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Abstract

This Master of Science thesis depicts the research done on geodesic dome structures and
tensile bolted bamboo connections. The report includes a parametric structural analysis of
bamboo geodesic domes assessing the influence of openings, local and global stability, geomet-
rical non-linearity, and the maximum possible dome diameters for domes constructed with
Guadua angustifolia and Phyllostachys pubescens. The considered load cases are self-weight
and a point load on top of the dome; the latter includes the option of incremental load appli-
cation and geometrically non-linear analysis. Rules of thumb are derived indicating boundary
conditions under which global buckling of half-spherical icosahedron-based geodesic domes
does not occur. Furthermore, a comparison of geodesic domes and half-spherical shells is
conducted with respect to stability. One of the main challenges in bamboo structures is
the design of tensile connectors that exploit bamboo’s tensile strength, avoid splitting, and
provide a predictable, ductile failure. In the context of the design and strength prediction of
a bolted axial bamboo connector, experiments assessing the dynamic Modulus of Elasticity
and compression strength of Guadua angustifolia and Phyllostachys pubescens were con-
ducted. For both properties a significant correlation with density was found. Additionally,
the behaviour of bolted connections was simulated by testing the bolt bearing and splitting
strength of Phyllostachys pubescens in a single bolt test with square and round bolts. It was
found that square bolts result in ductile embedment failure with large displacements. Special
focus was paid to the influence of nodes on strength and stiffness; a 3D scan (ESEM) and
electron microscopy of the nodes of Guadua angustifolia and Phyllostachys pubescens were
made. Findings from microscopic investigation matched findings from experimental testing:
Nodes had a positive influence on embedment and splitting strength and an overall negative
effect on full-culm compression strength and compressive Modulus of Elasticity. Last but
not least, the insights gained in this research were combined in a case study of a bamboo
geodesic dome with elliptical door opening. The case study adopts a probabilistic safety
concept and partial safety factors in the style of the Eurocodes.
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Simon Veléz [73] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.14 Lashing Joint with Eye-Bolt by Widyowijatnoko (Widyowijatnoko, 2012) . . . . . . 24

2.15 Lashing Joint with Eye-Bolt by Widyowijatnoko (Widyowijatnoko, 2012) . . . . . . 25

2.16 Multi-Knot Lashing Joint by Widyowijatnoko (Widyowijatnoko, 2012) . . . . . . . . 25

2.17 Applications of the wire lacing tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.18 Round wood connector by de Vries (de Vries,2000) [91] . . . . . . . . . . . . . . . . . 27

3.1 Platonic Solids (Tom Davis, 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Dome frequencies (Tom Davis, 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Icosahedron-based geodesic domes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Pabal dome variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Dome connector (Kushwaha, 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xiii



3.6 Strut displacement at dome hub (Kushwaha, 2012) . . . . . . . . . . . . . . . . . . . 32

3.7 Dome hub employed in Geodesic Timber Dome in Botanical Garden Delft . . . . . . 33

3.8 Bamboo round cross dowel joints connected to dome hub . . . . . . . . . . . . . . . 33

4.1 dog-bone shaped tensile test specimen (Sharma, 2010) . . . . . . . . . . . . . . . . . 38

4.2 Test set-up for measurements of global and local MOE 3-point and 4-point bending 39

4.3 Euler buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 test set-up (Dynamic MOE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Measurement of Edyn with Timber Grader MTG . . . . . . . . . . . . . . . . . . . . 42

4.6 Relationship of density and dynamic MOE . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 ISO 2004b Compression test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Pot bearing loading plate and application and effect of lubricant to reduce friction . 47

4.9 Typical load displacement curve for bamboo compression test . . . . . . . . . . . . . 48

4.10 Crack initiation and propagation in Moso bamboo . . . . . . . . . . . . . . . . . . . 49

4.11 Different failure modes in Guadua bamboo . . . . . . . . . . . . . . . . . . . . . . . 50

4.12 Relationship of density and compressive MOE . . . . . . . . . . . . . . . . . . . . . . 51

4.13 Bolt shear test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.14 Bolt test round and square configuration . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.15 Typical load-displacement curves bolt test . . . . . . . . . . . . . . . . . . . . . . . . 56

4.16 Bolt embedment and splitting failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.17 Nodal impact on square bolt embedment . . . . . . . . . . . . . . . . . . . . . . . . 58

4.18 Bearing and splitting strength of round and square bolts . . . . . . . . . . . . . . . . 59

4.19 Preparation of specimens for 3D nano scanner . . . . . . . . . . . . . . . . . . . . . . 62

4.20 3D scan of Moso node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.21 3D scan of Guadua node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.22 Directions of vascular bundles in Moso node . . . . . . . . . . . . . . . . . . . . . . . 63

4.23 Guadua electron microscope images . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Strut stresses and displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Creation of opening by intersecting cylinder with geodesic dome in Rhinoceros . . . 74

5.5 Icosahedron-based geodesic dome. f = 5, T = 0, opening size 50%. . . . . . . . . . . 75

5.6 Icosahedron-based geodesic dome. z=0.5, T = 0, various opening sizes . . . . . . . . 76

5.7 f = 1, size=0.5D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 Frequency 1, opening size 50% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.9 Frequency 2, dome with opening size 50% and without opening . . . . . . . . . . . . 77

5.10 Strut stresses for different frequencies z=0.1 . . . . . . . . . . . . . . . . . . . . . . . 78

xiv



5.11 Maximum strut stress in icosahedron-based geodesic domes. T = 0 . . . . . . . . . . 79

5.12 Transformation of shell membrane into geodesic dome struts . . . . . . . . . . . . . 80

5.13 Normalized maximum strut stresses icosahedron-based half-spherical geodesic domes 81

5.14 Distribution of struts for f = 2 and f = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.15 Relationships of D, L,
∑
L, f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.16 LB for different materials, self-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.17 LC1: self-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.18 Transition GB to LB for different materials, t = 0.1D0, LC1: self-weight . . . . . . . 86

5.19 Method 1: Utilization at transition point GB to LB . . . . . . . . . . . . . . . . . . 87

5.20 Method 2: Intersection of LB and transition curve . . . . . . . . . . . . . . . . . . . 87

5.21 Influence of t/D0 ratio for bamboo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.22 Scheme of transition LB to GB and fmax LC1 . . . . . . . . . . . . . . . . . . . . . . 89

5.23 LC2: Point load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.24 Relationship of φ and L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.25 GB utilization, material dependent, independent of dome diameter, t = 0.1D0 . . . . 92

5.26 Transition from global to local buckling, point load . . . . . . . . . . . . . . . . . . . 92

5.27 Transition from global to local buckling, linear point load . . . . . . . . . . . . . . . 93

5.28 Impact of different t/D0 ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.29 Maximum frequency and dome diameter, different t/D0 ratios, Moso, GNL . . . . . 94

5.30 Scheme of transition local to global buckling and maximum frequency LC2 . . . . . 95

5.31 Load application and displacements for LC2: point load, f = 4 . . . . . . . . . . . . 96

5.32 Influence length li (Hoogenboom, 2014) [41] . . . . . . . . . . . . . . . . . . . . . . . 97

5.33 Shell buckling and local buckling of geodesic domes . . . . . . . . . . . . . . . . . . . 99

5.34 Scheme of stability shells and geodesic domes . . . . . . . . . . . . . . . . . . . . . . 99

5.35 Replacement of part of shell by geodesic dome struts . . . . . . . . . . . . . . . . . . 100

5.36 Transition scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Gaussian distribution of strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Cross dowel connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Failure modes and dowel geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Tensile, compressive and bearing strength . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 shear failure and tensile splitting failure . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Bamboo square cross dowel connector steel components . . . . . . . . . . . . . . . . 112

7.6 Bamboo square cross dowel joints connected to dome hub . . . . . . . . . . . . . . . 113

8.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Displacement and stresses for z = 0.1D = 2 m and opening width 4.1 m . . . . . . . 118

8.3 Displacement and stresses for z = 0.16D . . . . . . . . . . . . . . . . . . . . . . . . . 120

xv



8.4 Design of bamboo geodesic dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.3 Hoopsnake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.4 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.5 Generation of geodesic sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.6 Trim sphere to dome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.7 Cut out cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.8 Create edge beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.9 Cut out cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.10 Grasshopper computes length of struts and beams . . . . . . . . . . . . . . . . . . . 141

A.11 Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.12 Grasshopper : self-weight = reaction forces? . . . . . . . . . . . . . . . . . . . . . . . 143

A.13 Geometry Gym Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.14 Strut stresses and displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.15 Export results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.16 Polyhedron Types for Frequency 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.17 Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.18 Trimming Plane: -30% ; 0% ; +40% . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.19 z-position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.20 Opening size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.21 Opening rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.22 Strut stresses for different frequencies z=0.2 . . . . . . . . . . . . . . . . . . . . . . . 148

A.23 Strut stresses for different frequencies z=0.3 . . . . . . . . . . . . . . . . . . . . . . . 148

A.24 Strut stresses for different frequencies z=0.4 . . . . . . . . . . . . . . . . . . . . . . . 148

A.25 Strut stresses for different frequencies z=0.5 . . . . . . . . . . . . . . . . . . . . . . . 149

A.26 Strut stresses for higher frequencies z=0.5 . . . . . . . . . . . . . . . . . . . . . . . . 149

A.27 Global and local buckling for different t/D0 ratios . . . . . . . . . . . . . . . . . . . 150

A.28 Transition GB to LB for different t/D0 ratios . . . . . . . . . . . . . . . . . . . . . . 152

A.29 Simultaneous GB and LB for different t/D0 ratios . . . . . . . . . . . . . . . . . . . 153

A.30 Relationship of Dmax, D0 and t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.31 Onset of global buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.32 Strut force Fs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.1 Tensile tests on Guadua angustifolia (Gonzalez et al., 2012) . . . . . . . . . . . . . . 158

B.2 Tensile test specimens, thickness 0.94 to 2.34mm (Yu et al., 2008) . . . . . . . . . . 159

B.3 Tensile test specimens, thickness 10mm (Chen et al., 2014) . . . . . . . . . . . . . . 160

