into account a tensile strength
of 4 N/mm2 for the concrete. If a higher tensile strength is applied it is obvious that the
applied amount of reinforcement is not enough to take over all tensile forces. In figure 7.4
also two curves are plotted for higher percentages of reinforcement. The effect is obviously
an increase in bending moment capacity. More important to notice is that for these higher
reinforcement ratio’s the influence of the tensile properties of the concrete is negligible.
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Figure 7.4: Effect of amount of reinforcement on bending moment-curvature relation
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Figure 7.5: Effect of tensile strength of the concrete on bending moment-curvature relation

From the bending moment-curvature relations shown above, it is concluded that the applied
amount of reinforcement in the tunnel segments not raises the bending moment capacity af-
ter reaching the tensile strength of the concrete. For this reason the influence of the tensile
properties of the concrete might be of major importance to the bending behaviour of the
segments. To investigate this, the amount of reinforcement is set to the amount as used in
the experiments, and the tensile strength of the concrete is studied by changing its value. For
five different values of the tensile strength, bending-moment curvature relations are obtained
and shown in figure 7.5.
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Figure 7.6: Effect of fracture energy on bending moment-curvature relation

0

50

100

150

200

250

300

350

400

450

500

0,
00

E+
00

2,
00

E-
06

4,
00

E-
06

6,
00

E-
06

8,
00

E-
06

1,
00

E-
05

1,
20

E-
05

1,
40

E-
05

1,
60

E-
05

1,
80

E-
05

2,
00

E-
05

Curvature [1/mm] 

Be
nd

in
g 

M
om

en
t [

kN
m

]. 

Element length=20 [mm] 

Element length=100 [mm] 

Element length=500 [mm] 

Input data
Element type CL9BE
Beam height 400
Beam width 1500

Nr. int. points 31

Nr. elements used beamlength
elementlength

Sim. performed force contr.
YOUNG 36.000
POISON 0,2
CRKVAL 4
TENSIO Hordyk

GF 0,1

CRACKB elementlength
2

YIELD DRUCKE
YLDVAL 26 0,17 0,17

Asteel 864mm2 = 0, 32%

Figure 7.7: Effect of element size on bending moment-curvature relation

It can already be concluded that if tensile strengths higher than 4 N/mm2 are applied, a
peak bending moment is reached without reaching the yield strength of the reinforcement.
The tensile strength of the concrete, which is usually disregarded, results in cases that the
peak bending moment overcomes the bending moment of limit design. The point that the
plotted curves deviate from the linear branch, the maximum tensile strength of the concrete
is reached and a non-linear behaviour is recognized. With increasing curvatures the bend-
ing moments drop to the point in which the reinforcement is ‘activated’. How quick this is
reached depends on the softening behaviour of the concrete which is characterised by the
fracture energy. To investigate the influence of the fracture energy on the bending behaviour,
again some FE calculations are performed in which the fracture energy of the concrete is
changed. The influence of this parameter is shown in figure 7.6. For the higher values of
the fracture energy the bending moment can significantly increase after reaching the tensile
strength at the outer fibres of the concrete.

The analyses performed in the previous paragraphs are based on FE calculations on a single
tunnel segment. During calculations it became clear that the results of the calculations are
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very mesh dependent. In figure 7.7 the results of different used element sizes are shown.
Using a course mesh resulted in a relatively low bending moment capacity in comparison to
using a fine mesh which resulted in a high bending moment capacity. This mesh dependent
behaviour seems to be only of influence in the non-linear branch of the bending moment-
curvature relation and obviously has something to do with the softening parameters of the
concrete. This in combination with the fact that it is expected that the tensile parameters
have a large influence on the bending behaviour, it is very important to know how cracks
develop in concrete an how DIANA processes the softening behaviour.

7.2.2 Softening behaviour of concrete

Before going into detail about the numerical aspects of dealing with softening of the con-
crete, a brief review of the tensile properties of concrete are discussed. For understanding the
fracture behaviour of the concrete Hillerborg (1976) proposed the ‘fictitious crack model’. In
this model a distinction is made between a ‘visible crack’ and a ‘fictitious’ crack ahead of the
visible crack, see figure 7.8. In this model a ‘visible’ crack does mean a crack which cannot
transfer tensile stresses, whereas the ‘fictitious’ crack can transfer tensile stresses. The stress
in the softening branch depends on the crack opening in the ‘fictitious crack’. The relation be-
tween crack opening and stress is obtained from a deformation-controlled uniaxial tensile test.

Figure 7.8: Fictitious Crack Model proposed by Hillerborg in 1976 (left), concrete bar strained uni-
axial in tension (middle) and load-deformation relation for concrete bar (right)

When a bar is strained in tension, in a deformation-controlled experiment, it first reacts
elastically and the obtained linear load-deformation relation can directly be replaced by a
stress-strain relation for the material. At the moment the tensile stress reaches its strength,
strains start to localize within a narrow zone in which micro cracks develop, zone I in figure
7.8. Stresses that can be transferred don’t suddenly drop to zero but decrease with increas-
ing deformations. This process will occur in the weakest cross-section of the concrete bar
whereas the remaining cross-sections remain elastic, meaning that stresses drop according to
a linear stress-strain relation. In the cross-section in which cracking starts it is not longer
valid to use a stress-strain relation, because the strains are influenced by the length over
which is measured. Caused by the localization of cracks, the concrete bar can be split up into
a stress-strain relation for the concrete outside a crack and a stress-crack opening relation
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for the crack itself. In figure 7.8 a concrete bar loaded by a tensile force and its resulting
load-deformation relation for the cracking zone as well as for the elastic zone is shown.

The obtained crack-stress relation from an uniaxial tensile test is valid for an infinitely small
width and causes problems when modelling with finite elements. To create the possibility of
having cracks on arbitrary locations, a smeared crack approach is used. This so called Crack
Band Model approach was firstly proposed by Bazant (1976). The basic idea of this model is
to characterize the material behaviour in the fracture zone in a smeared manner through a
strain-softening constitutive relation. When the tensile strength of the concrete in a certain
element is reached the stress-crack opening relation, obtained from the uniaxial tensile test, is
transformed into a stress-strain relation. The stress-strain relation is formed such that every
single element is able to describe a single crack, hence, every element possesses such a stress-
strain relation that measuring over a complete element a crack-stress relation according to an
uniaxial tensile test is obtained. The equivalent strain is calculated according to equation 7.1
and depends on the distance, hcr, between two integration points perpendicular to the crack
direction. hcr is also called the crack bandwidth.

εcr =
W

h
(7.1)

The transformation of a stress-crack width relation into a stress-strain relation is explained
graphically in figure 7.9 by introducing a material parameter Gf which is called the fracture
energy. The fracture energy is the area under the stress-crack relation and represents the en-
ergy absorbed in the crack formation per unit area of the cross-section, hence, per unit area
of crack. This fracture energy is a material parameter and together with the crack bandwidth
the stress-strain relation is determined. By setting the crack bandwidth equal to the length
of an element, every single element is able to simulate one single crack.

Figure 7.9: Crack-stress relation of a uniaxial strained bar (left) and corresponding stress-strain
relation in which hcr is the crack bandwidth of a finite element

By transforming the stress-crack width relation into a stress-strain relation, the initiation of
cracks can now be simulated using finite elements independent of the used element size. The
softening curve of the concrete deals with the stresses in such a way that the corresponding
strain results in the correct crack width. So, when using beam elements a softening curve
is applied to deal with the crack width. When using long elements a ‘light’ softening curve
has to be applied to describe the same crack. When using short elements a ‘heavy’ softening
curve has to be applied to describe the same crack. The influence of the element size on the
stress-strain relation is explained graphically in figure 7.10.
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Figure 7.10: Effect of element length on stress-strain relation, course element (top) and fine element
(bottom)

For bars, uniaxial strained, the maximum load capacity is reached at the moment that the
tensile strength is reached and is independent of the shape of the softening curve. In contrast
to these simple bars, the bending moment capacity of a concrete beam is dependent on the
shape of the softening curve. Softening may increase the peak bending moment capacity of a
beam. To illustrate this behaviour, a simply supported notched unreinforced concrete beam
is subject to bending using FE calculations. Only the element at mid span is given non-linear
concrete properties as the rest of the notched beam is modelled elastically. By changing the
length of the element at mid span indirectly different stress-strain relations are assigned to the
beam. This FE calculation is described in Hordijk (1991) and the load-deflection diagram is
shown in figure 7.11. From the graph it is concluded that the load capacity of an unreinforced
concrete beam is affected by the shape of the softening curve. The effect of the shape of the
softening diagram on the load bearing capacity of concrete beams is extensively treated in
Alvaredo and Torrent (1987).
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Figure 7.11: Influence of crack bandwidth on the force-deflection relation of a three point bending
test

The variable softening diagrams are responsible for the mesh sensitive behaviour observed
in figure 7.7. To avoid spurious mesh sensitivity and achieve objectivity for concrete beams

67



Ultimate Limit State Analysis of a Segmented Tunnel Lining

subject to bending, it is necessary to assure that the energy dissipation due to fracture per
unit length and width is constant. Therefore the length of elements should not vary too much.

If straining a concrete bar uniaxially the fictitious crack model can be well used and is defined
by two parameters Gf and ft. The crack bandwidth is derived from the distance between the
integration points which is the same as the crack bandwidth in this case. For a beam subject to
bending the crack bandwidth cannot any longer be derived from this distance. Therefore, this
crack band model is characterized by three instead of two parameters ft, Gf and wc, in which
wc is the crack bandwidth. The width of the crack band can be assumed to be approximately
wc ≈ 3 × dmax according to Bazant and Oh (1983) in which dmax represents the maximum
aggregate size. This conclusion was drawn on the basis of curve fitting experimental obtained
data, although wc values ranging from dmax to 6 dmax gave also good results. In Bazant
(1989) the influence of the parameter wc is estimated to be rather weak for situations with
isolated cracks but important for situations in which parallel closely spaced cracks do occur,
like concrete beams with the presence of tension reinforcement. In that case the parameter
wc basically determines the minimum possible crack spacing.

Sr;max = 3, 4c + 0, 425k1k2
φ

ρ
= 468mm (7.2)

The minimum possible crack spacing can be derived from the material and geometrical prop-
erties of the beam. According to EuroCode 2 the maximum crack spacing Sr;max is given by
equation 7.2. The minimum crack spacing is half of the maximum crack spacing which results
in 468/2=234 mm. The occurring crack spacing in a uniaxial restraint bar varies between
these two values. According to Walraven and Galjaard (1997) more or less the same values
are found. After the experimental full-scale tunnel tests were performed a map including all
visible cracks and their positions was drawn. On the most heavily loaded segments crack
spacings of around the 300 mm were found after completion of experiment C01, whereas
after completion of C02 more densely spaced cracks were found. The exact spacings were not
determined after the experiments but it indicates that closely spaced cracks are possible.
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Element type CL9BE
Beam length 4.000
Beam height 400
Beam width 1500
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CRKVAL 4
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YIELD DRUCKE
YLDVAL 26 0,17 0,17

Asteel 864mm2 = 0, 32%

Figure 7.12: Bending moment-curvature relations for different concrete properties
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Due to the fact that the softening properties of the concrete are uncertain and more important
are of significant influence on the segment behaviour, a bending moment-curvature relation
can be based on things which are known for sure, or what the segments can carry at least
without the incorporation of softening. In figure 7.12 a bending moment-curvature relation is
plotted which is based on concrete without tensile properties. This represents a lower limit for
the bending behaviour of the concrete. A likely tensile strength of the concrete is 4 N/mm2.
This strength is almost certainly reached during the experiment and by assigning no tension
softening, brittle behaviour, the red line in figure 7.12 is also almost sure a lower limit. By as-
signing conservative softening properties to the concrete the green line can also be considered
as a lower limit. By shortening the length of the finite elements to 100 mm a crack bandwidth
of 50 mm (quadratic elements including two integration points along its length) is reached
which is equivalent to three times the maximum aggregate size of the concrete. The obtained
curve using these concrete properties is still a likely situation. For higher values of the fracture
energy or by decreasing the element length even further, higher bending moment-curvature
relations are obtained, but it is uncertain whether the found bending moments were reached
during the experiment.
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Figure 7.13: Four different bending moment-curvature relations which are imported in the com-
plete lining model (left) and used tension softening diagrams (right) (independent from
element size)

To deal with the uncertainties described above, four bending moment-curvature relations are
given in figure 7.13 which are implemented separately in the FE model of the complete tun-
nel lining. The blue line gives a lower limit meaning that the obtained FE results should
give a lower load capacity of the lining compared to the experimental obtained load capacity.
The green and red lines in figure 7.13 are possibly somewhat closer to reality, compared to
the blue line, but it is not certain whether the concrete segments were really able to carry
those bending moments. The peak bending moment reached by the most optimistic curve is
470 kNm. This is reached by a somewhat ‘heavy’ softening curve but with a tensile strength
of 4 N/mm2. In table 7.1 all relevant input parameters belonging to the four different bending
moment-curvature relations are given.
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Curve I

YOUNG 36.000
POISON 0,2
CRACK 1

CRKVAL 0
TENSIO 5

GF 0
CRACKB 100
TAUCRI 1
BETA 0,01
YIELD Drucke

YLDVAL 26
0,1736
0,1736

Curve II

YOUNG 36.000
POISON 0,2
CRACK 1

CRKVAL 4
TENSIO 5

GF 0,1
CRACKB 100
TAUCRI 1
BETA 0,01
YIELD Drucke

YLDVAL 26
0,1736
0,1736

Curve III

YOUNG 36.000
POISON 0,2
CRACK 1

CRKVAL 4
TENSIO 5

GF 0,15
CRACKB 50
TAUCRI 1
BETA 0,01
YIELD Drucke

YLDVAL 26
0,1736
0,1736

Curve IV

YOUNG 36.000
POISON 0,2
CRACK 1

CRKVAL 4
TENSIO 5

GF 0,2
CRACKB 20
TAUCRI 1
BETA 0,01
YIELD Drucke

YLDVAL 26
0,1736
0,1736

Table 7.1: Input data to obtain the four bending moment-curvature relations as shown in figure 7.13

The bending moment-curvature relations obtained above will be implemented in the FE model
of the complete tunnel lining. This complete model has an element length of 200 mm meaning
that for Curve III and IV the crack bandwidth wc < hcr. When wc < hcr the localisation
of cracks is described less accurate but it is estimated that it does not affect the structural
behaviour. Care should be taken during the analysis and the interpretation of the results
in the cracked segments. Only when analysing the localisation and development of cracks it
might be better to built a new FE model with decreased element sizes.
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7.3 Simplified tunnel model

To investigate the influence of plastic hinges in the lining a simple FE model is considered.
Three tunnel rings are modelled without segment joints and are coupled by springs repre-
senting the ring joints. The continuous rings are equally loaded by an ovalisation radial load
of 10 N/mm and the calculations are performed according to the theory of linear elasticity.
After applying this load, a plastic hinge is installed in ring 1 and ring 3. These two hinges
are installed on the same circumferential location as where the bending moments, due to
the ovalisation load, reach their maximum values. Subsequently the load is doubled to 20
N/mm. As a result of the installed plastic hinges, the bending moment capacity in those
spots is reached, leading to a redistribution of bending moments. Because no plastic hinge in
the middle ring is present, bending moments are transferred to this middle ring by the ring
joints, modelled as springs. Bending moments are also redistributed in the ring itself. The
results are treaded in the following paragraphs.
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Figure 7.14: Overview of bending moments in the lining, three continuous rings without plastic
hinges, load 10 N/mm, ring 1, 2, 3 and the analytical derived bending moments possess
the same curve

At an ovalisation load of 10 N/mm, the bending moments are equal in all three rings and
agree with analytically expected values (7.14). After applying the load, two plastic hinges
are installed at one of the four spots where maximum bending moments are present. This is
simulated by removing one element from ring 1 and ring 3 and put nodal moments on the
two ends of the removed element. When this moment is applied the ovalisation radial load
is doubled. The bending moments in ring 1 and ring 3, at the place of the plastic hinges,
cannot increase leading to a redistribution of bending moments. In figure 7.15 the results of
the bending moments in the lining at an ovalisation load of 20 N/mm are shown including
the combined bending moments in the ring and the analytical expected combined bending
moments. Because bending moments in ring 2 are higher than expected, based on analytical
values, it can be concluded from this graph that a part of the bending moments in ring 1
and ring 3 are transferred to the middle ring. It can be seen that bending moments in ring 1
and ring 3 do not increase and that ring 2 carries additional loading. However, the bending
moments in the three rings combined are not the same as the analytically expected bending
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moment at that point. This indicates that a part of the forces is redistributed in the ring
itself. This is explained by the fact that redistribution of bending moments to the middle
ring leads to a larger curvature of the cross-section at that spot in ring 2. These additional
curvatures are compensated by an additional curvature along the whole circumference of the
lining. In case of a more complex system this can also be compensated in other segment joints
or plastic hinges along the circumference of the lining.-700
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Figure 7.15: Overview of bending moments in the lining, three continuous rings with plastic hinges
in ring 1 and ring 3 at 0 π, ovalisation load 20 N/mm, ring 1 and 3 possess the same
curve

The portion of bending moments that is transferred by a redistribution to the middle ring or
by a redistribution in the ring itself is related to the stiffness of the ring joints. A high spring
stiffness leads to a high redistribution of bending moments to the middle ring. A low spring
stiffness leads to redistribution of bending moments in the ring itself. In the extreme case
of no interaction between the three rings all bending moments are redistributed in the ring
itself. For different values of the spring stiffness the percentage of redistribution to the middle
ring or in the ring itself is shown in figure 7.16. In case of an eternal spring stiffness half of
the bending moments are transferred to the middle ring and half of the bending moments
are redistributed in circumferential direction. Realistic values for the spring stiffness, when
using plywood or concrete-to-concrete contact is established, lay in the range varying between
105N/mm and 107N/mm resulting in a redistribution in the ring itself of 52% to 66%. This
percentage is not only affected by the stiffness of the ring interaction but also by the distance
between the two installed moments in a single ring. It is expected that this distance will
influence results but it is not investigated how much.

When increasing the load only by a little, just after the two plastic hinges in ring 1 and
ring 3 are installed, bending moments are mostly redistributed in circumferential direction.
Increasing the loading even further also redistribution to the middle ring takes place. When
the loading is doubled, a stable situation is reached meaning that redistribution of moments
will take place according to figure 7.16.
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Figure 7.16: Redistribution of bending moments

Having applied a load of 20 N/mm, the maximum bending moment is present in ring 2 at the
circumferential position of the hinges in ring 1 and ring 3. The element at that point in ring
2 is removed and an equivalent nodal bending moment is installed, resulting in an ongoing
plastic hinge in axial direction along the cross-section. When increasing load again, the only
way of redistribution of forces is by redistribution in circumferential direction. The results of
three rings loaded by an ovalisation radial load of 30 N/mm and three plastic hinges at the
same position in all three rings is shown in figure 7.17. It is seen that the bending moment at
0,00 π is not increased whereas along the remaining part of the lining the bending moments
are higher than analytically expected. Because the calculation is performed linear elastic,
the bending moments are directly related to the curvature in the concrete. The additional
rotations in the plastic cross-section are compensated by the entire lining and therefore higher
bending moments are found along the whole circumference compared to analytical values.
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Figure 7.17: Overview of bending moments in the lining, three continuous rings with plastic hinges
in every ring located at 0 π, load 30 N/mm, ring 1 = ring 3
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Chapter 8

Description of FE Models

In order to obtain a detailed description of the actual behaviour of the experimental tunnel
lining a three dimensional FE model using solids should give the most detailed results provided
that a very fine mesh is used. On the other hand, those models require a large amount
of processing capacity. Another large problem of complicated three dimensional models is
that they are less comprehensible and the detailed output results are difficult to correlate to
physical processes. Also, from an engineering point of view their is a need for simple and
reliable FE models. To predict the ultimate load capacity due to an ovalisation load, one and
two dimensional models are probably the best option. To validate the numerical calculations
two models are built, a one dimensional model using beam elements and a two dimensional
model using plane stress elements. These two models are described in the following sections.

8.1 1D FE model

In this section the simplest model of all is described using beam elements. This 1D model
will require a very short processing time and a lot of insight in the structural behaviour is
quickly gathered. The axial jack forces cannot be incorporated and the material properties
of the plywood in between succeeding rings therefore have to be changed manually when
another axial force is applied. The geometry and the physical properties of the 1D model are
separately treated in the following sections.

8.1.1 Geometry of FE Model

The FE model is composed of three rings to be able to compare results with experimental
results from the full-scale test. Each ring is, just like the experiment, built up out of 7 normal
segments and 1 key segment. To model the segments, 2 dimensional 3 noded beam elements
(CL9BE) are used. The normal strain εxx varies linearly over the cross-section and is inte-
grated at 11 points. Every segment in the FE model contains 22 elements, except the key
segments which are built up out of 5 elements. Every node of an element possesses 3 degrees
of freedom subdivided in 2 translational and 1 rotational degree of freedom, figure 8.1. Bend-
ing moments are only described in one direction which results in no axial bending moments.
Because axial jacks apply external forces in that direction and because of the non-parallel
alignment of the segments according to figure 2.2, it is expected that bending moments are
present in this direction. Because the concrete segments possess a height of 1.500 mm they
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Figure 8.1: Degrees of freedom for CL9BE beam element (left) and L7BEN beam element (right)

Figure 8.2: Topology (left), translational degrees of freedom (middle) and rotational degree of free-
dom (right) for a CL24I interface element

X 
Y 

Z 

Model: 
TUN4

16 MAR 2007 08:25:14 iDIANA 9.2-06 : Bouwdienst 

 

Figure 8.3: Schematic overview of total FE model including three tunnel rings composed of beam
elements, reinforcement and ring interfaces (left) and close-up of segments and ring
interfaces shown as blue areas (right)
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are very stiff and because these moments are not important for studying the effects of ovali-
sation loads these bending moments are not incorporated in the FE model.

The joint connections are subdivided in the segment joints and ring joints. The segment joints
are modelled using the Janssen concept. According to Janssen an equivalent beam with a
length equal to its reduced joint height should be included. This results in a 170 mm in length
beam between two segments. To describe the rotational behaviour within this single element,
no tensile strength is assigned to it. When exceeding the tensile strength, as a result of the
occurring bending moment which cannot be compensated by the normal force, the bending
stiffness is reduced and the joint opens. In the FE model an increase in the rotation is then
noticed. In these joints the effect of shear or slip of the joint is not incorporated. It is thought
that shear in radial direction will only have a minor influence on the ultimate load bearing
capacity of the lining.
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Figure 8.4: Theoretical bending moment-rotation behaviour according to Janssen compared to FE
calculations for different values of the normal force, using L7BEN beam elements

With 8 joints in a single ring, each possessing a length of 170 mm, a large part of the circum-
ference is occupied by the segment joints where in reality concrete segments are located. The
same rotational behaviour can be modelled using a shorter element and simultaneously reduc-
ing its Young’s modulus. In the used FE model a single element (L7BEN) with a reduced
length of 25 mm is implemented. For degrees of freedom see figure 8.1. The L7BEN element
is chosen above a CL9BE to force joint deformations to be pure bending (no shear defor-
mations are accounted for using L7BEN elements). In figure 8.4 the rotational behaviour
of a single joint is compared to Janssen for different levels of the normal force. The Young’s
modulus is set to 5.300 N/mm2 to simulate behaviour according to Janssen. Later on this
Young’s modulus is reduced (2.000 N/mm2) to account for the experimentally found lower
initial stiffnesses according to figure 2.15. From the graph it is concluded that for all shown
normal forces a perfect agreement with the Janssen relation is found. Therefore, this single
beam element between two segments perfectly describes the rotational behaviour of a joint.
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In order to investigate global lining behaviour in the ULS, the modelling of the ring joints is
vital. Looking at deformations caused by ovalisation loads, only sliding of two neighbouring
segments has to be modelled. When, for example, investigating the effect of the beam action
of subsequent rings, the mutual rotational behaviour of adjoining rings has to be included.
This can be modelled by including the compression of the plywood in axial direction. This
way a gap on one side of the lining can be formed resulting in global axial bending of the
lining. No such behaviour is important in assessing lining behaviour when loads do not change
in axial direction, like in the full-scale experiment. In the used FE model only the tangential
and radial sliding of the plywood is therefore implemented by 3 dimensional six (3+3) noded
interface elements (CL24I), counting 3 translational and 1 rotational degree of freedom per
node. Because this element is implemented in a 2 dimensional FE model, 1 rotational and 1
translational degree of freedom is restrained, both in axial direction. The material properties
are as such that shear translations are uncoupled. Only in the non-linear branch, if a shear
strength is implemented, this can result in a little bit higher strength than inputted. In the
experiment, as well as in the FE model, every segment is connected with a neighbouring ring
by four spots on each side of the segment. The dimensions of the located plywood sheets are
150×400 mm2. The beam elements which have to be connected possess a length of 200 mm
and therefore two interface elements are applied per sheet of plywood. This results in 2×5 in-
teraction points connected per sheet of plywood, resulting in a realistic introduction of forces.