D.1 Dome Hubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

D.2 Bolt shear test set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D.3 Tensile connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

xvi



List of Symbols

Symbol Units Definition

A mm2 Surface area of bamboo culm
Ab mm2 Bolt bearing surface
Acr mm2 Surface of tensile crack
Anet mm2 Net surface area of bamboo culm
Av mm2 Shear surface
a - Robertson constant (as indicated)
a [m] Radius of spherical shell
B - Average number of vascular bundles per unit area
Ci - Coefficient as indicated
D m Dome diameter
D0 mm Outer diameter of bamboo culm
Di mm Inner diameter of bamboo culm
Dmax m Limit dome diameter
Dtrue m True dome diameter, obtained by measuring the greatest

distance of the dome’s base points
d mm Dowel or bolt diameter
d1 mm Diameter of bolt hole
E MPa Modulus of Elasticity (Young’s Modulus) (in bending)
Ec MPa Compressive Modulus of Elasticity
Ed MPa Design value of Modulus of Elasticity
Edyn MPa Dynamic Modulus of Elasticity
Ef MPa Modulus of Elasticity of fibres
Eglobal MPa Global Modulus of Elasticity
Elocal MPa Local Modulus of Elasticity
Em MPa Modulus of Elasticity of matrix
F kN Point load on top of geodesic dome (as indicated)
F kN Force (as indicated)
Fb,max kN Maximum force in bolt (also denoted as Fbolt,max)
Fc kN Compressive force
Fcr kN Force that leads to tensile splitting failure
FEd kN Design value of force caused by action
FRd kN Design value of resistance force
Fs kN Strut force

xvii



f - Dome frequency, number of subdivisions of polyhedron
surface

fmax - Maximum dome frequency (utilization of global and local
buckling are 1.0)

fb MPa Bearing or embedment strength (parallel to the grain)
fc MPa Compressive strength (parallel to the grain)
fcr MPa Euler buckling strength
fcc MPa Compressive buckling strength interaction of Euler buck-

ling and compression
fc,‖ MPa Compressive strength parallel to the grain

fc,⊥ MPa Compressive strength perpendicular to the grain
fd MPa Design strength
fk MPa Characteristic strength (5%-percentile)
fLB MPa Local buckling resistance (Euler buckling strength)
fm MPa Bending strength
ft MPa Tensile strength (parallel to the grain)
ft,‖ MPa Tensile strength parallel to the grain

ft,⊥ MPa Tensile strength perpendicular to the grain
fs MPa Tensile splitting capacity (perpendicular to the grain)
fv MPa Shear strength
g N/kg Gravity (9.81)
h mm Height of bamboo specimen
I mm4 Inertia
kdef - Creep factor
kmod - Modification factor for load duration and exposure
L m Length of (longest) strut
lculm cm Length of culms in dynamic Modulus of Elasticity test
ledge mm Edge distance of fastener
li m Influence of edge disturbance in shell
N kN Normal force
n kN/m Normal force flow in shell membrane (as indicated)
n − Number of cracks (as indicated)
P - Probability
p - p-value
pcr kN/m2 Shell buckling load
pz kN/m2 Distributed self-weight of shell or geodesic dome
R2 - Coefficient of determination
r - Distance from inner culm surface r ∈ [0; 1]
T m Position of trimming plane in relation to dome diameter:

T ∈ [−0.5; 0.5]D
t mm Culm wall thickness
tcr mm Thickness of culm wall at location of tensile crack
ts mm Shell thickness
Vf % Fibre volume fraction
x - Sample mean
x5% - Characteristic value
xk - Characteristic value
z m z-position of opening z ∈ [0; 1]D
α - Significance level
αi→k - Strut stress increase factor for increased frequency f = i

to f = k

xviii



αR - FORM sensitivity factor resistance
αS - FORM sensitivity factor load
β - Desired reliability index
γG,1 - Partial safety factor (self-weight)
γm - Partial safety factor (material)
δ mm Deflection
η - Perry factor
θ ° Load grain angle
λ0 ° Limiting slenderness
λ1 ° Slenderness ratio
µ - Population mean (as indicated)
µ - Utilization factor (as indicated)
ν - Poisson’s ratio
ξ - Spring stiffness
ρ kg/m3 Density
σ MPa Stress (as indicated)
σ - Standard deviation (as indicated)
σmax MPa Maximum strut stress
φ ° Angle from z-axis in a shell

xix





List of Terms and Abbreviations

Abb. Definition

bearing used as a synonym of embedment
BSc Bachelor of Science
CAD Computer Aided Design
CHS Circular hollow section
DIP Digital Image Processing
EC Eurocode
Elephant Export tools for Grasshopper developed by Arend van Waart
embedment used as a synonym of bearing
ESEM Environmental Scanning Electron Microscope
EWB Engineers without Borders
FE Finite element
FEA Finite element analysis
FEM Finite element model
FGM Functionally graded material
FORM First Order Reliability Method
FRP Fibre reinforced polymer
GB Global buckling
Geometry Gym Provides utilities and plug-ins for Rhinoceros and Grasshopper. Enables

exchange of Grasshopper models with Oasys GSA. Developed by Jon
Mirtschin

GNL Geometrically non-linear
Grasshopper Graphical algorithm editor linked with Rhinoceros
GSA Used short for Oasys GSA
Guadua Used short for Guadua angustifolia
Hoopsnake Component that enables feedback loops within Grasshopper developed by

Yiannis Chatzikonstantino
INBAR International Network for Bamboo and Rattan
ISO International Organization for Standardization
ISO 2004b Used as synonym for ISO 22157-1
LB Local buckling
LC Load case
LCA Life cycle assessment
LEED Leadership in Energy and Environmental Design, US rating system for

the design, construction, operation, and maintenance of environmentally
friendly buildings and neighbourhoods

xxi



LF Load factor
MC Moisture content
MOE Modulus of Elasticity (Young’s Modulus)
Moso Chinese name and synonym for Phyllostachys pubescens
MSc Master of Science
NDT Non-destructive testing
Oasys GSA Non-linear structural analysis software developed and owned by ARUP
PhD Doctor of Philosophy
Platonic Solid Convex regular polyhedron that tries to approximate a sphere: tetrahe-

dron, cube, octahedron, icosahedron and dodecahedron
Polyhedron three dimensional solid that is characterized by flat faces, straight edges

and sharp corners (vertices)
RH Relative humidity
Rhinoceros (abbreviated Rhino) 3D CAD software developed by Robert McNeel &

Associates
strut bar element that can transfer axial stresses - no distinction between com-

pressive struts and tensile ties is made
S235 Structural steel with yield strength of 235 MPa
UDHR Universal Declaration of Human Rights
UN United Nations
US United States (of America)
vertex corner of a polyhedron

xxii



Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 The Global Need for Housing and Sustainable Building Materials

In article 25.1 of the Universal Declaration of Human Rights it is stated that “everyone has the
right to a standard of living adequate for the health and well-being of himself and of his family,
including food, clothing, housing and medical care [...]” 1

Still as of today nearly one billion people around the world are living in urban slums – informal
settlements that lack structural safety and durability – therefore being exposed to natural dis-
asters such as earthquakes, flooding, storms, etc. [90]. The current trends indicate an ongoing
urbanization in developing and emerging countries, resulting in even larger and more densely
populated slums [85]. As an example, in Brazil alone, about 6% of the population lived in
‘favelas’2 in 2010 which equals 11.4 million people [13]. As houses in favelas are self-made,
construction takes several years. One of the major problems is the availability and affordabil-
ity of construction materials combined with the lack of knowledge and skills that resulted in
repeated collapse of buildings in the past[71][40]. While many low-income families are hardly
able to afford construction materials such as brick and concrete, bamboo is theoretically readily
and cheaply available as Brazil has the greatest bamboo diversity and the highest percentage
of woody bamboos of all countries in Latin America [76]. Woody bamboo (in the following
simply referred to as ‘bamboo’) is an excellent building material, lightweight, easy to handle,
fast-growing, and could substantially aid in meeting the increasing demand for safe, cheap and
sustainable housing, not only in Brazil but all over the world.

Comparing a map of the world’s urban population living in slums to the distribution of bamboo,
a remarking resemblance can be found (figure 1.1). Still people living in slums as well as building
authorities of developing and emerging countries strive for houses made out of concrete which –
if to be realized cheaply – would be disastrous in terms of carbon dioxide emissions and water
consumption [69]. A bamboo load bearing structure for medium sized residential buildings can be
equally strong as a concrete structure while being cheaper and much more sustainable [69][47][5].

The enduring preference for concrete as a building material has two main reasons:

1. The bamboo ISO codes were only released in 2004, and engineered bamboo structures
are still the exception rather than the rule. The design of traditional bamboo structures
is usually experience based, believing that “tradition is proof enough” [4]. This leads to

1http://www.un.org/en/documents/udhr/
2Brazilian term for slum
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inadequate preservation and jointing techniques; in the worst case resulting in the collapse
of a structure. Repeated failure of bamboo structures is the main reason why bamboo is
still perceived as an ‘unsafe’ material by many local building authorities [60].

2. Another important aspect is the social status associated with the use of natural building
materials. As mainly rich people can afford concrete houses, bamboo is stigmatised as a
“poor man‘s material” [4] [99].

In order for bamboo to be applied more often, the image of bamboo as a building material needs
to be improved, e.g. through application by pioneer architects, education of local contractors, and
active promotion by governments and building authorities [5]. A precondition for this to happen
is continued research on material properties, jointing techniques, and preservation methods.

(a) Distribution of woody bamboos
(www.eeob.iastate.edu [12])

(b) Urban population living in slums
(www.unmillenniumproject.org[89])

Figure 1.1: Maps of bamboo and slums

1.1.2 Bamboo as a Structural Material

General Features Bamboo is a fast growing wood-like grass which is found in many parts of
the world, mainly East Asia, Northern Australia, India, sub-Saharan Africa and parts of South
America (figure 1.1). It is lightweight, easy to handle and has good mechanical properties.
Bamboo is harvested after 3 – 5 years, and after few weeks of drying ready for construction
application. As natural durability is rather low [98], special attention needs to be paid to
moisture control and structural detailing [50]. The individual culm can easily reach a diameter
of 30 cm, a length up to 20 m and bamboo fibres can reach the specific tensile strength of mild
steel [47][72]. When harvested in a controlled manner, the plant itself does not die and is suitable
for growth in plantations [4]. Bamboo application mitigates deforestation when used as a timber
substitute [99][11][39][50] and substantially reduces carbon dioxide emission when used as a steel
substitute3[32][2][53].

Sustainability Similar to timber, bamboo works as a carbon trap as long as in use [99]. Lo-
cal application of bamboo as a building material makes sense as natural materials are already
adapted to their surrounding climate. Additionally, local application results in short transporta-
tion distances and thus lower carbon dioxide emission. For longer transportation distances, the
material‘s high relative strength accounts for increased CO2 emissions [81] without suffering
from the production related carbon footprint of other lightweight materials, such as steel or
fibre reinforced polymers (FRP). Several researches have tried to quantify the ecological benefits

3Due to its high tensile strength, bamboo is suitable as a structural steel substitute in lightweight structures
and as a reinforcement substitute in reinforced concrete.
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of bamboo application: Janssen was one of the first who assessed ecological aspects of bamboo
and bamboo plantations in his book of 2000, naming for example the potential positive effects
on erosion and ground water level [47]. Trujillo reports a life cycle assessment (LCA) conducted
on Colombian ‘Bambusa’ houses in 2002, resulting in half the environmental impact of an iden-
tically sized reinforced masonry house [85]. Another illustrative LCA for the Columbian ‘Bohio’
bamboo house is provided by Archila-Santos et al., who also considered architectural and me-
chanical aspects of the design [5]. Yu et al. conducted an LCA on a residential bamboo building
in comparison to a typical brick-concrete building, using three different scenarios according to
the LEED standard. They found that the bamboo building requires less energy and emits less
carbon dioxide while meeting identical functional requirements. They suggested to establish a
nationwide database for different types of residential buildings in China in order to asses build-
ing life cycle related carbon dioxide emissions [100]. Richard conducted a comparative LCA
as part of his PhD thesis of 2013, in order to assess the environmental impacts of structural
bamboo, boxed timber, solid timber and steel. He found that the positive impact of bamboo is
highest, if applied locally [69]. Summarizing it can be stated that bamboo is a fast regrowing,
natural building material, able to compete with other building materials in terms of structural
performance, and very sustainable if applied locally.