In the full-scale experiments the load on the tunnel lining is applied by hydraulic jacks.
Although the force from the jacks is more evenly spread by wooden Azob plates, not an ideal
line load is applied. In the FE model an ideal sinusoidal line load is applied. Translations in
the axial direction of the tunnel and rotations in radial and tangential direction are restraint
because it is a 2D model. Translational deformations in tangential direction for four nodes
located on the quadrants of the lining are restraint in ring 1 simulating the active hydraulic
supports. Ring 2 and ring 3 do not have additional boundary conditions.

8.1.2 Material properties of FE Model

Due to the fact that the lining is loaded until cracking of the concrete or an excessive increase
in ovalisational deformations is reached, non-linear behaviour of all components in the FE
model is included. To create the possibility of having cracks on an arbitrary location, the
multi directional fixed crack or smeared cracking theory is implemented. The fundamental
difference of smeared cracking compared to the total strain crack models is the decomposition
of the total strain into an elastic strain and a crack strain. This decomposition of the strain
allows for combining the decomposed crack model with for instance a plastic behaviour of the
concrete in a transparent manner.

Prior to cracking the concrete is modelled isotropic and linear elastic. When the principle ten-
sile stress is exceeded, or the tension cut-off criterion is violated by a combination of principal
stresses, an orthotropic stress-strain relation is applied. The local axis system is transformed
orthogonal to the principal stresses and a non-linear tension softening relation according to
Hordijk et al. (1986) is applied orthogonal to the originated crack. Because the crack is fixed,
principal stresses can rebuild in a direction inclined to the first crack. To reduce these shear
forces a shear retention factor β is implemented. When using a rotating smeared crack con-
cept no shear retention factor has to be chosen because the maximum principal tensile stress
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is kept under control while it rotates. An overstiff response may be recognized when using
the fixed crack concept, because of local stress rebuild in inclined directions which leads to
severe stress locking on a global level. Therefore, the shear retention factor should be taken
as low as possible and preferably zero to improve the fixed smeared crack results. More recent
research seems to indicate that it is better to assume that the crack orientation rotates with
the direction of the maximum principal stress, which means that shear stresses on the crack
plane can never arise.

Because all concrete segments in the FE model are meshed to elements with a length of
approximately 200 mm, the softening behaviour is more or less equal for all beams. As pre-
viously explained, this mesh is very course so that a more ‘heavy’ softening curve is needed
to keep the same bending behaviour compared to using a fine mesh. For the compression
regions the yield condition of Drucker-Prager is used which is a smooth approximation of the
Mohr-Coulomb yield surface. Because the compression forces in the segments stay relatively
low it is not expected that the yield criterion affects the results.

The ring joints are modelled using interface elements. Only material properties are given
in the tangential and radial direction of the lining. The translations and rotations in axial
direction of the lining are restraint. In the tangential and radial direction an uncoupled stress-
deformation relation is given. In the first experiment an axial force of 800 kN/Jack results
in a total axial force of 11.200 kN . With 4 plywood sheets per segment a resulting force of
11.200
7×4 = 400 kN per plywood sheet is present. If µ = 0, 8 is applied a total shear force of

400× 0, 8 = 320 kN per sheet can be transferred. Presuming an initial stiffness of 106N/mm
the shear strength of the sheets is reached at a displacement of 320.000

106 = 0, 32 mm. The shear
strength has to be converted to a stress per square millimetre, 320.000

150×400 = 5, 33 N/mm2 and
results in a stiffness of 5,33

0,32 = 16, 67 N/mm1. This stiffness is implemented in the FE model.
If the axial force changes, like for the second experiment, another stress-displacement diagram
has to be calculated. The µ, which is based on table 2.1, has also to be reconsidered.
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8.2 2D FE Model

A more detailed numerical model including the shear distribution over the height of the seg-
ments is obtained by using plain stress elements in stead of beam elements. Plane stress
elements are characterized by the fact that the stress components perpendicular to the face
are zero. These elements may only be applied if there is no bending outside the plane of
the structure. Because the axial jacks are the only external forces which can cause bending
moments in this axial direction the plane stress elements may be used. Advantage of this
approach is that in this model the strain can vary non-linearly over the height of the concrete
segments. Also the cracking of the concrete can be analysed in more detail using this ap-
proach. In the previously described beam model the interaction forces between the rings are
modelled using line interfaces. A more realistic approach is achieved by applying plane inter-
faces. This way forces are transferred and introduced more evenly and point loads are omitted.

 

Figure 8.5: Schematic overview of total FE model including beam elements, reinforcement and ring
interfaces (left), close-up of lining (right top) and mesh division of segments, segment
interfaces and ring interfaces (right bottom)

8.2.1 Geometry of FE Model

The geometry is kept the same as in the experiment and the beam model. The lining is
composed of three rings, each containing 5 normal segments, 2 counter segments and 1 key
segment. A schematic overview of the lining is found in figure 8.5. The concrete segments
are modelled using quadrilateral shell elements. This is an eight-noded quadrilateral isopara-
metric curved shell element. Each node accounts for translations in the global X, Y and Z
directions and local rotations in the X and Y direction, represented graphically in figure 8.6.
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By restraining the local translational degree of freedom in the Z direction and local rotational
degrees of freedom in the X and Y direction a plane stress element is obtained. To avoid
membrane and shear locking an 2×2 integration scheme over the area is applied. Over the
segmental thickness of a concrete tunnel segment, 6 plane stress elements are applied. With
the mentioned integration scheme this results in 12 integrations points along the height of the
segment which is one more compared to the beam elements.

Figure 8.6: Translational (left) and rotational (right) degrees of freedom for a CQ40S quadrilaleteral
shell element

Figure 8.7: Topology (left) and translational degrees of freedom (right) for a CQ48I interface element

With the developed 2D plane stress model a different approach is needed for modelling the
segment joints. When a single beam element is applied in this 2D model and is placed in
between the middle node of one segment to the node of the connecting segment, strange local
effects may introduce. A solution to this problem is to restrain the side of a segment by apply-
ing a stiff beam element over the height of the segment. A more realistic solution is to apply
interface elements or distributed springs along the distance of the contact area which is the
joint height 170 mm. The thickness of the joint, or the distance between the two segments, is
50 mm. By only assigning a compression stiffness to these springs, the theoretical behaviour
according to Janssen is simulated. To get the exact moment-rotation relations belonging to
this joint, four of the six edges are connected with four of the six edges of the connecting
segment. The mesh at the edge has to be locally adjusted to get the corresponding joint
height. To get a good behaviour, the edges are connected using interface elements(CL12I).
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The CL12I element is an interface element between two lines in a 2D configuration, for local
axes see figure 8.8. The normal stiffness is given such a value that the rotational behaviour
is according to Janssen. The comparison of rotations under different normal forces between
the interface element and the theory according to Janssen is shown in figure 8.9. Just like
for the L7BEN elements a good agreement is found. In the complete lining model the initial
stiffness is reduced to simulate experimentally found stiffnesses according to figure 2.15.

Figure 8.8: CL12I interface element, topology (left) and degrees of freedom (right)

The CL12I also has a degree of freedom in local x-axis (figure 8.8) which describes the ‘shear’
behaviour in a joint. Because this is not taken into account in the 1D beam model this is also
not taken into account in this model by assigning a high stiffness in this direction. If wanted,
more realistic properties can be assigned by determining the stiffness using the friction coef-
ficient of concrete-to-concrete surface contact. The force introduction into the segments can
be analysed in more detail because of the 2D character of the plane stress and the interface
elements.
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Figure 8.9: Theoretical bending moment-rotation behaviour according to Janssen compared to FE
calculations for different values of the normal force, using CL12I interface elements

Modelling in two dimensions offers the possibility to model the interaction forces between the
three rings more accurately. The line interface elements, as used in the beam model, can be
replaced by plane interface elements. The plywood sheets used in the experiment do have
dimensions of 150 × 400 mm2. In the FE mesh these dimensions correspond to 4 elements.
Every strip of plywood is modelled using four plane quadrilateral elements (CQ48I). Every
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strip of plywood is now simulated by interaction forces acting on a total of 21 nodes. The
positioning of these interface elements is seen in figure 8.5. Again, just like for the CL24I
interface element in the 1D model, the shear and normal direction can be given material
properties. The latter one is restraint by assigning a large stiffness.

8.2.2 Material properties of FE Model

More or less the same properties are assigned to this model as are assigned to the 1D beam
model. The concrete is modelled exactly the same using the multi directional fixed crack
concept. The material properties belonging to the interface elements are modelled somewhat
differently but in the end they possess the same overall behaviour.
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Chapter 9

Results of FE calculations

Due to the fact that the lining is slender no major differences between the 1D and the 2D FE
model are expected at a global level. Some discrepancies may be noticed in the segment and
ring joints because they are modelled in more detail in the 2D model. When plane sections
do not remain plane or when cracking results in strange deformations, also some discrepan-
cies may occur. To validate both models a calculation is performed using the same material
parameters and the results are compared. If a good agreement is found between both models,
detailed analyses can be made by using the 2D model and an influence or parameter study
can be performed using the 1D model. The reason for this is the large processing time of the
2D model. When studying stresses along the height of the beam or studying the propagation
of cracks, the 2D model is more attractive but normal forces and bending moments cannot
be obtained very easily.

9.1 Comparison between the 1D and 2D FE models

First of all, the deformations of the lining in the two models are compared. This comparison
is performed by implementing material properties according to Curve III as described in table
7.1. These material properties are not according to the full-scale test and are only used for
performing a comparison between the 1D and the 2D model! Just like in chapter 5.2, the
average maximum deformation on four points of every lining is defined for computing the
deformations. In figure 9.1 the ovalisational deformation of the two FE models is compared
and concluded that a very good agreement is found. The deformations match almost exactly.
These deformations are larger than observed in the full-scale experiment and a lower load
bearing capacity is reached. Later on in section 9.2 more accurate material properties are
implemented to simulate the full-scale test.

The stress distribution along the height of the concrete segments is compared for three dif-
ferent load steps. The 1D FE model is constructed from beam elements which possess 11
integration points along its height whereas the 2D FE model is built up out of 6 rectangular
elements each possessing integration points on two different heights, resulting in a total of 12
integration points along the height of a segment. For the 1D model the cross-sections remain
plane which results in a smooth stress distribution. In the 2D model the cross-sections do
not have to remain plane, caused by the fact that a cross-section is built up out of 6 rectan-
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Figure 9.1: Comparison of FE deformations of lining between 1D model and 2D model

gular elements. In figure 9.2, the stresses obtained from the 1D and 2D FE calculations are
compared. For the load at 20 kN/Jack and 25 kN/Jack the results show a good agreement
but for the load at 30 kN/Jack the 1D and 2D results show some discrepancies. Studying
neighbouring cross-sections learns that especially the softening branch shows differences be-
tween neighbouring cross-sections in the same concrete segment. At 30 kN/Jack the segment
is heavily cracked. Some cracks are loading and some are unloading because of the initiation
of new cracks and the further cracking of existing cracks. Also the height of the compression
zone and the ultimate compression stress show some discrepancies at 30 kN/Jack. Overall
rotations over the complete segment seem to agree, so discrepancies seem to be caused by
different crack patterns.
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Figure 9.2: Stress distribution along height of beam at midpoint of segment 5 in ring 2 drawn for
three different load steps (left =20 kN/Jack, middle =25 kN/Jack, right =30 kN/Jack),
comparison between 1D and 2D FE Model. Stress in N/mm2 on x-axis and distance
from center line of segment in mm on y-axis

The segment joints are modelled differently in both models. In the 1D model the joints are
modelled using a single beam element and the joints in the 2D model are modelled using six
interface elements. In figure 9.3 the rotations of three segment joints are presented graphically.
The joint in ring 1 between segment 4 and segment 5 is subject to high bending moments
whereas this cross-section only contains 1 concrete segment. Therefore large rotations are
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found and when comparing the rotations between the 1D and the 2D model a very good
agreement is found. For the less loaded joint between segment 1 and segment 2 in the same
ring a minor discrepancy is found in the non-linear branch. For the most heavily loaded joint
in the middle ring again a very good agreement is found between rotation results of the 1D
and 2D model.
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Figure 9.3: Rotation in segment joints calculated with 1D and 2D FE model

From the previous two paragraphs it may be concluded that the behaviour of the tunnel lining
in both models is almost similar. The only thing left to check are the locations where cracks
initiate and how they develop in both models. In both models the element length is exactly
the same from which it may be expected that cracks initiate in the same segment and at a
similar location. When the ovalisation load is increased, some discrepancies might be noticed
due to the fact that cross-sections remain plane in the 1D model contrarily to the 2D model.
The 2D model may better describe the development of cracks when they stay close to the
surface.