Standards and Norms The use of bamboo has been promoted by the International Network
for Bamboo and Rattan (INBAR) since the late 1980s, and reached its peak in the release of the
bamboo ISO codes in 2004. National adaptations of the ISO codes were developed in Columbia
and China and serve as bamboo building codes.

One of the major challenges in bamboo engineering is the lack of a material property database,
mainly due to a lack of standardized test methods prior to the release of the ISO standards [81][69].
Another problem is the reliability and comparability of test results, which has been addressed by
several researchers [80][75][38][47][62]. Therefore, it is not only important to conduct material
tests according to the ISO codes, but also to report entire sets of results, including mean val-
ues, standard deviation, etc.; in lack of globally accepted material properties, this still enables
engineers to base their structures on probabilistic design conforming to (inter)national building
standards.

1.1.3 Solutions for Seismic Areas: Bamboo Geodesic Dome Structures

Seismic Resistance of Geodesic Domes Geodesic domes are material cost and energy
efficient, provide a column free interior space and have low wind drag coefficients [8]. In his MSc
Thesis of 2009, Kubik states that the “degree of compactness in a building correlates with its
resistance against seismic shock” [52]. Geodesic domes approximate hemispheres, maximizing
volume while minimizing surface area, therefore being very compact. Kubik suggests a geodesic
dome variant called “Pabal dome” for seismic areas in India. The design is made of steel, chicken
wire and concrete, and was realized in an initiative of Engineers Without Borders (EWB). In
2010, Drake et al. suggested an adapted Pabal dome making use of locally available bamboo.
The main objective of this EWB project was to “enable low-skilled low-resourced people to build
their own structure using a ‘kit’ that includes pre-fabricated connections, tools and instructions
or guidelines”. According to Drake et al., one of the major challenges was to design an easy-to-
assemble joint that provided sufficient stiffness [20].

Seismic Resistance of Bamboo Structures The severity of earthquake damage and casual-
ties is correlated with the advancement of building techniques in the affected area. Unfortunately,
areas affected by seismic activity also involve the majority of areas with low socio-economic de-
velopment, including large parts of Asia and Latin America [75]. In turn, most of these areas also

3



have natural bamboo resources which could easily be used to construct earthquake-safe houses.
Examples from history show that even low-tech bamboo houses are able to provide great earth-
quake resistance. During a typhoon in the Philippines in 1987, several bamboo houses collapsed
due to splitting of nailed connections. Still, more bamboo houses than concrete houses stayed in-
tact which the author relates to the low-quality concrete and poor workmanship that was used [1].
Apparently, low-tech bamboo houses are still safer than low-tech concrete houses, which can be
partially attributed to the light weight of bamboo. Similar observations are reported by Sharma
in his PhD thesis of 2010 [81]: In the Sikkim region (India), poorly constructed concrete houses
collapsed due to an earthquake in 2006, while bamboo houses stayed intact. Another example is
reported by Archila-Santos et al. and Luna et al.: During an earthquake in Columbia in 1999,
most of the bamboo buildings survived with minor structural damage, whereas conventional con-
crete buildings collapsed, and almost 60% of all buildings collapsed [5][59]. Paudel even claims,
that the seismic performance of bamboo is better than the one of timber [65].

Besides these examples from history, the seismic performance of bamboo structures was also
assessed by experimental testing [81] and finite element modelling (FEM) [22]. Several authors
relate the excellent seismic performance to bamboo’s high axial strength, lightweight and flex-
ibility [22][47][53][75]. Remaining challenges are the development of stronger and stiffer joints
that provide sufficient deformation capacity, the implementation of seismic design in bamboo
building codes, and the training of high-skilled workers who can cope with the natural variability
and low durability of full-culm bamboo. Subsequently, bamboo’s structural capacity can be fully
exploited, providing safe and sustainable housing solutions for seismic areas.

Bamboo Geodesic Domes In terms of structural resistance to earthquakes, it is only logical
to combine the structural advantages of geodesic domes and the mechanical advantages of bam-
boo. Bamboo performs especially well under axial loading – the predominant load direction in
geodesic dome struts. Bamboo geodesic domes could be applied for medium sized public build-
ings, or housing in rural areas in South America or South East Asia. The modular character of a
geodesic dome allows for replacement of single members, which facilitates maintenance of struc-
tures employing natural materials such as bamboo4. In more densely populated areas, the shape
of geodesic domes is impractical. However, research on bamboo tensile connectors is indepen-
dent of the overall structural design. It can even be claimed that any bamboo research, adding
to the general knowledge of bamboo properties, enables architects and structural engineers to
apply bamboo more easily, thereby leading to the promotion of the use of bamboo, and finally
providing cheap, safe, and sustainable housing for the world‘s growing population [4][48][5].

4As durability of untreated bamboo is limited, preservative treatment and structural detailing are advised to
enhance durability [85]. After events like heavy rain, seismic damage, etc., it is favourable if affected members
can be replaced easily. This should also be considered in bamboo connector design.
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1.2 Problem Statement

Bamboo geodesic domes are able to provide sustainable, aesthetic, and structurally safe buildings
in seismic areas with natural bamboo resources. However, neither geodesic domes as a structural
system, nor bamboo as an engineered building material, are frequently applied yet. In the
following, the main challenges in designing bamboo geodesic dome structures are presented.

1.2.1 Parametric Stability Analysis of Bamboo Geodesic Domes

When designing geodesic domes, individual solutions can easily be obtained by application of
FEA (finite element analysis). However, no standardized solutions or rules of thumb are avail-
able that indicate whether a design is feasible and structurally sound. In this context, the
predictability of global buckling is considered crucial for three main reasons:

1. Global buckling is a sudden failure mode and needs to be absolutely avoided.

2. It is almost impossible to check global buckling by hand, especially for large structures.

3. The global buckling mode and load factor depend on the magnitude and kind of load or
load case combination. Linear superposition of global buckling load factors of individual
load cases is not possible.

It is expected that depending on the dome frequency, a change from local strut buckling to global
dome buckling will occur. The aim of the FE implementation is the derivation of boundary
conditions that determine this transition point. Subsequently, limit parameters can be derived
under which global buckling does not occur, which is the precondition for linear superposition
of geometrically linear load cases. The remaining challenge is the evaluation of the influence of
geometrical non-linearity.

Furthermore, practice application requires the insertion of openings in domes. Location and size
of elliptical door openings determines the magnitude of maximum strut stresses. The FE model
is used to derive stress patterns resulting from the location of opening insertion. This model
feature is also employed in a case study.

1.2.2 Bamboo Material Properties and Tensile Connector Design

By the introduction of the ISO standards for bamboo, a great step was made in the acceptance
and standardization of bamboo as a structural material. However, calculation rules are still
far from being well established and material properties are not known to an extend that allows
for a strength prediction of structural components, let alone bamboo joints. Therefore, several
essential mechanical properties are determined including Modulus of Elasticity, compression
strength, bolt bearing (embedment) strength and splitting strength.

Another challenge is the connection of full-culm bamboo members, especially in tension. One
aim of this research is to propose a tensile bolted connector that is able to cope with the natural
variation of culm geometry and mechanical properties, while avoiding tensile splitting. The
design needs to be attachable to a dome hub, cheap, efficient, easy to assemble, permit ductile
failure5, and allow for accurate strength prediction. Assembly and destructive testing of the
connector is beyond the scope of this research.

5Ductility and deformation capacity of joints is important for several reasons: (a) it reduces scatter of test
results and increases strength predictability (b) large deformations provide a warning for the user instead of
sudden, unexpected failure
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1.3 Scope of Research

The aim of this research is to work towards a parametric design method for bamboo geodesic
dome structures, including rules of thumb that predict maximum dome dimensions. An addi-
tional goal is to propose a bolted tensile connector that avoids splitting. One main research
question is posed to guide the course of the research:

1. What are the limiting parameters in the design of bamboo geodesic domes and
can a maximum diameter be derived?

Regarding geodesic dome design, the following research questions are posed:

2. Does a limiting diameter exist for bamboo geodesic domes made of Guadua angustifolia
and Phyllostachys pubescens (if connector strength is not taken into account) and what
parameters are decisive?

3. Is it possible to determine boundary conditions under which global buckling does not occur
and is linear superposition then possible?

4. What is the effect of opening size and position on the maximum strut stresses in bamboo
geodesic dome struts?

In terms of connector design and experimental determination of material properties of Guadua
angustifolia and Phyllostachys pubescens, the following aspects will be investigated:

5. What is the effect of nodes on compression capacity?

6. What is the effect of nodes on bearing and splitting capacity of bolted connections?

7. What influence does the shape of the bolt (round or square) have?

8. Is it possible to suggest a bolted tensile connector that avoids splitting and provides suffi-
cient strength and ductility for geodesic dome application?

Finally, real life application is simulated in a case study to give a qualitative answer to the
following question:

9. What are the main limiting parameters in real life application (including limited tensile
connector strength) and how can bamboo geodesic dome performance be generally im-
proved?

1.3.1 Limitations

Three different materials are implemented into the geodesic dome FE model: S235, Guadua
angustifolia and Phyllostachys pubescens6. Strength properties and geometry of bamboo are
derived from literature and experiments.

Two load cases (self-weight, point load) are analysed in detail to illustrate the concept of FE
stability analysis and geometrical non-linearity. The case study illustrates probabilistic design
and superposition of the analysed load cases. It should be seen as an example of use rather than
a design case or structural verification. Dead load of cladding, wind, and snow are implemented
into the model, but analysis is beyond the scope of this research.

6These species were supplied by Bamboe Bouw Nederland and were used in experiments as part of this research
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1.4 Methodology

First, a bipartide literature review literature is presented. Chapter 2 discusses bamboo as a
structural material. Geodesic domes in general and bamboo geodesic domes in particular are
discussed in chapter 3.

The experimental program consists of three experimental cycles and a microscopic examination
whose results are discussed in chapter 4. The experiments assess the dynamic Modulus of
Elasticity, compressive strength and compressive Modulus of Elasticity of Guadua angustifolia
and Phyllostachys pubescens, and bolt bearing and splitting strength of Phyllostachys pubescens.
Additionally, a 3D nano scan (ESEM) and electron microscopy are conducted for both species.

Chapter 5 reports the results of a FE dome model analysis conducted in Grasshopper7 and
Oasys GSA (GSA)7. The model input is based on mean strength values of Guadua angustifolia
and Phyllostachys pubescens, derived from literature and experiments. The exchange of model
data between Grasshopper and GSA is enabled by the plug-in Geometry Gym provided by Jon
Mirtschin. The model analysis investigates stability, non-linearity, insertion of openings and
theoretical limit dome diameters. Two load cases are analysed in detail: self-weight and point
load on top of the dome. Tensile connector strength is neglected. Probabilistic design is neither
applied on the load nor the material side as magnitude of loads, as load safety factors and relevant
load combinations are end-use dependent. Linear superposition is applicable for both SLS and
ULS for linear static load, provided that global buckling is not governing. Global buckling and
non-linear results are load dependent, i.e. the final load combination must be applied in the
structural analysis! Therefore, boundary conditions are derived under which global buckling
does not occur, and the impact of non-linearity is quantified.

In chapter 6, probabilistic design is discussed, which is the underlying safety concept of the
tensile connector design and case study.