The first cracks start to initiate at an ovalisation load of 17 kN/Jack. This occurs in both
models at the same load in the same segment, namely segment 5 in ring 2. Both show five mi-
nor cracks. When increasing the load, more cracks start to initiate and existing cracks develop.
The following segments in which cracks arise are segment 3 and segment 7 in ring 2 at an
ovalisation load of 19,5 kN/Jack in the 1D model. In the 2D model these two segments start
to crack at an ovalisation load of 21,5 kN/Jack. Increasing load even further results in the
initiation of cracks in more segments and rings. Both models indicate the location of cracks in
the same segments. In figure 9.4 all cracks in ring 2 at an ovalisation load of 30 kN/Jack are
represented graphically. Both models show cracks located in the same segments but the num-
ber and depth of the cracks differ. More cracks are found in the 1D model and more of those
are propagated deeper into the segments compared to the 2D model. This can be explained
by the fact that plane sections remain plane in the beam model whereas this is not the case in
the plane stress model composed of 6 elements along the height of a segment. Because the 1D
model shows more cracks, the crack widths of single cracks are less compared to cracks in the
2D model. This results in more or less similar deformations when looking at a whole segment.
This is also confirmed by the fact that ovalisation deformations are equal just like rotations
in the joints which implies that deformations in the segment should also be more or less equal.
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Figure 9.4: Cracking in segments in ring 2 at an ovalisation load of 30 kN/Jack, material properties
not in accordance with full-scale experiment, just a comparison between the 1D and 2D
FE model with material properties according to curve III

The development of cracks seem to be more realistically presented by the 2D model. The
deeper cracks are not as closely spaced as in the 1D model. In segment 5 of ring 2 in the
2D model this is clearly shown by the unloading of cracks in the neighbouring cross-sections
of a deep developed crack. Of some deeper developed cracks the neighbouring cross-sections
do not even show cracking in contrast to the 1D model. In the beam model a number of
deep cracks are closely spaced and no unloading of neighbouring cross-sections is shown. This
is also shown in figure 9.5 in which the crack strains in the middle section of segment 5 of
ring 2 are shown for three different load steps. In these last analysis it is emphasised that
the development of cracks in both models cannot be modelled very accurately because of the
relatively course mesh as explained in chapter 7.2. By refining the mesh the propagation of
cracks may give even more realistic results. In the previous analysis a comparison between
the 1D and the 2D model with the same element length is given and upon that it may be
concluded that even with this course mesh the 2D model give more realistic results regarding
the initiation and propagation of cracks.

The results of FE calculations with 1D beam elements and 2D plane stress elements were
compared in this paragraph. From the results it is concluded that the 1D model gives more or
less the same results as the more advanced 2D model. Even though the propagation of cracks
shows some differences between both models it may be concluded that the global behaviour
of the tunnel lining is the same in both models. Because of the very low computation time
and the ability to analyse structural behaviour more easily the 1D beam model is used from
now on. Only for studying cracks and comparing the location and spacing of cracks both
models are used.
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Figure 9.5: Crack strain in outer fibres in critical segment of middle ring in 1D and 2D FE model at
10 kN/Jack (left), 25 kN/Jack (middle) and 30 kN/Jack (right), material properties
not in accordance with full-scale experiment

9.2 Results of 1D FE analysis compared to experimental re-
sults of C01

9.2.1 External deformations

The results of the FE analysis are used to be able to better understand the structural be-
haviour of the tunnel lining under ULS conditions. As explained in the previous section,
calculations are performed using the 1D FE model. Before going into detail about the struc-
tural behaviour of the lining in the ULS, the deformations found in the experiment and with
the FE calculations are compared. For this comparison the deformations on the four points of
the lining are used as previously discussed in chapter 5.1. Experiment C01 is simulated first.
At the end of this experiment some segments started to crack resulting in changing material
properties. If the first experiment can be simulated well the lining in the model should be
damaged. This damaged lining is used as input for the simulation of the second experiment,
C02.

The FE model as elucidated in chapter 8 is used to simulate both experiments. Four simu-
lations are performed in which the different material properties, according to figure 7.13, are
implemented. The segment joint stiffness is reduced to 38% in order to simulate the bending
behaviour as found during experiments, see figure 2.15. The stiffness of the ring joints is set
to 106 N/mm and equals experimental obtained stiffnesses. The calculation shows for all four
curves reliable results until the peak bending moment, according to figure 7.13, in a certain
segment is reached. Beyond this curvature the model starts to show unreliable results like
the dramatic increase or decrease of normal forces in the segments. At the end of the full-
scale experiment it was noticed that the reinforcement in some of the segments more or less
reached the yield strength but dramatic yielding was not taking place. The calculations will
therefore be stopped the moment the reinforcement steel possesses a plastic strain of 0,875%0.
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Figure 9.6: FE deformations of lining calculated with the four different bending moment-curvature
relations compared to experimental obtained deformations

The material properties of the concrete segments belonging to curve I, figure 7.13, are imple-
mented in the complete lining model. Curve I is based on a tensile strength of 0 N/mm2. It
is expected that this results in a very weak behaviour resulting in larger deformations com-
pared to experimentally obtained deformations. This expectation is confirmed by figure 9.6.
The transition point between the linear and the non-linear branch is reached at a load of 15
kN/Jack whereas this point in the experiment is reached at 20 kN/Jack. The non-linear
branch shows a too weak behaviour, whereas the rotations in the segment joints agree very
well with experimentally obtained data. Using material properties belonging to curve II, com-
pared to the experiment better results are obtained and deformations are also presented in
figure 9.6. Deformations are still larger compared to the experiment but the transition point
between the linear and the non-linear branch seems to agree quite well. Again, the non-linear
branch shows a too weak behaviour. The concrete in curve II is given a tensile strength of 4
N/mm2 and a small fracture energy. The obtained deformations will therefore be a reliable
lower limit with deformations more close to reality, compared to curve I.

Deformations of the lining, using material properties belonging to curve III and curve IV,
seems to approach experimentally obtained data more closely. Curve IV even overestimates
the load bearing capacity of the lining. As already expected in chapter 7.2, the softening
behaviour of the concrete affects global lining behaviour dramatically. From figure 9.6 it may
be concluded that the softening properties of the concrete lay somewhere in between curve
III and curve IV. In the next paragraph this is proved by investigating the behaviour of the
concrete segments in more detail.

9.2.2 Compression strains

During the experiment not only displacements of the lining are obtained but also strains on
the concrete segments. By comparing measured strains to output strains from FE calcula-
tions the concrete behaviour is analysed in more detail. The compression strain on the most
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heavily loaded segment in ring 2 is compared with the FE results, see figure 9.7. It is seen
that the point where the linear branch ends and the non-linear branch starts is equal for ex-
perimental strains and curve II, III and IV of the calculations. This transition point implies
that the tensile strength of the concrete is reached on the outer fibre. Therefore, the strains
from curve I start to increase earlier due to the fact that no tensile strength is assigned to
the material. The difference between curves II, III and IV is the rate at which the strains
are increasing. The compression strain in curve II and III increases more rapidly compared
to the experimental strains.

A too rapid increase in strains may indicate that the softening curve is too weak. If the
concrete cannot take more tensile forces the curvature increases and the reinforcement takes
over tensile forces, the concrete compression zone decreases resulting in a larger compression
strain at the outer fibre. When comparing the calculation results with the experimentally
obtained data, it is found that only material properties belonging to curve IV seem to agree.
The other three curves indicate that the tension softening curve may be too weak.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0 5 10 15 20 25 30 35 40
Ovalisation Load [kN/Jack] 

C
om

pr
es

si
on

 S
tra

in
 [P

ro
m

ille
]. 

Curve I 
Curve II 
Curve III 
Curve IV 
Experiment C01 

Figure 9.7: Compression strain in outer fibre of heavily loaded segment in ring 2, comparison between
FE calculations and experimental data

From this paragraph it becomes clear that the tensile properties of the concrete have a strong
effect on global lining behaviour just like expected in chapter 7.2. Four different tensile prop-
erties are used in calculating deformations and very good results are obtained for certain
tensile parameters. Also the strains and curvatures in the elements seem to agree very well
with experimental data.

The ‘correct’ properties of the concrete and the bending moment-curvature relations are not
known for sure, but with this analysis it is very likely that the properties of the concrete lay
somewhere in between curve III and curve IV.
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9.2.3 Segment joint rotations

In the previous section, global displacements and concrete compression strains seemed to
agree well with experimental data. In chapter 5.2 an analysis of experimental data was de-
scribed leading to a detailed overview of deformations. Deformations were subdivided into
total deformations and deformations due to joint rotations. The same analyses are performed
using data obtained from the FE calculations. In figure 9.8 a comparison is shown for ring
1 and ring 2. Results of all three rings are given in appendix F. The total deformations as
well as the deformations only due to joint rotations show a perfect agreement, especially for
ring 1. Deformations due to joint rotations in ring 2 seem to show some discrepancies in the
non-linear branch.
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Figure 9.8: Total deformations of lining and deformations based on joint rotations, FE results com-
pared to eperimental data, ring 1 (left) and ring 2 (right)
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Figure 9.9: Rotations in joints in ring 1, FE results compared to experimental data

The presented total deformations and deformations due to joint rotations (figure 9.8) show
a good agreement but are calculated using very much data points. The deformations do not
tell anything about the accuracy of the FE model at joint level. Therefore, the joint rotations
in ring 1 are given separately and plotted versus the ovalisation load in figure 9.9. In the left
graph, rotations of joint 8-1 to 3-4 are given and in the right graph joint rotations in joints
4-5 to 7-8 are given. In appendix F the same results are presented for ring 2 and ring 3. From
the graphs shown it is concluded that also on a more detailed level the FE model shows very
good results compared to experimental data.
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9.2.4 Additional capacity of segment joints

To apply the axial force on the lining, 14 hydraulic jacks are installed on top of the upper
ring. Between a jack and a concrete segment a steel plate is installed to introduce the force
in a more spread manner. The bottom ring is also provided with such plates which act as
a support. Some of these plates are located just above or below a segment joint and affect
the rotational behaviour of the joint by transferring additional bending moments. In Vervu-
urt and Den Uijl (2006) this additional capacity is estimated to be within the 15 kNm and
50 kNm per segment joint in experiment C01. Due to the low axial force applied in C02 it is
expected that the additional joint capacity is negligible small and may be disregarded when
simulation the second experiment.

The additional joint capacity directly affects the load bearing capacity of the lining in the
first experiment. To investigate this effect the steel plates are included in the 1D FE model
by adding rotating springs in between the segments in ring 1 and ring 3. These springs are
given a bi-linear bending moment-rotation diagram, from which the horizontal plateau equals
the additional bending moment capacity. The initial stiffness is set equal to the initial stiff-
ness of the segment joints which is a third of the theoretical derived stiffness according to
Janssen. Most heavily rotating segment joints now possess a bending moment capacity which
is 15 kNm or 50 kNm greater just before maximum load capacity of the complete lining is
reached.
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Figure 9.10: Ovalisation deformations of lining with additional segment joint capacity

To study the effect of the steel plates on the bearing capacity, two calculations are performed in
which the springs are given an additional bending moment capacity of 15 kNm and 50 kNm.
The results of these calculations are shown in figure 9.10. In this figure, the deformations
of the lining are compared to a lining without additional capacity. Just as expected, the
bearing capacity of the lining is increased. For the FE model which is given an additional
capacity of 50 kNm per segment joint an increase of 5,1 kN/Jack in load bearing capacity is
achieved. The increased load bearing capacity of the lining can also be calculated manually.
The critical cross-section contains two segment joints. Every segment joint is able to take
50 kNm which results in an additional 100 kNm bending capacity. With equation 9.1 the
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additional load bearing capacity of the complete lining is calculated to be 4,9 kN/Jack which
is close to results of the FE analysis.

Mcross−section = 1/3× r2 × q × cos(2θ)

100 = 1/3× 4, 5252 × q × cos(2×−0.50π) ⇒ q = 4, 9 (9.1)

By adding additional capacity to the segment joints, the deformations of the lining are re-
duced and the ultimate load bearing capacity is increased. This is of course only achieved
by reducing rotations in the joints. In figure 9.11 the deformations due to joint rotations
for ring 1 and ring 2 are compared to experimental values. It is seen that joint rotations in
ring 1 are heavily reduced by the steel plates whereas no effect on joint rotations in ring 2 is
noticed. From the left graph it may be concluded the FE model without the incorporation of
steel plates is most close to reality. At least this model predicts joint rotations more close to
experimental values which indicates that the total stiffness of a segment joint is correct. The
total stiffness of a segment joint in ring 1 and ring 3 is a combination of the real joint stiffness
and the additional steel plates. This leads to the possibility that the real joint stiffness was
much lower than implemented in the FE model whereas the additional steel plates delivered
some additional stiffness. The relationship between both stiffnesses is hard to determine with
the obtained data from the experiment. The only clue can be found when investigating dif-
ferences between ring 1/3 including steel plates, and ring 2 without additional steel plates.
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Figure 9.11: Deformations caused by joint rotations in ring 1 (left) and ring 2 (right), results of FEA
compared to experimental obtained joint rotations

Joint rotations in ring 2 show a too stiff response, compared to experimental found rotations,
whereas rotations in ring 1 and ring 3 show realistic rotations. This may be an indication that
the estimated joint stiffness is too high. When reducing the joint stiffness the rotations in ring
2 should be more close to reality whereas the rotations in ring 1 and ring 3 are kept the same
by adding stiffness coming from the additional steel plates. When looking at the rotations in
ring 2 it is concluded that in the non-linear branch the joint rotations are too stiff whereas
rotations in ring 1 show good results when no additional steel plates are implemented. So by
reducing the joint stiffness and adding some additional joint stiffness in ring 1 and ring 3 it
was tried to approach reality, especially joint rotations in ring 2, more closely. Nevertheless,
FE calculations showed that joint rotations in ring 2 do not approach reality more closely
when reducing joint stiffnesses. Final conclusion is that the overall joint stiffness is estimates
correctly, but it is unknown what proportion is caused by the joint and what is caused by the
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additional steel plates, but it is estimated that the influence of the additional steel plates is
very small.

9.2.5 Cracking pattern

At the end of experiment C01 and C02 the lining was observed in detail and the locations of
new developed cracks were drawn on a map. This map is shown in figure 9.12. In this figure
the situation of the lining at the end of both experiments is shown graphically. Difference is
made between cracks which were already present, cracks which were partially developed and
cracks which were fully developed over a segment. From the FE calculations the location of
cracks is also obtained. Due to the fact that a relatively course mesh is used with respect to
crack initiation and propagation, not the existence of every crack is drawn, but the area in
which elements are cracked.

Figure 9.12: Cracking pattern observed during full-scale experiments compared to FE results, con-
crete properties in FEA according to Curve IV

In the figure on top, the comparison between experiment C01 and the belonging FE analysis
is presented. At first sight, a good agreement between the FE analysis and the experiment
is obtained. Although the FE calculations show more areas in which elements are cracked,
the observed locations at the end of the experiment are predicted correctly. Five areas are
present in which the FE calculation predicts cracking whereas no cracks are observed at the
end of the experiment. This may be explained by the fact that these cracks are not observed,
because they were too small to detect, or because the FE model was loaded more heavily or
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because the assigned segment properties were too weak. The cross-sections located at -0,07 π
(outside lining) and +0,50 π (inside lining) for example, are heavily loaded but no cracks are
observed at the end of the experiment. During the second experiment the ovalisation load,
which causes the bending moments, is also present and initiates new cracks. When comparing
the by FE analysis found cracking pattern with the situation of the lining at the end of the
second experiment a better agreement is found. The cross-section located at +0,50 π showed
some severe cracks at the end of the second experiment just like predicted by the FE model,
but still no cracks are present at -0,07 π. A possible explanation is that deformations did
localize at cross-section +0,07 π, instead of at -0,07 π what is predicted by the FE calculation.
Because cracks should occur at the outside of the lining the force introduction via Azob plates
might have had some influence on the initiation of cracks.
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Chapter 10

Structural behaviour of the lining

Based on results presented in the previous chapter it may be concluded that a reliable FE
model is developed. Comparisons of deformations and compression strains between experi-
mental data, 1D and 2D FE models showed a very good agreement. With the aid of the 1D
FE model the structural behaviour of the tunnel lining is further analysed. The interaction
forces in the plywood or the rotations in the joints are investigated in detail. First of all the
global lining behaviour is studied. Most important aspect in the global lining behaviour is
the distribution of bending moments. How bending moments are distributed and how they
affect the load bearing capacity is treated in the following section.

10.1 Experiment C01

10.1.1 Redistribution of bending moments

The lining in the experiment is loaded in an axial and a radial direction from which the
latter one is subdivided into an uniform and an ovalisation part. The axial and the uniform
radial force mainly causes normal forces in the concrete which the lining can take very well in
contrast to an ovalisation load. A relatively small ovalisation load causes severe deformations
of the lining. Differences in bending stiffnesses in the concrete segments and the joints leads
to a redistribution of bending moments. Especially when the capacity of a segment joint is
reached the redistribution of bending moments may be significant.

Because the three rings are subsequently coupled at the ring joints through plywood sheets,
the bending moment at the location of a segment joint is partially transferred in axial di-
rection to neighbouring concrete segments. Another possibility is that bending moments are
partially redistributed in the ring itself which affects global lining behaviour. It is expected
that bending moments are redistributed in both directions. In the following sections the
redistribution of bending moments is investigated and especially its effect on the maximum
load bearing capacity of the lining.

Redistribution of bending moments in axial direction

The axial force on the lining squeezes the plywood in between the concrete segments. Via
these plywood sheets bending moments are partially transferred in axial direction to neigh-
bouring segments. In figure 10.1 the bending moments in the separate rings are shown and
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compared to analytical values. The analytical bending moments are based on a continuous
lining subject to an equal ovalisation load. The location of the segment joints in the rings
is given in the same graphs to analyse their effect on the distribution of bending moments.
From both graphs it is concluded that bending moments are minimal at the location of a joint
and maximal in the middle of a segment. This increase in bending moments at the middle of
a segment is more severe for segments in ring 2 than for segments in ring 1 and ring 3.
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Figure 10.1: Bending moment in ring 2 (left) and in ring 1 and ring 3 (right) at an ovalisation load
of 20 kN/Jack

Bending moments in ring 1 and ring 3, at a cross-section located at a joint, are both trans-
ferred to the same segment in ring 2. This leads to a severe increase of bending moments
in the segments of ring 2 and is clearly confirmed by the left graph in figure 10.1. Bending
moments in the middle of a segment are much larger compared to analytical values. At the
location of the joints in this middle ring the bending moments are lower and are transferred to
ring 1 and ring 3. At these cross-sections only one joint is present over the whole cross-section
from which bending moments are transferred to two neighbouring segments. This only leads
to a slight increase of bending moments in ring 1 and ring 3, clearly confirmed by the right
graph in figure 10.1.

As mentioned earlier, ring 2 is the most heavily loaded ring. In the figure above the critical
cross-sections at -0,50, +0,07 and +0,93 π are easily recognized. At these sections the cur-
vatures are large, especially when cracks start to initiate and eventually plastic hinges are
formed. At higher loads, bending moments cannot be transferred to neighbouring segments
leading to a redistribution of forces in the ring itself.

Redistribution of bending moments in circumferential direction

The existence of relatively weak joints in between segments results in a non-uniform bending
stiffness along the circumference of the lining. Therefore, redistribution of bending moments
occurs from the beginning of loading. At a relatively low ovalisation load the segment joints
reach their capacity amplifying the redistribution of bending moments. Major changes in
the global behaviour of the lining are expected when the concrete segments start to crack.
Stiffnesses decreases dramatically leading to more redistribution.

In figure 10.2 the bending moments in the segmented lining are compared with analytically
determined bending moments in a continuous lining. The difference between both lines is an
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indication for the degree of redistribution in circumferential direction. The presented bend-
ing moments are plotted as a function of the circumferential angle and are the sum of the
bending moments in the three separate rings. For certain cross-sections that are the bending
moments in three neighbouring segments whereas in other cross-sections this is a combination
of bending moments in joints and segments. The results are based on calculations belonging
to concrete properties of curve IV.
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Figure 10.2: Redistribution of bending moments in circumferential direction (left and middle) and
as a function of the ovalisation load (right)

From the figure above it is concluded that at an ovalisation load of 15 kN/Jack almost no
differences between the bending moments based on a continuous lining and the segmented
lining are noticed. The comparison shown in the middle graph is taken at an ovalisation load
of 37 kN/Jack in which redistribution in circumferential direction is noticed. At the criti-
cal cross-section located at -0,50 π the bending moments are less than analytically expected
whereas bending moments at +0,50 π are larger. From these observations it is already con-
cluded that redistribution does occur at higher loading conditions. The difference between
the bending moment in cross-sections +0,50 π and -0,50 π is almost 300 kNm.

The bending moment in the critical cross-section is subtracted from the analytical expected
bending moment and plotted versus the ovalisation load to investigate the redistribution in
more detail, right graph in figure 10.2. Even at low ovalisation loads the bending moments
in the cross-section do not match analytical values and a linear increase in redistributions
is noticed. This is due to the fact that this is a relatively weak cross-section and the joints
already reached the non-linear branch. At 17 kN/Jack a rapid increase in the redistribution
of bending moments is noticed. From that moment on the stiffness of the cross-section is
reduced significantly by the cracking of the concrete.

The blue line in the right graph of figure 10.2 represents the difference in bending moments
between a segmented and a continuous lining obtained with the same FE model, but calcu-
lated using linear concrete properties. This line also shows a linear increase in redistributed
bending moments as the ovalisation load increases. The rapid increase at 17 kN/Jack is not
noticed in this curve leading to the conclusion that at 17 kN/Jack the cracking of the con-
crete is responsible for the severe redistribution of bending moments. At maximal ovalisation
load 140 kNm is redistributed in circumferential direction.
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Figure 10.3: Redistribution of bending moments in three different cross-sections

The second most critical cross-sections are located at +0,07 π and +0,93 π, which also contain
one segment and two joints. It seems from figure 10.2 that bending moments in these two
cross-section more or less equal analytical values and are not affected by redistributions. In
figure 10.3 the bending moments from three different cross-sections are plotted and compared
to analytical values. This figure again confirms the redistribution of bending moments in the
critical cross-section at -0,50 π as well as the fact that bending moments at +0,07 π and
+0,93 π are not affected by redistributions. In the cross-section at +0,50 π an increase in
bending moments is noticed.

10.1.2 Increase of normal force

In the previous section it was seen that by a redistribution of bending moments the load
capacity of the entire lining is increased. Another increase in load capacity is achieved by an
increase of the normal force in certain concrete segments. Before applying the ovalisation load
onto the lining an equal normal force is present in all three rings. When increasing ovalisation
load it is noticed that normal forces are transferred to neighbouring rings. In figure 10.4 the
normal force in the three rings at an ovalisation load of 37 kN/Jack is presented graphically.
From the left graph it is concluded that normal forces in the middle ring are much higher than
normal forces in the top and bottom ring. Especially in the segments at the three critical
cross-sections the normal force is much higher whereas the normal force in the neighbouring
joints is reduced. Because the increase in bending capacity of the concrete segment is more
than the decrease in capacity of the segment joints this transfer of normal forces is advantages
concerning the global load bearing capacity.

Novalisation = −1/3× q × r × cos(2θ) (10.1)

When taking the sum of the normal forces in all three rings, a small redistribution of normal
forces in circumferential direction is noticed. In the critical cross-section at -0,50 π the normal
force is somewhat lower and at +0,50 π the normal force is somewhat larger than analytically
expected. In figure 10.4 the normal force of segment 5 of ring 2 is plotted versus the ovalisation
load. As the ovalisation load is increased the normal force starts to decrease. This is exactly
what is expected according to equation 10.1. This equation says that increasing an ovalisation
load increases normal forces at 0,00 π and +1,00 π whereas normal forces at -0,50 π and +0,50
π decrease. Beyond an ovalisation load of 25 kN/Jack normal forces start to grow in this
segment reaching 1.400 kN . Just before collapse normal forces increase very rapidly.
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Figure 10.4: Normal force in lining at an ovalisation load of 37 kN/Jack per separate ring (left) and
sum of three rings compared to analytical values (richt)

The influence of an increase in normal force on the bending capacity of a single segment is il-
lustrated in figure 10.5. From this graph it is concluded that a normal force of 1.500 kN results
in a bending capacity of a concrete segment of 550 kNm which is an increase of 80 kNm when
only a normal force of 1.000 kN is present. In the critical cross-section at -0,50 π the nor-
mal force is 1.375 kN which results in a bending capacity of 532 kNm, an increase of 62 kNm.
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Figure 10.5: Normal force in segment located at critical cross-section as a function of the ovalisation
load (left) and bending moment capacity of single segment dependent on the normal
force (right)

The increase in normal force in the middle ring is advantages with respect to the global
load bearing capacity of the lining. The increase of normal force is only caused by the
interaction forces between the rings. These interaction forces are in fact the slip or shear
forces in the plywood between two concrete segments and are caused by mutual deformations.
Deformations in a single contact area are subdivided into radial deformations and tangential
deformations. Tangential deformations cause tangential forces which directly results in higher
normal forces in certain segments. Radial forces may also create normal forces in a segment,
just like an uniform radial forces causes an uniform normal force in a lining. In the FE model
most interaction forces between the rings are radially loading the middle ring. This is the
reason for the overall increase of normal forces in that ring.
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10.1.3 Load bearing capacity of the lining

In the previous sections it is explained that by a redistribution of bending moments and a
transfer of normal forces between different rings an increase in the ultimate load bearing ca-
pacity of the lining is obtained. The ovalisation load applied at failure in the FE model was
37,7 kNm and results in a maximum bending moment of 4, 5252 × 37, 7× 1, 0 = 772kNm in
the critical cross-section according to a continuous lining. The capacity of this cross-section
without incorporating redistributions is much smaller. In table 10.1 an overview of forces in
the critical cross-section is given. In the fourth column the capacity of the different parts is
calculated separately. As can be seen, the concrete segment is close to its bending capacity.
In the fifth column the ‘real’ occurring bending moments are presented in bold. Also an
estimation is given for the bending moment in certain parts when no tensile properties are
assigned to the concrete or no transfer of normal forces occurs. These estimated bending
moments are based on the curvatures or rotations present in the segment or joint.