In chapter 7, a tensile connector is proposed. Strength is predicted in a component based
approach, applying knowledge gained from literature research and experiments. The actual
assembly and experimental investigation of stiffness and strength of the full-sized joint are beyond
the scope of this research.

A case study in chapter 8 is used to illustrate the concept of probabilistic design and load
case superposition. Knowledge gained from literature, experiments, and FEA is applied and
combined. The case study includes design strength values and tensile strength of the proposed
connector.

Chapter 9 summarizes the results, answers the posed research questions and draws conclusions.

The overall outcome is a working Grasshopper model for bamboo geodesic domes, rules of
thumb indicating the transition from local to global buckling, and the maximum possible dome
diameter for two different load cases. Material tests provide insight into the effect of nodes on
compressive, splitting and bearing strength of bolted connections. This allows for the proposal
of a new bolted bamboo tensile connector which – after sufficient testing – can be applied in
axially loaded full-culm bamboo structural components.

7more information regarding Grasshopper and Oasys GSA is provided in chapter 5
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Chapter 2

Literature Research Bamboo

In 2000, Janssen published the book “Designing and Building with Bamboo” in cooperation with
the International Network for Bamboo and Rattan (INBAR), summarizing his knowledge and
research done on bamboo. In the following, a brief summary of the most important features
of bamboo as a structural material is given, with focus on material properties of the species
Phyllostachys pubescens (Moso) and Guadua angustifolia, which were subject of this research. If
the reader wants to gain more general knowledge about the subject, it is recommended to study
the works of Janssen or the INBAR Technical Reports.

Chapter 2.1 provides general information, including natural distribution and harvesting of bam-
boo. In chapter 2.2, an extensive literature review presents material properties of Phyllostachys
pubescens (Moso) and Guadua angustifolia. As this research aims to understand and exploit the
special features of the full culm, special attention is paid to the macroscopic and microscopic
functionally graded structure of bamboo, including fibre distribution in the radial direction and
along the height of the culm. Different methods are available to obtain fibre distribution; there-
fore the advantages and disadvantages of Digital Image Processing (DIP) and fibre extraction
techniques are discussed. Additionally, relationships between mechanical and physical proper-
ties are presented and discussed. The importance of research advancements in non-destructive
testing (NDT) is emphasized and suggestions are made, how future research can contribute to
further standardization and facilitated bamboo application. Note that more detailed information
on experiment-related literature is given in the respective sections of chapter 4.

In chapter 2.3, different bamboo tensile connectors are presented and their performance is as-
sessed with respect to geodesic dome application. Detailed information on the proposed connec-
tor, including a strength prediction, is presented in chapter 7.1.

2.1 General Information

Bamboo is a fast growing wood-like grass found in many parts of the world, mainly East Asia,
Northern Australia, India, sub-Saharan Africa and parts of South America (figure 2.1). It is
lightweight, easy to handle and has good mechanical properties. Bamboo is harvested after 3 –
5 years as it reaches its maximum strength. After few weeks of drying, the culms are ready for
construction application. The individual culm can easily reach a diameter of 30 cm, a length up to
20 m and the fibres can reach the specific tensile strength of mild steel [47][72]. Natural durability
is limited but can be enhanced by preservative treatment and adequate detailing [85][50].
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Figure 2.1: Distribution of woody bamboos (www.eeob.iastate.edu [12])

2.2 Material Properties

Bamboo’s material properties are governed by its functionally graded macro- and microstruc-
ture. In the following, a brief overview of the macro structure is given. Subsequently, the
microstructure of the internode and the resulting axial mechanical properties are discussed more
deeply. Relationships between mechanical and physical properties are presented and the need of
NDT is emphasized. As nodes were of special importance in this research, chapter 2.2.3 focusses
on the microscopic structure of nodes and influence on material properties.

2.2.1 Bamboo as a Functionally Graded Material

The functionally graded macro and microstructure of Phyllostachys pubescens (Moso) and Guadua
angustifolia are discussed, focussing especially on axial mechanical properties.

2.2.1.1 Macrostructure

The bamboo culm is characterized by nodes and internodes. As part of a node, a transverse
diaphragm interrupts the hollow round cross-section of the culm. An internode is the section
between two nodes (figure 2.2).

Figure 2.2: Longitudinal cross-section of bamboo culm (Liese, 1971 [55])

Unlike timber, bamboo does not experience radial growth. New culms emerge from an under-
ground rhizome system with their final diameter and final amount of nodes [69]. In general,
geometry changes along the height of the culm: While culm diameter stays constant for some
species and decreases for others, wall thickness is found to decrease for most bamboos leading
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to a reduction in cross-sectional area [11] [32]. Mechanical properties generally improve with
age and reach their peak between three to five years, depending on the species. After five to
seven years, strength starts to decrease again, explaining the age at which bamboo is usually
harvested [69][44]. Moisture content for green condition and air dried condition is species de-
pendent [11]. The decrease of moisture content from green to dry is higher for bamboo than
for timber, leading to radial cracking and longitudinal splitting if drying is not carried out care-
fully [69]. Change of moisture content also needs to be considered when bamboo is transported
to a different climate.

2.2.1.2 Microstructure

Bamboo is a composite material with strong cellulose fibres embedded in a soft parenchyma
matrix. The culm wall composition can roughly be described as 40% fibres, 50% matrix and
10% vessels in the internode [47]. The fibres are part of a vascular bundle which also contains
vessels for water and nutrient transport [64]. The vascular bundle can be structured into fibres,
metaxylem and phloem vessels, and sclerenchyma sheaths (figure 2.3). Similar to other fibre
matrix composites, bamboo’s strength and stiffness are directly correlated with the fibre content;
an indirect measure for the fibre content is the amount of vascular bundles. In the internode, the
cellulose fibres are axially orientated, resulting in orthotropic properties. In the nodal diaphragm,
the fibres are short and randomly orientated, resulting in an isotropic structure that transversely
connects the culm wall [68][55]1 Fibre content increases radially and along the height of the culm;
the latter mitigates the effect of the decreased cross-sectional area.

Figure 2.3: Transverse cross-section of Guadua angustifolia vascular bundle (from electron mi-
croscopy at TU Delft, part of this research)

Mechanical Properties and Fibre Distribution In 1995, Nogata and Takahashi published
an article describing bamboo as a Functionally Graded Material (FGM) [64]. They investigated
the fibre distribution in Moso culms, concluding that fibre density increases longitudinally from
the bottom to the top of the culm and non-linearly from the inside to the outside surface of
the culm cross-section. They found similar results for the distribution of tensile strength and

1For more detailed information on the macro and microstructure of nodes see chapter 2.2.3.
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Modulus of Elasticity (MOE). The radial increase of MOE was described by a power law with
r=0...1 (distance from inner culm surface). They concluded that bamboo fibres have high specific
tensile strength but low specific rigidity (figure 2.4).

bottom: MOE = 2.5e(2.2r/t); top: MOE = 3.75e(2.2r/t)

Figure 2.4: Specific MOE vs. specific strength, hard tissues (Nogata and Takahashi, 1995)

Figure 2.5: Radial fibre distribution at different heights of the Moso culm (Amada et al., 1997)

Amada et al. examined Moso bamboo on a macroscopic and microscopic level in 1996 [3]. They
concluded that bamboo is a “unidirectional fibre-reinforced composite with many nodes along its
length”, which has a functionally graded and hierarchical structure. They attributed diameter,
thickness and node distance to the macroscopically graded structure and the fibre distribution
within the culm wall to the microscopically graded structure. The measured fibre distribution
along the thickness of the culm for different location along the height of the culm is displayed
in figure 2.5. All volume fractions ranged between 10 and 70% which Amada et al. related to
strength properties. The tensile fibre strength was found to be 600 MPa, matrix strength was
found to be 12 times lower. Additionally, Amada et al. investigated the microstructure of nodes,
finding that fibres deviate from the culm into the node, to reinforce the node and connect it to
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the culm. They concluded that the entangled fibre structure in the nodes results in isotropic
properties, so that the nodes can act as “reinforcement” for the culm.

In his book of 2000, Janssen states that fibre content varies from 10% on the inside wall to
60% at the outside wall independent of the species. Assuming that the MOE of a single fibre is
35 000 MPa, he derives the following rule of thumb for the radial distribution of MOE, neglecting
the contribution of the matrix [47]:

MOE = 35 000 Vf [MPa] Vf ...fibre volume fraction

Yu et al. sliced the culm wall of Moso bamboo into several layers, investigating the tensile
strength, MOE, shrinkage and relative density along the thickness and height of the culm. They
concluded that the layer position had a significant effect on all properties while height had an
effect on all properties except tensile strength. Relative density, tangential shrinkage, tensile
MOE and tensile strength showed a strong increase from the inside to the outside. Longitudinal
shrinkage decreased strongly from inside to outside layer. Relative density, tangential shrinkage
and tensile MOE increased along the height of the culm whereas tensile strength remained
constant [101]. This illustrates the effect how increased relative fibre content mitigates the
effect of a decreased cross-sectional area at the top of the culm. It also shows, that Janssen‘s
assumption of a species independent average MOE of 35 GPa is a gross simplification.

Shao et al. derived linear formulas for the correlation of tensile strength and MOE, and fibre
volume fraction Vf of Moso [78]. A more detailed report of research on tensile properties can be
found in appendix B.1.

ft = 562.69 Vf + 19.04 [MPa] MOE = 40.13 Vf + 0.22 [MPa]

Chen and Long performed linear and curvilinear regression analyses for tensile properties and
fibre volume fraction of Moso, using models with different amounts of layers in the radial di-
rection. They concluded that mechanical properties are strongly related to the fibre volume
fraction. Models with averaged properties and less layers overestimate resulting deformation
and axial stresses and are conservative as they don‘t take the positive effects of the gradient fi-
bre distribution into account. The findings from the linear regression analysis for tensile strength
and MOE were [10]

ft = 6.936 + 617.789 Vf [MPa] MOE = 0.871 + 41.202 Vf [GPa]

Sutanun et al. found that for Dendrocalamus Asper (Petung) among other tropical species, the
fibre volume fraction increases linearly from the inside to the outside surface, whereas for Moso,
the fibre distribution is non-linear[84].

Ghavami used DIP to derive a non-linear formulation of the fibre volume fraction Vf and MOE
of Dendrocalamus giganteus using the rule of mixture [32]. A similar approach can be used for
any bamboo species.

MOE(r) = EfVf (r) + Em(1− Vf (r))

Vf (r) = 49.8r2 − 0.49r + 20.01

}
Ef ...MOE of fibre; Em...MOE of matrix

r ∈ [0; 1]...distance from inner culm surface

Silva et al. modelled the continuous radial change of Moso‘s MOE using graded FEM. They used
different MOE distributions: One according to Nogata‘s power law, one with an average MOE
using the integration of Nogata‘s power law, and a model using a homogenization method to
obtain an elastic stiffness matrix. They concluded that an averaged MOE obtained from a rule
of mixture provides enough accuracy to capture the global deflection of a bamboo structure.
In order to estimate local features such as stresses near supports, bolted connections, etc., it is
necessary to employ a more accurate FE model [82].
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Mechanical Properties and Distribution of Vascular Bundles The amount of vascular
bundles B is an indirect measure for the amount of fibres in the bamboo cross-section.

Lo et al. examined the compressive strength of Moso bamboo in relation to the number of
vascular bundles, position along the culm, thickness, age and outside diameter. They found
that compressive strength for Moso bamboo ranges between 45 and 65 MPa and can be related
linearly to average number of vascular bundles and outside culm diameter [57][58]:

fc(B) = 2.63 B + 36 [MPa] B. . . average number of vascular bundles per unit area;

fc(D0) = −0.28 D0 + 71.5 [MPa] D0. . . average outside diameter [mm]

Huang et al. derived two linear formulas for MOE and tensile strength of Moso bamboo based
on the distribution of vascular bundles B and rule of mixture[43].

MOE(B) = 0.389 + 28.998 B [GPa]; ft(B) = 10 + 475 B [MPa]

Li and Shen extracted vascular bundles from different heights of Moso culms, deriving non
linear formulas for the MOE and tensile strength of vascular bundles at different heights of the
culm. The values they found were slightly lower than those of Nogata and Takahashi which they
explained by different age and origin (Japan and China respectively) [54].

MOE(r) = a1r
3 + a2r

2 + a3r + a4; ft(r) = a1r + a2;
r ∈ [0; 1] distance from inner culm surface; a1...4 coefficients for position along the culm

Influence of Sample Size and Extraction Technique Ge at al investigated the effect of
specimen size and extraction technique on the measured tensile strength and MOE of single
fibres, fibre bundles and bamboo strips. [31]. They found that single fibres reach the highest
capacity whereas bamboo strips result in the lowest capacities. Fracture occurred in the tissue
(parenchyma matrix) between the single fibres. Therefore, rule of mixture should be considered
only as a guideline for tensile strength and larger specimens need to be tested to obtain reliable
strength values. Other factors that had an influence on measured strength were the extraction
method of the fibres and the location of the bamboo strips (inside or outside surface of the
culm). Chemical extraction resulted in higher strength than mechanical extraction.

2.2.1.3 Conclusions

It can be concluded that bamboo is a natural FGM. The fibre volume fraction increases from
the inside surface to the outside surface of the culm and generally increases from the bottom
to the top of the culm. The shape of the distribution curve is species dependent. For Moso,
a non-linear distribution seems to fit best. Several material properties such as MOE, tensile
strength and compressive strength are directly correlated to fibre content. Applying the rule of
mixture, linear relationships for a mechanical property X and fibre volume fraction Vf can be
derived:

X(r, z) = XfVf (r, z) +Xm(1− Vf (r, z));

Vf (r, z)... fibre volume fraction along the thickness r and height z of the culm

Xf ... property of the fibre; Xm... property of the matrix

The exact fibre distribution is hard to determine. Alternatively, the distribution of vascular
bundles can be determined, which can easily be done by DIP. Subsequently, the volume fraction
of vascular bundles can be related to fibre volume fraction or directly to mechanical properties.
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Note that vascular bundles change shape across the culm wall thickness and that their com-
position of vessels and fibres is generally not constant. DIP therefore generally results in less
accuracy than manual microscopic determination of the fibre distribution. The measurement of
properties of the fibre Xf is also connected to some difficulties, as measurement of mechanical
properties of a single fibre or fibre bundle depends on sample size and extraction technique.
Therefore, the researcher has to make a compromise between experimental effort and accuracy
of the results.

For overall culm strength and stiffness, average properties provide conservative model input
values. In order to obtain local stress and deformation peaks, e.g. close to a bolted connector,
the functionally graded microstructure needs to be modelled accurately. Alternatively, full scale
experiments can be conducted.

2.2.2 Relationships between Mechanical and Physical Properties

Several attempts were made to relate mechanical properties directly to physical or mechanical
properties that can be measured non-destructively (e.g. density, moisture content or dynamic
MOE), avoiding destructive testing and exact determination of fibre distribution in the future.

2.2.2.1 Mechanical Properties and Density

In his PhD thesis of 1981, Janssen made the first attempt to derive species independent “rules
of thumb” for mean strength of air-dried bamboo, relating compression and shear strength of
the full-culm internode and bending strength of 5 m culms directly to density [kg/m3] [46].

compression: fc = 0.091 ρ bending: fm = 0.14 ρ shear: fv = 0.021 ρ

Yu et al. related tensile strength and MOE of Moso bamboo dog-bone specimens directly to
air-dried density [g/cm3] producing the two linear relationships below [102]. A more detailed
report of research on tensile properties can be found in appendix B.1.

MOE = 41.956 ρ− 18.431; ft = 334.941 ρ− 93.866

Mechanical Properties and Age Correal et al. tried to quantify the effect of age and posi-
tion along the culm on density, compression, bending and shear strength of Guadua angustifolia.
They concluded that for ages between 2 to 5 years, regardless of age, the top portion of the
culm shows maximum strength (compression, shear and bending) and MOE. Regardless of culm
position, the optimal age for harvesting seems to be between 3 and 4 years as mechanical prop-
erties were highest and remained almost constant at that age. For culms older than 5 years,
mechanical properties started to decrease due to ageing effects and dying of fibres [14].

2.2.2.2 Mechanical Properties and Moisture Content

Chung and Yu investigated the influence of the moisture content, wall thickness and position
along the culm on the characteristic bending and compression strength of Bambusa Pervariabilis
and Phyllostachys pubescens (Moso). They concluded that increase in moisture content leads
to a significant decrease in compression and bending strength until fibre saturation is reached.
Additionally, they found that physical and mechanical properties are broadly constant along the
culm length for Bambusa Pervariabilis but vary significantly for Phyllostachys pubescens2. While

2Nevertheless it can be assumed that samples of same diameter, thickness and moisture content should produce
similar strength results – provided that their fibre content is approximately the same, which brings us back to the
need of microscopic investigation.
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cross-sectional area stayed almost constant for Bambusa Pervariabilis, it decreased significantly
for Phyllostachys pubescens bamboo. The same observation was made for moisture content [11].

The effects of moisture content on mechanical properties were explicitly examined by Gonza-
lez et al. [35], Jiang et al. [24] and Wang et al. [97][96]. Gonzalez et al. found that tensile
strength of Guadua dog-bone specimens increases with moisture content up to the equilibrium
moisture content and decreases above the fibre saturation point [35]. Jiang at al investigated
the effect of change of moisture content below the fibre saturation point on several mechanical
properties of small Moso specimens. They found that compressive and shear strength are most
sensitive to change in moisture content leading to a decrease in strength for an increase of mois-
ture content [24]. Wang et al. conducted simple mechanical experiments on bamboo strips to
derive the compressive MOE of Moso bamboo. They also carried out nano indentation tests to
determine the indentation Modulus of Elasticity and hardness. They found that all properties
were negatively correlated to moisture content and that MOE was most sensitive [97]. In a later
study, Wang et al. conducted a regression analysis on compressive strength, moisture content
and density of Moso bamboo, producing the following relationship [96]:

fc/ρ = 76.62 +
739.90− 76.62

1 + e(MC+13.46)/7.6296

2.2.2.3 Mechanical Properties and Dynamic Modulus of Elasticity

The dynamic Modulus of Elasticity (Edyn) is determined by vibration measurements and can
be related to the static Modulus of Elasticity (Estatic). While common practice in timber en-
gineering, NDT i.e. use of Edyn to determine Estatic is a relatively new approach in bamboo
engineering. To the present date, only Lin et al. found significant positive relationships between
density, drilling resistance, Edyn, Estatic from three point bending and Modulus of Rupture, al-
though coefficients of determination (R2) were small in most cases [56]. Two interesting relations
that relate Estatic to density, and Estatic to Edyn are presented in the following (note that MOE
from three-point bending contains a shear contribution, which cannot be neglected for bending
of bamboo culms [30]!):

Estatic = 10.3 ρ+ 2767.3; R2 = 0.54

Estatic = 0.6 Edyn + 1284.4; R2 = 0.75

Trujillo presented a research proposal in which he refers to several previous studies that related
physical and mechanical properties. As factors that affect the strength of bamboo he names
species, maturity, position along the culm, node or internode material. position within the culm
wall, density, load duration, geometric deviations, and splitting3. He states that in principle
it is possible to derive the strength of an individual bamboo element from NDT, which is the
basis to machine strength grading and a strength classification system which is common practice
in timber engineering. However, this requires hundreds of tests results from destructive tests.
Therefore, Trujillo calls for an international concerted effort to complete this task [86].

2.2.2.4 Conclusions

It can be concluded that correlations of density and strength and stiffness exist, although their
significance needs to be addressed in detail. Increase of moisture content clearly has a negative
effect on strength and stiffness below fibre saturation point. Yet, more research needs to be
done to derive relationships between physical and mechanical properties that can be obtained
by means of NDT and those that require destructive testing.

3He states that splitting reduces bending, shear and compression resistance, though it could be argued that
splitting is merely a failure mechanism for those strength properties
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2.2.3 Influence of Nodes

Ray et al. state that the fibres in the nodes are randomly oriented instead of unidirectional
which imparts isotropic properties [68]. They emphasize the need to examine both microscopic
and macroscopic structure of bamboo, as bamboo is a “both macroscopically and microscopically
functionally graded biomaterial” and both “macroscopic and microscopic structure of bamboo
[are] quite complicated”. Following this approach, first the microscopic structure of nodes in
presented and then linked to the macroscopic influence of nodes on mechanical properties.

2.2.3.1 Microscopic Nodal Structure

Liese et al. studied the anatomy of nodes of different species in 1971 [37]. They found that
“most of the bundles inside the diaphragm originate from the inner part of the culm but some
bundles from the periphery bend also radially and pass into the diaphragm” (figure 2.6). In the
node itself, the fibre bundles form an “irregular interwoven texture”. In the INBAR Technical

(a) Vascular bundles in node (Liese, 1971)
(b) Model of vascular bun-
dles (Liese, 1998 [55])

Figure 2.6: Node Liese et al.

Report No. 18, Liese provides more information on the fibre structure in the node [55]. He states
that “most of the vascular bundles pass directly from an internode through the node into the next
internode”. Additionally he found, that close to the outside culm wall, fibres bend outwards
and some branch into the sheath4. Close to the inside culm wall, fibres connect to those in
the diaphragm. At the upper part of the diaphragm, “small bundles turn horizontally and twist
repeatedly” which can be seen in figure 2.6b. Although the morphology of culm nodes is different
for different species and the diaphragms can be plane, concave or convex, all studied species
seemed to have common features regarding fibre orientation.

Amada et al. studied the microscopic structure of Moso nodes in 1997 [3]. They found that the
reinforcing fibres are axially oriented in the internode, whereas in the nodes the fibres become
“entangled in a complicated manner”, thereby producing “nodes with isotropic properties that
provide additional reinforcement for the culm”. They found that the fibres enter the node from
the lower part of the culm. Here they become entangled and randomly oriented. Eventually,
the fibres continue into the upper part of the culm (figure 2.7a). The isotropic behaviour was
tested by tensile tests of specimens at various radial locations in the node. They found a tensile
strength of 29±4.5MPa and a tensile MOE of 2.22±0.3GPa with little variation at the different
locations. They concluded that the fibres have no reinforcing effect, as tensile strength of the

4Part of the node at the outside culm wall where leaves emerge
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node material was only half the strength of the internode material. However, this conclusion
only holds for tensile capacity.