Tensile Normal Bending Present, based part of
properties force capacity on curvature total loading

Part yes/no [kN] [kNm] or rotation [kNm] [%]
Segment ring 2 no 1.000 370 299 39 %
Segment ring 2 yes 1.000 472 470 62 %
Segment ring 2 yes 1.366 532 526 69 %
Joint ring 1 - 1.000 85 71 -
Joint ring 1 - 775 66 55 7 %
Joint ring 3 - 1.000 85 71 -
Joint ring 3 - 764 65 54 7 %
Redistribution - - - 124 16 %
Total 663 759 100 %

Table 10.1: Overview of bending moments in critical cross-section located at -0,50 π given for an
ovalisation load of 37,07 kN/Jack, results obtained from FEA using concrete properties
according to Curve IV

Based on the curvature in the segment it is calculated that without incorporating tensile
properties of the concrete the bending moment in the segment would be 299 kNm. When
including tensile properties a bending moment of 470 kNm should be present. Because also
a transfer of normal forces to the mentioned segment occurred the ‘real’ bending moment is
526 kNm, which is 69% of the analytically calculated bending moment in that cross-section.
From the table it is also made clear that by the transfer of normal forces, from joints to
neighbouring segments, the bending moments in the joints are reduced to 55 kNm. Another
124 kNm is reached by redistribution of bending moments in circumferential direction leading
to the analytical calculated 759 kNm.

The presented table is based on the results of the 1D FE calculation with concrete properties
belonging to curve IV (figure 7.13). Using other concrete properties, like curve II or curve III,
affects the bending moment in the concrete segment and will only have a very minor effect
on the redistribution of bending moments or transfer of normal forces.
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10.1.4 Ring interaction

It is expected that during experiment C01 a strong interaction between the mutual rings is
present. Therefore, the ovalisation load put onto the lining reached a maximum of 36 kN/Jack
before failure was recognized. At that point the shear forces, in the plywood and in the two
surfaces between the plywood and the concrete, reach their maximum values.

In the FE model the contact areas are modelled using line interface elements. The resulting
nodal traction forces are shown in figure 10.6. The blue dots represent the contact points in
ring 2 and the connecting wires represent the direction and magnitude of the traction forces.
An outward pointing vector means that ring 1 ‘pushes’ ring 2 outwards. An inward pointing
vector means that ring 1 ‘pushes’ ring 2 inwards. Every plywood sheet is presented by five dots
which are the nodal points in the FE model. The resulting shear force per sheet is also shown
which is the sum of the five tractions in the integration points multiplied by their contact area.

Applying the uniform radial load onto the lining results in a constant normal force in the three
rings. Because the segment joints possess a relatively weak stiffness in tangential direction
they shorten more compared to segments, resulting in a non-uniform shortening of the lining
along the circumference. Therefore, mutual tangential deformations between two rings occur
causing the interface elements to deform. The resulting interaction forces after applying the
complete uniform radial load are graphically represented in the left graph in figure 10.6.
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Figure 10.6: Interaction forces in kN between ring 1 and ring 2 after applying the uniform radial
load (left) and at an ovalistaion load of 37 kN/Jack (right), results from FEA using
concrete properties according to Curve IV

From the graph it is concluded that the tangential interaction forces, only after applying the
uniform radial load, are significant reaching a top value of 49 kN and an average shear force
of 25 kN . In the full-scale test the segment joints also possess a weaker cross-section so it is
expected that these tangential interaction forces also occurred in the experiment. But, be-
cause the axial force and the uniform radial force are simultaneously applied in step and not
subsequently, these interaction forces are expected to be lower than found with FE analyses.
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The interaction forces between ring 1 and ring 2 at an ovalisation load of 37 kN/Jack are
also given in figure 10.6. The maximum interaction force is 333 kN and is located at 0,58 π.
This is an unusual high value and is caused by the fact that this interface element is not
closely surrounded by other interface elements. The presented values include the tangential
interaction forces due to the uniform radial load. In figure 10.7 the interaction forces are
presented from which the tangential forces due to the uniform radial load are subtracted.
The deviations at 37 kN/Jack between the interaction forces and the interaction forces with
subtracted uniform radial interaction forces are relatively small.

FShear = 4F 1/3
n

Fn = (800.000× 14) / (28× 150× 400) = 6, 67

FShear = 4× 0, 831/3 = 7, 52

FShear = 7, 52× 150× 400 = 452 (10.2)

It is noticed that the shear forces at 37 kN/Jack are primarily directed in a radial direction
meaning that governing mutual deformations between the two rings are in radial direction.
The average shear force is 134 kN . The most heavily loaded interface elements are located
at the cross-sections in which the bending moments are maximal possessing an average force
of about 200 kN . According to equation 10.2 the shear strength of the interface elements
is 452 kN concluding that the found interaction forces are realistic and no slip of the joints
occurred. In the most heavily loaded interface elements the corresponding friction coefficient
was at least 317/400 = 0, 79 which is a realistic value for the used kind of packing material.
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Figure 10.7: Interaction forces in kN between ring 1 and ring 2 from which the interaction forces
after applying the uniform radial load are subtracted (left) and as a function of the
ovalisation load (right)

In figure 10.7 the average and the maximum shear force is presented graphically as a function
of the ovalisation load. These interaction forces are with subtraction of the interaction forces
due to the uniform radial load. In this graph it is shown that the shear forces increase
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almost linearly at increasing the ovalisation load until 33 kN/Jack. Cracking of the concrete
seems not to affect the shear forces.

10.2 Experiment C02

From previous sections it may be concluded that concrete properties lay somewhere in be-
tween values belonging to curve III and IV (figure 7.13). Furthermore can deformations of the
lining be simulated very well just like rotations in the joints. The performed analysis were all
compared to experiment C01 which is characterized by a high axial load. In this paragraph
FE analyses are presented simulating the second experiment which is characterized by a low
axial load.

Since some segments started to crack at final stages of loading during the first experiment, not
all segments are in a perfect condition at the start of the second experiment. Therefore the
lining might behave in a less stiff manner. To include the influence of damaged segments it is
necessary to ‘perfectly’ simulate experiment C01 by fitting experimental deformations. After
unloading, a damaged lining is obtained which is used at the start of the second experiment.

Another difference between the first and the second experiment is the applied axial force. In
the second experiment this axial force is one eight of the axial force applied in C01. The
small axial force mainly affects the behaviour of the plywood. The transferable shear force is
lower whereas the initial stiffness is unchanged. Implementing this behaviour in the FE model
means modifying material properties belonging to the interface elements between the rings.
Instead of a linear stiffness a bi-linear shear-deformation diagram is implemented. The level
of the horizontal branch is dependent on the applied axial force and is estimated based on
equation 10.3. According to this relation, the maximum transferable shear force per plywood
sheet is 226 kN . It is emphasized that this equation is based on experimentally obtained
shear strengths for plywood exposed to a normal force varying between 11 N/mm2 and 35
N/mm2 [Gijsbers and Hordijk 1997], whereas the normal force in the plywood is 0,83 N/mm2

in the full-scale tunnel experiment. Therefore these tests are not representative but do give
an indication for the strength of the plywood.

FShear = 4F 1/3
n

Fn = (100.000× 14) / (28× 150× 400) = 0, 83

FShear = 4× 0, 831/3 = 3, 76

FShear = 3, 76× 150× 400 = 226 (10.3)

The above mentioned equations result in a shear strength of 226 kN which corresponds
to a very high friction coefficient of 226/50 = 4, 5. The experiments by Gijsbers and
Hordijk (1997) do indicate that friction coefficients increase at decreasing normal forces, but
it is not expected that these high friction coefficients can be reached. The specimen sub-
jected to the lowest normal force σn = 11, 5N/mm2, possessed a friction coefficient of 0,73
[Gijsbers and Hordijk 1997]. A friction coefficient of 0,73 should result in a shear strength
of 50× 0, 73 = 37 kN per plywood sheet in the second experiment.
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By implementing the shear strength in the material properties of the interface elements the
load bearing capacity of the complete lining is limited. To investigate the influence of the level
of the bi-linear branch on the load bearing capacity of the lining a number of FE calculations is
performed with different shear strengths for the plywood. In figure 10.8 the implemented ma-
terial properties of the plywood are shown just as their effect on the global lining deformations.

Before going into detail about the implemented shear strengths, it is necessary to know more
about how DIANA deals with these strengths. The mutual deformations between two in-
tegration points of two rings connected with an interface are subdivided in a global X and
a global Y deformation. Subsequently, the deformations and tractions (‘shear’ stresses) are
calculated per separate direction. If the deformations in one or two directions are larger then
the deformations corresponding to the shear strength then the stress is limited. Due to the
fact that the mutual deformation is subdivided into two directions the resulting strength is
not always equal. The interaction force is lower when the resulting mutual deformation in
the interface element is in the y-direction then when the resulting mutual deformation is
subdivided into two directions. Depending on the circumferential location and the mutual
deformation between the two rings, the uncoupled relation results in different shear strengths
along the circumference of the lining and is a shortcoming of the FE model. In reality this re-
lation is coupled resulting in a shear strength independent of the mutual deformation direction.
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Figure 10.8: Several stress-deformations diagrams for the plywood sheets (left) and FE results of
these diagrams implemented in the complete lining model (right)

The highest implemented shear strength in the FE model is 60 kN resulting in a relatively
high load bearing capacity of the lining as is seen in figure 10.9. Because of the uncoupled
behaviour, as explained in the previous paragraph, the 60 kN strength in practice can results
in an interaction force of

√
602 + 602 = 85 kN . An implemented shear strength of 36 kN

results in a more accurate approximation of the deformations and load bearing capacity. This
approximation of the second experiment is shown in figure 10.9 in more detail including the
simulation of the first experiment and a simulation of the second experiment without imple-
menting a shear strength. The deformations of the lining in the second experiment begin
to deviate from the loading branch of the second experiment without a shear strength at an
ovalisation load of 15 kN/Jack. This is an indication that one or more interface elements
have reached their strength. At increasing the load the deformations start to deviate even
more from the simulation without a shear strength until at 24 kN/Jack the deformations
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reach a horizontal plateau indicating failure.
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Figure 10.9: FEA of experiment C01 and C02

The experimentally ‘fitted’ deformations simulating experiment C01 including the unloading
branch, are also shown in figure 10.9. Experimental deformations show a significant plastic
deformation left after loading whereas the deformations in the numerical simulation return
to zero. There may be a number of explanations for this plastic deformation. When looking
at figure 5.9 it is concluded that the plastic deformation is mainly due to rotations in the
joints not returning to zero and by some plastic deformation left in the segments. It is also
very likely that deformations in the plywood did not return to zero in the experiment. These
effects are not included in the FE model leading to no plastic deformations. It is noticed that
the experimentally observed stiffness at the end of unloading is very much the same as found
with the FE model.

In previous chapters the results of the first experiment and the FE analyses are compared
extensively. Figure 10.9 seems to indicate that also the second experiment is simulated quite
well although only the average total deformations are shown. In appendix F the joint and
total deformations per ring are compared to numerical results and a very good agreement is
found. The rotations in every single joint are also plotted and compared just like the com-
pression strains on the complete lining. It is concluded that a very good agreement is found
between the full-scale experiment and the numerical simulations. Therefore, the behaviour
of the lining under loadings put onto the lining in the second experiment is further analysed
using the FE model.

10.2.1 Redistribution of bending moments

Due to the fact that some segments are damaged at the start of the second experiment and
due to the fact that the shear strength for the interface elements is implemented, it is inter-
esting to study and compare the bending moment distribution at a certain ovalisation load
in both models. In figure 10.10 the bending moment distribution simulating experiment C01
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and C02 is compared with analytical values for the bending moments. The distribution is
plotted at an ovalisation load of 10 kN/Jack. At this low load the redistribution of bending
moments in circumferential direction is somewhat larger in the second experiment. This is
easily explained by the fact that the critical cross-section is already heavily cracked leading
to a even weaker cross-section and a redistribution of bending moments from the early start
of loading. It is emphasized that only a minor redistribution is noticed. The redistribution
of bending moments in circumferential direction is not increasing when increasing the load.
A significant redistribution in circumferential direction during loading does not occur!
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Figure 10.10: Comparison of bending moments in circumferential direction at an ovalisation load of
10 kN/Jack between analytical and FE results, experiment C01 (left) and C02 (right)

In appendix H the bending moments are outlined per separate ring at different load steps
in which a comparison is made between experiment C01 and C02. From the graphs in the
appendix it is noticed that the bending moments in the second experiment compared to the
first experiment lay closer to the analytical expected bending moments. At the critical cross-
sections the peak bending moments in the segments are lower meaning that less redistribution
of bending moments in axial direction is taking place. The lower axial force in the second
experiment is not responsible since this behaviour is noticeable before the shear strength of
the plywood is reached. A physical explanation for the less redistribution in axial direction is
the fact that the difference between the bending stiffness of a cracked segment and a neigh-
bouring joint is reduced. Therefore, the segments rotate more without attracting additional
bending moments whereas the neighbouring joints rotate more and thereby absorb higher
bending moments. This is exactly what is seen in the mentioned appendix.

At higher ovalisation loads the interface elements reach their strength but no significant
influence on the distribution of bending moments is noticed. It is emphasized that the above
discussed difference in redistribution of bending moments in axial as well as in circumferential
between the first and the second experiment is only very small. Significant redistributions of
bending moments are taking place at higher ovalisation loads, as discussed 10.1.1, and are
not reached in experiment C02.

10.2.2 Ring interaction

In the second experiment a much weaker interaction between the mutual rings is present due
to the relatively low axial force. In figure 10.11 the interaction forces between ring 1 and
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ring 2 are shown after applying the uniform radial load in experiment C02. Just like in the
first experiment, these forces are primarily in a tangential direction. The resulting forces are
lower compared to the first experiment but still significant. In the same figure the mutual
displacements at an ovalisation load of 22 kN/Jack at the locations of the interface elements
are shown. Just as in the first experiment it is noticed that the largest mutual deformations
are found at the location of the cross-sections possessing high bending moments. At this final
stage of loading some of the interface element reached their strength as is seen in figure 10.12.
The highest shear forces are 51 kN which is equivalent to

√
362 + 362 = 51 kN indicating that

13 out of the 28 interface elements reached their strength at an ovalisation load of 22 kN/Jack.
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Figure 10.11: Interaction forces in kN between ring 1 and ring 2 after applying the uniform radial
load (left) and the displacements between ring 1 and ring 2 at an ovalisation load of
22 kN/Jack (right)

Although the mutual deformations due to the uniform radial load and the ovalisation ra-
dial load are perpendicular, the shear strength of the interface elements is reached earlier
compared to the case when no interaction forces due to the uniform radial load should have
occurred. Therefore the interaction forces at an ovalisation load of 22 kN/Jack are shown
from which the tangential forces after applying the uniform radial load are subtracted. These
values represent the occurring forces in case the tangential forces did not occur.

Figure 10.12 is indicating that shear strengths varying between the 50 kN and the 70 kN are
present in the lining at an ovalisation load of 22 kN/Jack. At that point the load bearing
capacity of the lining is almost reached and total lining deformations of 17 mm are present.
When increasing the ovalisation load the deformations begin to grow rapidly and all interface
elements reach their shear strength. From this FE model it might be concluded that forces
in the plywood sheets at failure lay somewhere in the ranch of 50 kN to 70 kN which cor-
responds to a friction coefficient of about 1. In this FE model the interface elements located
at the critical cross-sections were reaching their shear strength at 15 kN/Jack. At increasing
the load, more and more interface elements reached their strengths until at 23,5 kN/Jack
all interface elements reached their capacity and a horizontal branch in the load-deformation
diagram is reached.
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Figure 10.12: Interaction forces in kN between ring 1 and ring 2 at an ovalisation load of
22 kN/Jack, resulting values (left) and forces from which the forces after applying
the uniform radial load are subtracted (right)

In the horizontal branch of the load-deformation diagram the deformation increases without
an increase in the applied load. The deformations grow and are primarily caused by an on-
going rotation of the segment joints. The curvatures in the segments show a light increase in
these last load steps.

At the start of applying the ovalisation load in the second experiment some of the segments
were damaged. At that stage the cracks are closed due the uniform radial load and gradually
start to reopen. Only a very few additional cracks are noticed at maximum load.
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Chapter 11

Conclusions and recommendations

11.1 Conclusions

For studying the failure behaviour of segmented tunnel linings, the results of two different
tests have been analysed. In the first test a rather high axial force was applied, whereas in the
second test a low axial force was applied. From the test results as well as from the analyses
with the developed beam model it appeared that the axial force is governing the interaction
between the ring joints, and therefore the lining behaviour. The numerical model developed
consisted of a simple beam model, in many ways corresponding to regular engineering models.

Referring to the main objective of this thesis it has been shown that failure of the lining
under ovalisation load can be predicted rather accurately with the adopted beam model, re-
gardless of the failure mechanism (joint failure or segment failure). The beam model as used
in engineering practice has therefore been proven to be applicable for describing ovalisation
of segmented tunnel linings in the Ultimate Limit State. Also from a more scientific point of
view the beam model offers great advantages due to the fact that only a very short computing
time is needed offering the ability to perform influence analyses as well as probabilistic safety
analyses.

From the results of the analyses and the tests, moreover, the following conclusions are drawn:

• It has been shown that the total deformation can be calculated from the joint rotations,
the segment curvatures and segment cracking. Depending on the axial force, either the
joint rotations or the segment rotations due to cracking are governing the deformations
in the Ultimate Limit State.

• The calculated deformations due to the ovalisation load as well as the calculated strains
almost perfectly match the experimental observations for both levels of the axial force
tested.

• The ring interaction dominates the failure mode. For a high axial force, failure is induced
by failure of the segments (concrete cracking and yielding of the reinforcement steel).
For a low axial force, failure is dominated by the segment joints (joint failure).
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• The numerical simulations have shown that the tested high capacity may be explained
from the following phenomenon:

– The ultimate bending moment of the segments is affected strongly by the softening
behaviour of the concrete in tension because of the rather low reinforcement ratio,
and has a large effect on the load bearing capacity of the lining.

– By the redistribution of bending moments in circumferential direction an increase
in the ultimate load capacity is obtained.

– Due to a redistribution of the normal hoop force in axial direction a limited increase
in the bending capacity of the critical concrete segments is obtained.

It has been shown that a conservative approach is followed when in the design ring
interaction is neglected.

• The stiffness of the ring joints based on the literature is between the 105 to 106 N/mm.
Provided that only one plastic hinge develops along the circumference the effect is
rather large. However, because in the Ultimate Limit State analyses three plastic hinges
develop almost simultaneously, the effect is limited.

• Comparison of the results obtained with the beam model to a more detailed membrane
model shows that the segment cracks are less localized in the beam model. The effect
on global (ovalisation) behaviour, however, is limited.

• The tests and the numerical analyses have shown that a rather low axial force suffices
for an adequate interaction between the neighbouring rings, resulting in segment failure
as the dominant failure mechanism. As a result it may be stated that shallow bored
tunnels (i.e. low axial force) in soft soil conditions may be feasible, provided that the
axial force remains present during the service life of the tunnel.

• By simulating the rotational behaviour of the segment joints and by determining the
role of the joint deformations related to the total ovalisation, it was found that the
Janssen concept results in a realistic joint behaviour.

11.2 Recommendations

From the research performed the following recommendations to engineering practice are given:

• Because of the large uncertainties with respect to the softening behaviour (fracture
energy, characteristic length, etc.) and its effect on the total bending capacity, is it
recommended not to take into account the softening behaviour when designing a tunnel
lining.

• For predicting the load bearing capacity of a segmented tunnel lining under ovalisation
the Janssen concept may be used. It is recommended to adjust the initial stiffness
according to earlier performed (joint) experiments.

• Disadvantage of the numerical model as used in the current research is the limited
interaction in axial direction. As a result the model is not fit to deal with unequal soil
settlements. Because bending in axial direction is goverened by local rotations in the
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ring joints it is adviced to included this axial component by assigning axial properties
to the ring interface elements.

From the results the following recommendations for further research are given:

• The interaction between neighbouring rings is strongly affected by the configuration and
location of the ring joints. It is recommended to study the effect of applying interfaces
between the neighbouring rings rather than point to point springs, as generally used in
engineering beam models.

• Engineering beam models generally result into a realistic design approach, provided that
concrete cracking is taken into account and that the axial force remains present during
the service life of the tunnel. It is recommended to study the long term behaviour of
the plywood sheets and the effect on a possible loss of the axial force.

• The additional lining capacity is governed among others by the interaction between
neighbouring rings. Because the adopted models (beam and membrane) do not take
into account any geometrical effects in axial direction, it is recommended to verify this
phenomenon using a more advanced model (shell or solid).

• In the analyses the effect of the surrounding soil is not taken into account. Before using
the model in practice it finally is recommended to study the effect of the interaction
between lining and soil.
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Appendix A

Numbering and positioning of
measurement devices

In this appendix an overview of the different measurement equipment is given. In the first
figure the location and numbering of the strain gauges on the segments is presented and in
the second figure the location and numbering of the LVDT’s place on segment and ring joints
are presented.

Because it is very difficult to get a clear picture in mind of the complete lining and its
configuration from a plane figure, it is better to make a 3D model of the lining. Therefore,
the figures are included with cutting and fold lines. First the paper has to be cut along the
dashed line after which the paper has to be folded over the dash-dotted fold line. Subsequently
glue has to be attached on the two hatched areas and by making a circle, these areas can be
pressed together. After a few minutes the glue is dry and a scale model of the experimental
lining is obtained. It is recommended to construct this scale model since it can be very helpful
understanding this report.
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Calculation deformations of lining

On the next page a spreadsheet is shown from which the deformed shape of the lining is
calculated. The coordinates of the lining are determined in the joints and on three points of
every segment, resulting in a total of 37 coordinates per ring. The spreadsheet starts with
different input options. The coordinates are calculated for a specific entered step number.
From this step number a reference step is subtracted so deformations only caused by, for
example, the ovalisational load can be determined. It is possible to give different enlargement
factors for joint rotations and segment curvatures to be able to investigate deformations only
caused by joint rotations. Every segment joint is equipped with a total of four LVDT’s, one
on top and one on the bottom, on the inside and outside of a joint. From these four LVDT’s
it is possible to determine a rotation on top or on the bottom or an average of those two.

Information In the first columns information on the non-deformed and non-loaded lining is
reproduced. The coordinates of every joint and of three points of every segment is given. The
numbers of the measurement devices is also given, for the joints the numbers of the LVDT’s
and for the segments the numbers of the strain gauges is given.

Coordinates without loading In the second section of columns additional information is
extracted which is valuable for determining coordinates of the deformed lining.

Collecting measured data In the third section of columns the measured data is collected.
This data is collected from another spreadsheet, CO1 str-eng.xls for the first experiment or
C02 str-eng.xls for the second experiment. Using this data the rotations in the joints and the
curvatures in three points of every segment is determined. The curvatures in the segments
are multiplied by a part of the segment length to determine a rotation. Finally the calculated
rotations are multiplied by an enlargement factor to finally make deformations visible.