(a) Fibre bifurcation
(Amada et al., 1997) (b) Fibre orientation in Moso node (Ghavami et al., 2003)

Figure 2.7: Cross-sections of Moso nodes

Ghavami et al. studied nodes of Moso in 2003 [33]. He observed that the fibres run “along the
length of the culm with interruptions at the node”. Similar to Liese’s observations, fibres closer
to the outside culm wall were found to bend at the node. While fibre bundles in the upper part
of the diaphragm were found to run along the circumferential direction, fibres in the bottom
were oriented in radial direction. It seems that Ghavami’s figure is placed upside down.

Figure 2.8: Vascular bundles in Moso node (Wang et al., 2013)

Wang et al. investigated the toughness contribution of the bamboo node to the Mode I fracture
toughness of Moso [95]. They found that Mode I toughness is low along the grain of the bamboo
internode, but that the node can hinder the interlaminar crack propagation. They explained
this by the differences in the microstructure. In the internode, the fracture resistance comes
from three interfaces: matrix to matrix, matrix to vascular bundle, and vascular bundle to
vascular bundle. In the nodes, additional resistance is provided by transverse vascular bundles
(figure 2.8). They found that the Mode I interlaminar fracture toughness of bamboo node
specimens was 1.87 times higher than that of the internode specimens.

2.2.3.2 Macroscopic Influence of Nodes

There is general consensus that nodes cause the tensile capacity to decrease [77][99]) [32]. But
what effect do nodes have on splitting, shear and compression capacity and can they serve as
natural reinforcement in bolted connections?
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In his PhD thesis of 2010, Sharma states that tensile splitting is often the governing failure
mode of bamboo members as well as bamboo joints [81]. Mitch‘s split pin test of 2009 indicates
that the tensile splitting capacity of clear samples is much smaller than the shear capacity of a
similar sample [62]. This agrees with the finding of Shao et al. [79] and Wang et al. [94] who
found a Mode I interlaminar fracture toughness of GIC = 358J/m2 and a Mode II interlaminar
fracture toughness of GIIC = 1303J/m2 of clear Moso samples. Wang et al. also reported
an increased Mode I interlaminar fracture toughness of the node of GIC,node = 1431 J/m2

and GIC,clear = 498 J/m2 for the internode [95]. These findings explain, why splitting is the
prevailing failure mode and that nodes can increase splitting capacity.

Controversial opinions exist on the influence of nodes on shear capacity. Moreira et al. report
that shear planes can freely develop in the parenchyma cells of the nodes while propagation of
tensile splitting is hindered by radially and circumferentially oriented nodal fibres [63]. However,
this statement is contradicted by Shao et al. [77] who found increased shear strength in Moso
nodes.

Another strength property that is influenced by nodes is the compressive strength of full bamboo
culms. In 2008, Ghavami conducted tensile and compressive tests according to the ISO 2004b
standard on Guadua angustifolia specimens with and without nodes (table B.2) [32]. The find-
ings suggest that nodes decrease tensile as well as compressive strength. Shao et al. [77] con-
ducted experiments on small samples of Phyllostachys pubescens. They found decreased tensile
strength but slightly increased compressive strength (table B.4). These findings seem to contra-
dict each other, but as sample size and species were different, it is impossible to make a direct
comparison.

Due to the changed fibre orientation, it seems logical to expect a natural reinforcing effect of the
node in connections. Widyowijatnoko meant to exploit this property in his tensile lashing joint
(figure 2.9) [99]. However, the connector makes use of full-culm radial compression strength
rather than the reinforcing nature of the node. Widyowijatnoko assumed that this configuration
would result in the highest strength without specifically exploring the benefit of placing his
connector behind a node. The connector was only tested as a whole and the observations can
thus not be extrapolated to bolted joints.

Figure 2.9: Multi-knot lashing joint (Widyowijatnoko, 2012)

2.2.3.3 Conclusions

The microstructure of nodes is substantially different from the internode, with fibres deviating
from the axial orientation. Nodes seem to decrease overall tensile capacity and increase split-
ting capacity. Controversial opinions exist on the influence on full-culm shear and compression
capacity and it is not clear whether nodes can be used to reinforce bolted connections.

2.2.4 Material Properties and Probabilistic Design

In the past, several attempts were made to establish design strength values for Moso and Guadua
bamboo. Chung and Yu conducted tests in compression and bending establishing design values
of both the strength and the MOE for Moso [11]. Yu et al. proposed a method to derive
design values for the column buckling strength of Moso comparing EC3, EC5 and the British
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Steel Code BS5950 [103]. Luna et al. derived design stresses and a characteristic MOE as an
addition to the Colombian building code for Guadua[59]. An extensive study on the reliability
of strength values was conducted by Sharma[81]: In his PhD report of 2010, a broad overview
of geometrical, physical and mechanical properties of various common bamboo species is given5.
The values are filtered based on the amount of data sources, range of results compared to other
data, and up-to-dateness of the applied test method. The standard deviation of the remaining
sources is computed (fitting a Gauss or Weibull distribution) which allows for the derivation
of characteristic strength values. Sharma concluded that the reliability of data is strongly
dependent on the source (operator, testing parameter and conditions) and that standardization
of test methods is essential for comparability of test results. He further stated that more research
needs to be done in order to establish a material database.

2.2.5 Discussion and Conclusion

The present literature review summarizes findings from previous research concerning material
properties of Phyllostachys pubescens and Guadua angustifolia. Bamboo is a FGM that is able
to perform well under axial loading and there are indications that nodes can reduce susceptibility
to splitting. Several relationships between mechanical properties and fibre content have been
established. However, the challenge remains to generally predict mechanical properties and relate
them to other material properties, i.e. the ones that can be obtained by NDT. Many factors
affect mechanical properties of bamboo: Already a different origin can have effects on strength
as shown in the example of Nogata and Silva. Additionally, strength is strongly dependent on
culm geometry, age, moisture content, etc., which makes it hard to compare and extrapolate
results from one research to another. According to Sharma, the empirical relationships between
geometrical, physical and mechanical properties are not applicable beyond a tested species [81].
While for one species, correlation of two properties might be significant, for another species,
the same properties might lack correlation all together. Therefore, one has to be careful when
applying the “rules of thumb” derived by Janssen in his PhD thesis of 1981 [46]. Instead, the
author of this thesis advises to obtain material properties individually for a certain species
according to the ISO 2004b standard and reporting the given boundary conditions. This way,
different results from literature can be compared and funnelled into a bamboo design code.

In terms of structural safety, decisions have to be made on how to establish material safety factors
to implement in building codes. Janssen argues, that the wide spread of bamboo strength values
results in higher structural safety in case of extreme events (e.g. earthquakes), as characteristic
strength values are low[47]. However, this is a very inefficient approach for all other limit states
and the goal should be to reduce scatter of test results and increase reliability. Subsequently,
partial safety factors should be derived that reflect the scatter of test results and loads, and the
desired reliability of a structure.

5Sharma refers to the database GNOCMAT which provides a collection of test results
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2.3 Bamboo Tensile Connectors

One of the most challenging parts of designing bamboo structures is the joint design, especially
for joints that need to transfer tensile loads. While bamboo fibres can reach the specific tensile
strength of mild steel, its shear and splitting capacity are very low. Especially bolted connec-
tions are susceptible to tensile splitting, which is a brittle and potentially dangerous failure
mode6 [62][63]. Glueing or mortar injection can be problematic as the bond is only established
with the stiff cellulose fibres that tend to get ripped out of the soft matrix, especially when
adhesives are applied at the inside culm wall where fibre density is low [4]. The goal is thus
to design a joint that makes it possible to exploit the full tensile strength of the bamboo culm
without splitting or crushing it [99]. Additional challenges are the smooth outer surface of the
culm, its round geometry and variation in culm diameter and wall thickness.

Several connector types have been suggested in literature but only few are suitable for the multi-
way tensile joints employed in geodesic domes. In the following, different tensile connectors will
be presented and their performance will be discussed. Also potentially suitable connectors for
round timber logs are included, as the geometry and physical structure of timber logs is very
close to full-culm bamboo. Patented connectors are excluded as they are not affordable for the
target group of this research.

The following performance criteria are used to assess the suitability of a connector:

� tensile strength of entire connector

� stiffness (relative slip, displacement)

� failure mode (brittle, ductile)

� availability of components and material costs

� ease of connector assembly (required workmanship and labour intensity)

� weight

Additional criteria for geodesic dome application:

� modular design: ease of initial assembly and maintenance / strut replacement7

� suitability for dome hub connection without (large) eccentricities

� transfer of compressive forces by contact

6Certain applications require ductility and plastic deformation capacity that allows for redistribution of
stresses. Examples are statically undetermined structures or dynamic actions including earthquakes.

7The limited durability or bamboo calls for the ability to replace single members if necessary.

21



2.3.1 Gutierrez Joint

The Gutierrez joint is not a bamboo tensile connector as such, as it transfers tensile forces
employing steel elements and only makes use of the bamboo culm in compression and bending
(figure 2.10) [49]. Transmission of shear or tensile forces by the bamboo element is fully avoided.
A steel bar passes through the culm (which requires drilling of the diaphragms) and an end plate
is welded to the bar at each end of the culm. The joint can be adapted by using a threaded bar
and nuts that pre-tighten the end plates to the culm. This avoids the stiff and labour intensive
weld and allows for a connection to a geodesic dome hub. Generally, the tensile capacity of
bamboo culms is much higher than the compressive capacity and it seems somewhat strange not
to make use of this material property. The goal of this study is the development of a connector
that employs the tensile strength of bamboo itself. Therefore, the Gutierrez joint will not be
considered any further.

Figure 2.10: Gutierrez Joint (INBAR Technical Report No 16 [49])

2.3.2 Wood-Plug Joint by Arce-Villalobos 1993 TU Eindhoven

Arce-Villalobos proposed a wood-plug joint that is able to adapt to variation of the culm diameter
while distributing axial loads to the fibres [4]. A round wood plug is glued to the inside wall
of the bamboo culm (figure 2.11). The other end of the plug can be connected in a standard
timber connection and verified according to timber codes, e.g. Eurocode 5.

Figure 2.11: Wood-Plug joint by Arce-Villalobos (Arce-Villalobos, 1993)

Arce-Villalobos discovered that only the innermost layer of the bamboo culm takes the stresses
from the glue and that shear failure in the matrix between the fibres prevails. Even when strong
adhesives are used, the maximum joint capacity is quickly reached as fibres get ripped out of
the matrix long before the tensile capacity of bamboo is exploited. Under compression the joint
behaviour is favourable as crushing of the culm is prevented by the wood-plug. As this connector
requires grinding of the inner culm surface and individual fitting of the wood plug, work intensity
is high, especially if many joints need to be manufactured.
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2.3.3 Cement Injection Joint and Bolted Joints studied by Fu et al. 2012

Fu et al. studied three different joints [29]: a cement injection joint, a bolted joint and groove-
plate joint (figure 2.12). They concluded that both bolted connections failed in brittle tensile
splitting (figure 2.13b) while the cement plug failed in more ductile relative slip between the
plug and the culm (figure 2.13a).

Figure 2.12: Connections studied by Fu et al. (Fu et al., 2012)

Similar to the wood-plug joint of Arce-Villalobos, the adhesive bond of the cement to the bamboo
inside wall is limited at the cement-to-fibre and fibre-to-matrix interfaces. Cement injection
introduces the additional disadvantage of cement paste shrinkage during drying which can cause
premature joint failure. An improved version of the cement joint makes use of a cement injection
behind the first node using the diaphragm as a natural cast (figure 2.13c). While cement joints
are less labour intensive than the wood-plug joints, accuracy is much harder to achieve. Finally,
added weight is the major disadvantage of this connector type, especially for high frequency
geodesic domes that contain short struts and a high number of joints.

(a) Cement plug is pulled out (b) Splitting of bolted joint (c) Mortar injection in internode

Figure 2.13: (a) and (b): Failure modes of cement joint and bolted joint (Fu et al., 2012)
(c): Mortar injection joint employed in ZERI pavillon, EXPO 2000, designed by Simon Veléz [73]
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2.3.4 Lashing Joint by Widyowijatnoko 2012 RWTH Aachen

Widyowijatnoko studied various existing joints and pointed out their advantages and disadvan-
tages [99]. He proposed a new joint employing steel wire lashing which transforms axial tensile
forces into a radial compression force (figure 2.14). The force is applied on the outer wall of the
culm which is the strongest part of the culm due to its high fibre content. The wire is attached
to a ring on the inside of the culm that connects to a threaded rod. A steel cap at the end of
the culm makes it possible to introduce compression forces by contact.

Figure 2.14: Lashing Joint with Eye-Bolt by Widyowijatnoko (Widyowijatnoko, 2012)

The main advantage of this join is its self tightening nature — as tensile forces get higher,
radial compression is increased without introducing the risk of tensile splitting that comes with
bolted connections. While being able to adapt to different culm diameters and non perfectly
round shapes, the proposed joint avoids all problems related to adhesive based joints, such as
cement injected or glued joints. Additionally, the joint is light and makes use of readily available
components, providing a low-tech solution while maintaining adequate structural safety. The
typical failure mechanism consisted of ovalization of the culm, the washers slipping into the holes
and subsequent wires slicing through the culm (figure 2.15).

In practice, the connection should be designed in such a way that steel components are under-
matched compared to the anticipated bamboo strength. For example, the threaded rod diameter
could be decreased such that the rod fails in ductile yielding prior to bamboo culm ovalization.
This results in higher joint strength predictability 8 and provides plastic deformation capacity.
Additionally, slip needs to be limited to provide sufficient stiffness. Another difficulty lies in the
determination of the force flow as it is less straight forward than e.g. a bolted connection. Last

8Bamboo is a natural material, therefore test results show great scatter, leading to lower 5% values and higher
material safety factors than for steel. If steel yielding in decisive, the maximum joint strength can be predicted
rather accurately.
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Figure 2.15: Lashing Joint with Eye-Bolt by Widyowijatnoko (Widyowijatnoko, 2012)

but not least, assembly becomes difficult especially when multi-knots are used to reach a higher
joint capacity (figure 2.16). Still, this joint provides a high tensile capacity while using simple
components. With small adaptations it is suitable for geodesic dome application.

Figure 2.16: Multi-Knot Lashing Joint by Widyowijatnoko (Widyowijatnoko, 2012)
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2.3.5 Timber Wire Lacing Joint by Huybers 1997 TU Delft

The wire lacing tool developed by Huybers [45] was employed in a timber log geodesic dome
located in the botanical garden in Delft, the Netherlands (figure 2.17a). At both ends of each
log, a steel strip is inserted and fastened with the wire (figure 2.17c). The strips are attached
to flat steel discs with bolts making an easy assembly of 5-way and 6-way joints possible. The
wire lacing was applied in order to provide a more ductile failure when splitting occurs. Almost
all logs indeed show splitting at the ends (figure 2.17b).

(a) Timber log geodesic dome in Delft (b) Severe splitting at log ends

(c) Wire lacing (Huybers, 1997) (d) Bamboo lacing joint (Widyowijatnoko 2012)

Figure 2.17: Applications of the wire lacing tool

In his PhD thesis of 2012, Widyowijatnoko proposes a joint configuration suitable for bamboo,
employing a timber filler to prevent crushing (figure 2.17d). As the timber filler needs to be
fitted to the culm geometry, this configuration becomes labour intensive.

Sonti reports the application of the wire lacing tool in the construction of a bamboo geodesic
dome in India, spanning a diameter of 18 metres and a height of 9 metres [1]. He advertises the
system to be “simple and inexpensive” and claims that all tendencies to splitting are avoided.
This stands in contradiction to the observations made in the application in Delft (figure 2.17b).
As information dates back to more than 35 years ago and pictures were not available, it was not
possible to verify Sonti’s statement.
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Applying enough pre-stress in the lacing to prevent splitting and achieve stiffness of the connector
seems to be extremely difficult as mentioned by TU Delft staff that worked with the wire lacing
tool previously. The lacing does not have a self-tightening effect like lashing and is prone to
corrosion unless expensive stainless steel or coating is applied. Last but not least, applying
lacing is labour intensive, especially when a timber filler is inserted.

2.3.6 Timber Cross Dowel Joint by de Vries 2000 TU Delft

This bolted round wood connector was designed by Peter de Vries as part of his graduation
thesis of 2000 at TU Delft [91]. The joint was developed for thin timber logs in order to build
outlook posts up to 25 m height. An anchor rod is fastened by square cross dowels that penetrate
the log transversely (figure 2.18a). An end plate is pre-tightened to the end of the log to prevent
slip. Similar to the lashing joint of Widyowijatnoko, the cross dowel joint is very suitable for
dome hub connection. Furthermore, it is easy to assemble and the force flow is straight forward.

(a) Force flow in connector (b) Axial connection of two logs

(c) Photograph of assembled connection

Figure 2.18: Round wood connector by de Vries (de Vries,2000) [91]
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2.3.7 Summary and Conclusions

Designing tensile joints is challenging. The outer layer of the bamboo culm wall has the highest
fibre content and is therefore the ideal location to introduce axial forces. However, the outer
culm surface is smooth and hard, making adhesive bond difficult. Any form of bolted connection
is susceptible to shear and splitting failure [62], both of which are brittle and thus dangerous
failure modes. Additionally, connectors need to be adaptable to variation in culm diameter and
wall thickness. The load application should avoid eccentricities and the force flow should be clear
so that components can be verified individually. For geodesic dome application, the connector
needs to be able to connect to a dome hub, transmitting both tensile and compressive forces.

Table 2.1 summarizes the advantages and disadvantages of the connectors presented above.

Table 2.1: Comparison of different connectors

Type advantages disadvantages

Guiterrez Joint easy to make doesn’t use bamboo tensile strength

Wood-Plug Joint prevents compres-
sive crushing

work intensive (expensive)
fibres get ripped out
few fibres at inside culm wall: small bond surface

Cement injection easy to make
cheap

shrinkage of concrete reduces bond
added weight

Lashing joint radial compression
avoids bolts

difficult to assemble
force flow not straight forward

Lacing joint cheap components difficult to tighten
work intensive

Bolted joints well known from
timber engineering

tendency to splitting

In the final decision, geodesic dome application becomes decisive: All work intensive joints are
excluded as even low frequency domes require a large amount of connectors. The same argument
holds for added weight. This results only in two suitable joints: The lacing joint and the bolted
joint. As the lacing joint was already explored in detail by Widyowijatnoko, it is more interesting
to propose a new bolted connector.

Bolted joints are common practice in timber engineering; they have proven to be safe, and
strength can be predicted rather accurately. A connector similar to de Vries’ round wood joint
is much easier to assemble than a lashing or lacing joint and the force flow is straight forward.
Splitting and shear are two failure mechanisms that are brittle and potentially dangerous and
should be further explored in experiments. In the final joint design, it is favourable if embedment
is the governing failure mode for bamboo as this reduces scatter. While square cross dowel proved
very suitable for round wood, square holes introduce stress concentrations in the corners. These
stress concentrations could cause tensile splitting. On the other hand, the embedment surface
of square holes is predefined which is not the case for round boles. It is not possible to predict
the behaviour of round and square bolts a priori. Therefore, bolt shear tests with both square
and round bolts should be conducted.

Nodes are often used as a natural cast for mortar injection joints. A logical step is the application
of nodes as natural reinforcement in bolted connections which was also suggested by Widyowi-
jatnoko [99]. However, there is little knowledge on the influence of nodes on full-culm mechanical
properties. Therefore, it is proposed to investigate the effect of nodes on full-culm compressive
strength, and bolt embedment and splitting strength. Additionally, the nodal microstructure of
nodes should be examined in order to understand findings from full-culm tests.
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Chapter 3

Literature Research Geodesic Domes

First, the historical background of geodesic domes is presented in chapter 3.1. The general
concept and geometry of geodesic domes is explained in chapter 3.2. In chapter 3.3, research
on bamboo geodesic domes is presented, which was used as inspiration for the geodesic dome
model.

3.1 History of Geodesic Domes

Buckminster Fuller is often mistaken to be the inventor of geodesic domes. Despite of his im-
pressive work on tensegrity structures and geodesic domes, Buckminster Fuller only named the
structure “geodesic” and thus invented the name “geodesic dome”. Walther Bauersfeld is known
to be the first architect to construct a geodesic dome in 1926. It was constructed in Jena, Ger-
many and served as a planetarium. More information regarding the history of geodesic domes
can be found on https://simplydifferently.org/1 and http://mathworld.wolfram.com/

GeodesicDome.html1. The Buckminster Fuller Institute provides more information on Buck-
minster Fuller’s lifework https://bfi.org/1.

3.2 Geodesic Dome Geometry

An introduction to the geometry of geodesic domes by Tom Davis [17] can be found on http:

//www.geometer.org/mathcircles1. For those interested in the underlying Geodesic Math, it
is suggested to study the excerpt of an article by Joe Clinton provided by Jay Salsburg [74].

Geodesic domes are based on triangular platonic solids – objects that try to approximate the
shape of a sphere while their surfaces consist of equilateral triangles (figure 3.1). If a principle
side of one such triangle is subdivided, more vertices (corners) are introduced which are then
projected onto the surface of the initial sphere and connected by new segments (struts) to form
new triangles. Those new triangles are not equilateral any more, but some struts will be a
bit longer and some will be a bit shorter. The number of subdivisions of the initial triangle is
called frequency f and is often indicated in textbooks as V 1 (initial triangle), V 2 (three smaller
triangles where a principle side is subdivided into two segments), etc. (figure 3.2).

1last accessed January 30, 2015
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(a) Tetrahedron (b) Octahedron (c) Icosahedron

Figure 3.1: Platonic Solids (Tom Davis, 2011)

(a) f = 2 (V2) (b) f = 3 (V3) (c) f = 4 (V4)

Figure 3.2: Dome frequencies (Tom Davis, 2011)

Icosahedron-based geodesic domes provide a smooth approximation of the sphere as the strut
length doesn‘t vary too much. However, also a tetrahedron or octahedron can be used as initial
Platonic solid. Often icosahedron-based geodesic polyhedra are truncated at their equator to
create a dome. However, only even frequencies provide horizontal struts at the equator and create
some sort of base edge beam (figure 3.3a). For odd frequencies, a perimeter above or below the
equator has to be chosen or new struts need to be inserted at the equator (figure 3.3b).