Correcting, closing and repositioning lining In the fourth section of columns the col-
lected rotations are corrected as explained in chapter 5.1. After this correction another cor-
rection is performed resulting in a closed lining. In the last section of columns the deformed
shape is repositioned. The centre of the lining is calculated and repositioned to x=0 and y=0
and is rotated as shown in figure 5.5. In the final two columns the coordinates of 37 points
of the lining are given. For ring 2 and ring 3 the same calculations are performed and when
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performed for all load steps a good representation of deformations during the experiments is
obtained.
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Figure B.1: Spreadsheet for determining deformed coordinates of ring 1
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Appendix C

Deformations of lining in
experiment C01

The deformed shape of the lining in experiment C01 is drawn for several loading steps. The
deformed shape is based on joint rotations and segment curvatures. The deformations are
multiplied by a factor 50.
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Undeformed Lining

Figure C.1: Deformation of the lining, experiment C01, step 15, enlargement factor 50
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Figure C.2: Deformation of the lining, experiment C01, step 20, enlargement factor 50
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Figure C.3: Deformation of the lining, experiment C01, step 25, enlargement factor 50
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Figure C.4: Deformation of the lining, experiment C01, step 30, enlargement factor 50
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Appendix D

Deformations of lining in
experiment C02

The deformed shape of the lining in experiment C02 is drawn for several loading steps. The
deformed shape is based on joint rotations and segment curvatures. The deformations are
multiplied by a factor 50.
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Figure D.1: Deformation of the lining, experiment C02, step 17, enlargement factor 50
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Figure D.2: Deformation of the lining, experiment C02, step 22, enlargement factor 50
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Figure D.3: Deformation of the lining, experiment C02, step 25, enlargement factor 50
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Figure D.4: Deformation of the lining, experiment C02, step 28, enlargement factor 50
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Appendix E

Ovalisational deformation of lining

The ovalisational deformation of the lining is calculated as the average radial deformation of
four points on the lining. These points are located on the same circumferential location as the
radial measurements equipment (TU1-TU12) and possess therefore maximum radial defor-
mations. These total deformations are drawn for each separate ring resulting in 3 graphs per
experiment. The deformations caused by joint rotations and deformations caused by joint ro-
tations and segment curvatures are also plotted in these graphs. Important is the difference in
deformations caused by joint rotations in ring 1 and 3 compared to the deformations of ring 2.

The deformations are presented graphically in figures E.1-E.6. The exact numerical values
are given in figures E.7 and E.8. In these two tables the deformations caused by the joints,
caused by the segments and the total deformations are given. The deformations caused by the
joints and by the segments are calculated using the method as described in chapter 5.1, while
the total deformations are extracted from measurement equipment TU1-TU12 as described
in figure 4.3. This explains why adding up the first two columns not results in the values
given in the third column.
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Figure E.1: Ovalisational deformation of lining, Ring 1, Experiment C01
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Figure E.2: Ovalisational deformation of lining, Ring 2, Experiment C01
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Figure E.3: Ovalisational deformation of lining, Ring 3, Experiment C01
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Figure E.4: Ovalisational deformation of lining, Ring 1, Experiment C02
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Figure E.5: Ovalisational deformation of lining, Ring 2, Experiment C02
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Figure E.6: Ovalisational deformation of lining, Ring 3, Experiment C02
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Figure E.7: Numerical values belonging to figures E.1-E.3
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Figure E.8: Numerical values belonging to figures E.4-E.6
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Appendix F

FE results compared to
experimentally obtained data

In this appendix the results from FE analysis are compared to experimentally obtained data.
The material properties of the concrete used in the simulation of experiment C01 correspond
to Curve IV of figure 7.13, whereas the properties of the concrete in simulating experiment
C02 are in accordance with paragraph 10.2. In table F.1 the performed comparisons are
summarised.

Description Experiment Figure
Average joint + average total deformation per ring C01 F.1-F.3
Joint rotations C01 F.4-F.6
Compression strains per ring in circumferential direction C01 F.7-F.12
Average joint + average total deformation per ring C02 F.13-F.15
Joint rotations C02 F.16-F.18
Compression strains per ring in circumferential direction C02 F.19-F.24

Table F.1: Summary of figures showing comparison between FEA and experimentally obtained re-
sults
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Figure F.1: Total and joint deformation of FE model compared to experimental data, ring 1 C01
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Figure F.2: Total and joint deformation of FE model compared to experimental data, ring 2 C01
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Figure F.3: Total and joint deformation of FE model compared to experimental data, ring 3 C01
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Figure F.4: Rotations in joints in ring 1, FE results compared to experimental data C01
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Figure F.5: Rotations in joints in ring 2, FE results compared to experimental data C01

0

5

10

15

20

25

30

35

40

0,000 0,002 0,004 0,006 0,008 0,010 0,012
Rotation [1/mm]

O
va

lis
at

io
n 

lo
ad

in
g 

[k
N

/J
ac

k]
. 

FEA 8-1 
FEA 1-2 
FEA 2-3 
FEA 3-4 
Exp. 8-1 
Exp. 1-2 
Exp. 2-3 
Exp. 3-4 

0

5

10

15

20

25

30

35

40

0,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009 0,010
Rotation [1/mm]

O
va

lis
at

io
n 

lo
ad

in
g 

[k
N

/J
ac

k]
. 

FEA 4-5

FEA 5-6

FEA 6-7

FEA 7-8

Exp. 4-5 

Exp. 5-6 

Exp. 6-7

Exp. 7-8

Figure F.6: Rotations in joints in ring 3, FE results compared to experimental data C01
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Figure F.7: Comparison of compression strain from experiment and FEA in circumferential direction,
ovalisation load 16 kN/Jack, ring 1(left) and ring 2 (right), C01, blue=exp. red=FEA

-0,25

-0,2

-0,15

-0,1

-0,05

0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

-0,5

-0,4

-0,4

-0,3

-0,3

-0,2

-0,2

-0,1

-0,1

0,0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Figure F.8: Comparison of compression strain from experiment and FEA in circumferential direction,
ovalisation load 26 kN/Jack, ring 1(left) and ring 2 (right), C01, blue=exp. red=FEA
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Figure F.9: Comparison of compression strain from experiment and FEA in circumferential direction,
ovalisation load 36 kN/Jack, ring 1(left) and ring 2 (right), C01, blue=exp. red=FEA
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Figure F.11: Comparison of compression strain
from experiment and FEA in cir-
cumferential direction, ovalisation
load 26 kN/Jack, ring 3, C01,
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Figure F.12: Comparison of compression strain
from experiment and FEA in cir-
cumferential direction, ovalisation
load 36 kN/Jack, ring 3, C01,
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Figure F.13: Total and joint deformation of FE model compared to experimental data, ring 1 C02
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Figure F.14: Total and joint deformation of FE model compared to experimental data, ring 2 C02
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Figure F.15: Total and joint deformation of FE model compared to experimental data, ring 3 C02
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Figure F.16: Rotations in joints in ring 1, FE results compared to experimental data C02
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Figure F.17: Rotations in joints in ring 2, FE results compared to experimental data C02
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Figure F.18: Rotations in joints in ring 3, FE results compared to experimental data C02
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Figure F.19: Comparison of compression strain from experiment and FEA in circumferential di-
rection, ovalisation load 10 kN/Jack, ring 1(left) and ring 2 (right), C02, blue=exp.
red=FEA

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

-1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Figure F.20: Comparison of compression strain from experiment and FEA in circumferential di-
rection, ovalisation load 20 kN/Jack, ring 1(left) and ring 2 (right), C02, blue=exp.
red=FEA

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

-1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
-1 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1

Figure F.21: Comparison of compression strain from experiment and FEA in circumferential di-
rection, ovalisation load 23 kN/Jack, ring 1(left) and ring 2 (right), C02, blue=exp.
red=FEA
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Figure F.22: Comparison of compression strain
from experiment and FEA in cir-
cumferential direction, ovalisation
load 10 kN/Jack, ring 3, C02,
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Figure F.23: Comparison of compression strain
from experiment and FEA in cir-
cumferential direction, ovalisation
load 20 kN/Jack, ring 3, C02,
blue=exp. red=FEA
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Figure F.24: Comparison of compression strain
from experiment and FEA in cir-
cumferential direction, ovalisation
load 23 kN/Jack, ring 3, C02,
blue=exp. red=FEA
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Appendix G

Validating numerical analysis of a
single tunnel segment

The moment-curvature relation of a single tunnel segment is thoroughly elucidated in chapter 7.2
and is based on 1D FE calculations using DIANA. These results are validated in this appendix.

The bending moment curvature relations are obtained by modelling a single tunnel segment,
clamped at one end and loaded with a bending moment at the other end. This way a con-
stant moment is present in the beam resulting in a constant curvature. The 4.000 mm in
length beam is subdivided in 20 beam elements which are numerically integrated over their
cross-sections, using 11 integration points. The FE calculations are performed using DIANA.

To validate the obtained bending moment-curvature relations the same calculations are per-
formed with DIANA only now using 41 instead of 11 integration points along the height of
an element. This should result in more accurate results but it does not validate the DIANA
calculations. Therefore another program (DRNS) is used, developed by Vervuurt and Van
Gogh (2000). The stress-strain relations of the concrete and the steel are given to the pro-
gram which subsequently performs a cross-section calculation. The results of ‘DRNS’ and of
the beam model using 11 and 41 integrations points are given in figures G.1 and G.2. Four
comparisons are shown representing the bending moment-curvature relations belonging to the
earlier mentioned four different concrete properties. From the graphs it is concluded that a
very good agreement is found between the different calculations. From that it is concluded
that correct calculation results are obtained by using beam elements in DIANA.

The clamped beam, subject to a constant normal force and an increasing bending moment,
may also be simulated in DIANA by using 2D plane stress elements. In the figures G.3 and
G.4 a comparison is shown between bending moment-curvature relations obtained with a 1D
and a 2D FE model. Discrepancies between the curves are found for curves II, III and IV.
At the start of cracking the curvatures in the 2D model start to increase more rapidly but
eventually the same bending capacity is reached. In the last curve shown there is also a
discrepancy between the 1D and the 2D model. Not only is the non-linear stiffness different,
also the bending capacity of the 2D model is smaller.
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Figure G.1: Bending moment-curvature relations from DIANA compared to ‘DRNS’ for concrete
properties belonging to Curve I (left) and Curve II (right)
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Figure G.2: Bending moment-curvature relations from DIANA compared to ‘DRNS’ for concrete
properties belonging to Curve III (left) and Curve IV (right)
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Figure G.3: Bending moment-curvature relations from 1D beam model compared to 2D plane stress
model for Curve I (left) and Curve II (right)
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Figure G.4: Bending moment-curvature relations from 1D beam model compared to 2D plane stress
model for Curve III (left) and Curve IV (right)
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Appendix H

Comparison of bending moments
between experiment C01 and C02

In this appendix the bending moments in the three separate rings are shown at an ovalisation
load of 10 kN/Jack, 15 kN/Jack and 23 kN/Jack for both experiments.
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Figure H.1: Bending moments in ring 1 at an ovalisation load of 10 kN/Jack (left) and 15 kN/Jack
(right)
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Figure H.2: Bending moments in ring 2 at an ovalisation load of 10 kN/Jack (left) and 15 kN/Jack
(right)
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Figure H.3: Bending moments in ring 3 at an ovalisation load of 10 kN/Jack (left) and 15 kN/Jack
(right)
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Figure H.4: Bending moments in ring 1 at an
ovalisation load of 23 kN/Jack
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Figure H.5: Bending moments in ring 1 at an
ovalisation load of 23 kN/Jack
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Figure H.6: Bending moments in ring 1 at an
ovalisation load of 23 kN/Jack
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Data on CD

All data obtained during the experiment is found on the enclosed CD. Discontinuous mea-
sured data, like from strain gauges placed on segments and LVDT measurements placed on
joints, but also continuous measured joints rotations are included. These files are used as
input for two other excel files which calculated the deformed shape of the lining. The de-
formed shape of the lining is calculated based on joint rotations and/or based on segment
curvatures as extensively described in chapter 5.1. By also selecting an enlargement factor
and the reference and loading step the deformations of the lining can be analysed in great
detail. The 1D beam model as well as the 2D plane stress model which are used for describing
structural behaviour are also included. In the table I.1 the content of the CD is given.

Contents File name Kind of file
Data obtained during experiment C01 C01 str-eng.xls Excel file

C01 SegmentJoints.xls Excel file
Data obtained during experiment C01 C02 str-eng(1).xls Excel file

C02 SegmentJoints.xls Excel file
Deformation of lining experiment C01 Deformation Lining C01.xls Excel file
Deformation of lining experiment C02 Deformation Lining C02.xls Excel file
1D FE model simulating C01 Tunnel 1D C01.dat DIANA data file

Nonlin 1D C01.com DIANA command file
Tunnel 1D C01.fdb FX+ model file

2D FE model simulating C01 Tunnel 2D C01.dat DIANA data file
Nonlin 2D C01.com DIANA command file
Tunnel 2D C01.fdb FX+ model file

1D FE model simulating C01 and C02 Tunnel 1D C0121.dat DIANA data file
Tunnel 1D C0122.dat DIANA data file
Nonlin 1D C012.com DIANA command file
Tunnel 1D C012.fdb FX+ model file

Table I.1: Content of enclosed CD
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