(a) f = 2: Horizontal struts at the equator (b) f = 3: Struts are cut into half at the equator

Figure 3.3: Icosahedron-based geodesic domes
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3.3 Bamboo Geodesic Domes

This chapter provides an overview of bamboo geodesic domes and domes that could theoretically
be made out of bamboo.

3.3.1 Bamboo Geodesic Dome Employing Wire Lacing Tool 1988

Sonti reports the construction of a bamboo geodesic dome in India, spanning a diameter of 18
metres and a height of 9 metres [1]. Unfortunately, it was not possible to find more information
or pictures of this dome (see also chapter 2.3).

3.3.2 EWB Pabal Dome: Steel (2009) and Bamboo (2010)

In his MSc thesis of 2009, Kubik suggests a geodesic dome variant called “Pabal dome” for
earthquake prone areas in India which was realized in an initiative of Engineers Without Borders
(EWB). Kubik proposes a design made of steel, chicken wire and concrete (figure 3.4a)[52]. In
2010, Drake et al. suggested a Pabal dome variant made out of locally available bamboo and
constructed a prototype. The design deviates from the classical geodesic dome, using a Hexagon
as a base plan, providing straight walls (figure 3.4b). Their goal was to provide a low-tech
construction kit, including pre-fabricated connectors, tools and an instruction manual, enabling
unskilled locals to build their own home. According to Drake et al., one of the major challenges
was to design an easy-to-assemble joint that provided sufficient stiffness [20]. Though not strictly
a geodesic dome, this hut is a good example of the do-it-yourself characteristics that many small-
scale geodesic domes have. An improved version of the hut provides a promising solution for
low-skilled and low-income people of the Pabal region.

(a) Steel and concrete Pabal dome
(Kubik, 2009)

(b) Bamboo Pabal dome variant
(Drake et al. 2010)

Figure 3.4: Pabal dome variants

3.3.3 BSc Project: Dismountable Bamboo Geodesic Dome 2012

Kushwaha designed, verified and constructed a dismountable bamboo geodesic dome in Delhi,
India [53]. His BSc project report does not provide a complete structural analysis of the dome.
Joints are verified for wind load acting normal on the struts (hydrostatic pressure). Verification
for self-weight or added weight is not given. The dome is assembled and tested with sandbags
representing the wind load as a vertical load. Additionally, Kushwaha designed and tested a
tensile bolted dome connector (figure 3.5). The connector was tested under tensile load, trying to
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assess shear capacity. However, only two of four samples failed by shear failure. Additionally a
compression test resembling the ISO compression test2 was carried out. Obviously, the proposed
connector design is not able to transfer compressive forces as two hinges are introduced at each
hub (one by the bolts and one by the rings). Subsequently, unacceptably large deformations
occurred when the dome was assembled and loaded with sandbags (figure 3.6).

Figure 3.5: Dome connector (Kushwaha, 2012)

Figure 3.6: Strut displacement at dome hub (Kushwaha, 2012)

3.3.4 BSc Project: Structural Analysis of a Bamboo Dome 2013

Kraft designed and analysed a bamboo geodesic dome as part of his BSc project at the Uni-
versity of Stuttgart [51]. For the structural analysis he used the FE software RStab employing
strength and stiffness values retrieved from literature. The applied load cases were self-weight,
added weight, snow, wind, settlement and snow drift. Unity checks for bamboo members were
conducted for tension and compression (including a reduction for slenderness representing buck-
ling capacity) for several load combinations. Joint capacity of cement injected joints was taken
from literature. The analysed dome spanned a diameter of 32 metres for Guadua angustifolia
with a culm diameter of 17cm and a wall thickness of 1.7mm. As all unity checks were easily
met, the given dimensions can serve as a guideline for the order of magnitude of the subsequent
parametric study in chapter 5 and the case study in chapter 8.

2For more information on ISO tests see chapter 4.2
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3.3.5 Geodesic Dome Hubs

Different hubs can be employed for bamboo geodesic domes. A possible configuration are metal
strips that are connected to a round plate by bolts similar to figure 3.7. This dome hub does
not provide much out-of-plane stability and requires exact fit of the struts.

Figure 3.7: Dome hub employed in Geodesic Timber Dome in Botanical Garden Delft

Another configuration is a thick steel ring similar to figure 3.8. This allows connecting the joints
proposed by Widyowijatnoko and de Vries. Pre-tensioning of the threaded rods is possible,
compression forces are transferred by contact. The last strut is fitted into the dome with the
rod entirely screwed into the culm. By inserting a align-key fitting hole into the end of the
threaded rods, these can be extracted from the bamboo culms and fastened by nuts. The dome
hub itself should be made of a steel grade and thickness that will result in plastic deformation if
the load bearing capacity of the structure is exceeded. This gives early signs of overloading and
after removal of the excess load, the hub can be exchanged without damage done to the rest of
the structure. More information regarding the connection of the proposed joint to such a dome
hub can be found in chapter 7.3.

Figure 3.8: Bamboo round cross dowel joints connected to dome hub
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Chapter 4

Material Properties and
Experimental Program

A basic engineering principle is component-based design, i.e. predicting the strength of an entire
structure by knowing the strength of the individual components. In the given case, rather
than assembling and testing a connector as a whole, it makes sense to assess the strength of
the individual components and determine the weakest link. For a bolted tensile connector,
knowledge of mechanical properties such as tensile strength, compressive strength and bolt
embedment strength is required. As this was not the case for the given bamboo species, it
was necessary to conduct an experimental programme with focus on determination of material
properties, rather than assembly and testing of an entire connector.

Three different bamboo species were available for experiments: Guadua angustifolia, Phyl-
lostachys pubescens and Dendrocalamus asper ; the latter was rejected due to lack of comparative
data. Information by the supplier on the two remaining species is given in chapter 4.1.

An experimental program according to the ISO 2004b standards is suggested in chapter 4.2.
Necessary experiments are identified with focus on mechanical properties that can be obtained by
NDT or using a compression cylinder bank. The experimental results are presented in individual
chapters; each of them is structured as follows:

1. A short review of results from related previous research is given. Related research served
as inspiration for the experimental set-up.

2. The experiments conducted as part of this MSc project are presented.

a) The employed test set-up is described.

b) The results are presented.

c) The results are discussed and compared to values from literature. Subsequently,
conclusions are drawn.

Special attention is paid to the influence of nodes on mechanical properties. Specimens with
and without nodes were included in all experiments. Additionally, the microstructure of nodes
was examined in a 3D nano scan and by electron microscopy. The findings are discussed in
chapter 4.2.5 and compared to related literature of chapter 2.2.3.

All results from experiments and literature are mean values unless stated differently!
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4.1 Bamboo Species

The following information was provided by the supplier Bamboe Bouw Nederland who was so
kind to provide free samples for testing.

4.1.1 Guadua angustifolia from Colombia

Colombia is the natural habitat of Guadua angustifolia and harvesting is strictly regulated by
the Ministry of Forestry. The matured culm is selected at an age of 5 – 7 years and cut at a
height of approximately 1.6 metres above the ground. Bamboo at this age is at the peak of its
hardness, the most resistant against insect attack and splitting of the culm. Cutting at a lower
height and cutting of culms close to rivers is avoided as this reduces the strength.

All culms are subsequently cleaned with water under high pressure. The outermost layer of
the culm is hard and dense and doesn‘t allow absorption of preservatives. Therefore the nodes
(diaphragms) are perforated with a long drill to allow preservative treatment from inside of the
culm. The culms are soaked in a preservatives for five days to make the culms resistant against
insect and fungus attack. Afterwards, the culms are bleached vertically in the sun to remove the
chlorophyll from the outermost layer of the culm wall in order to achieve a homogeneous colour
and higher porosity which facilitates painting later on.

Initial drying from 30% to 20% moisture content occurs in an solar oven1. Afterwards drying is
computer-operated until a moisture content of 13% is reached.

4.1.2 Phyllostachys pubescens (Moso) from China

The Moso culms quickly reduce diameter along the length and therefore large diameter culms
are sparse. The culms are cut and sun-dried. Afterwards they are boiled out for about one hour.
Preservatives are added to this bath to prevent insect and fungus attack. Finally, the culms are
dried in a drying chamber to reduce moisture content to approximately 14%.

4.1.3 Material and Geometry

In total, 14 culms of Phyllostachys pubescens and 7 culms of Guadua angustifolia were available
for tests. Table 4.1 provides and overview of the material that was used in experimental testing.

Table 4.1: Geometrical properties of Phyllostachys pubescens (Moso) and Guadua angustifolia
used in experiments

Species D0 t m lculm
[cm] [cm] [kg] [cm]

Moso x 10.29 1.0 2.34 117.3

Moso σ 0.65 0.14 0.43 12.7

Guadua x 12.91 1.4 5.82 158.2

Guadua σ 1.73 0.16 0.62 23.3

1trough with high reflectivity walls using solar energy to produce heat
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4.2 ISO Standards and Material Property Testing

Several mechanical properties need to be known in order to design and verify a bamboo tensile
connector. Unlike for timber, there is no reliable database or non-destructive strength grading
method available for bamboo. Additionally, mechanical properties are dependent on origin,
geometry, moisture content, etc., and the exact correlation of these parameters is not known
yet. Therefore, it is generally advised to obtain mechanical properties by experimental testing
according to the ISO 2004b standards, prior to structural application of a certain bamboo species.
Obtained strength values served as geodesic dome model input in chapter 5 and for strength
prediction of the tensile connector in chapter 7. Note that assembly and testing of the connector
as a whole was beyond the scope of this research.

The following properties were obtained either from extensive literature research or experiments:

Tensile capacity (literature): The full-culm tensile strength is hard to determine by experi-
ments. Therefore, smaller dog-bone shaped specimens are commonly used, which is also
suggested in the ISO 2004b standard. Yet, the test set-up for tensile experiments is more
difficult than for compression tests. Due to time limitation it was decided to only conduct
experiments that could be executed in a compression cylinder bank. Therefore, tensile
capacity is conservatively derived from literature.

Dynamic Modulus of Elasticity (experiments): It is generally desirable to establish a rela-
tionship between the dynamic Modulus of Elasticity and the static Modulus of Elasticity.
The dynamic Modulus of Elasticity is obtained by NDT. The relationship of the static and
dynamic Modulus of Elasticity is discussed and a conservative assumption is made for the
model input.

Compressive capacity (experiments): This material property is obtained by experiments for
both specimens with and without nodes according to the ISO 2004b standard. Values are
compared to literature.

“Bolt shear test” (experiments): This test assesses the embedment and shear or splitting
strength of a bolted connection. Depending on the bottom load plate configuration, the
bolt shear specimens can fail either in block shear or in splitting. The name of the test
is somewhat misleading, as bolt bearing (embedment) always occurs first and is thus
the material property that is mainly determined! However, the experiment is known
in literature by this name. The influence of nodes is investigated by testing both clear
specimens and specimens with nodes. Additionally, different bold shapes (round and
square) are compared. Test results are evaluated with a fracture mechanics approach.

Nodal Structure (experiments): Nodes are known to have a negative influence on tensile and
compressive strength and possibly positive influence on both bolt bearing and splitting
strength. The microstructure of nodes is investigated in order to find explanations for the
macroscopic influence of nodes.

Comparability of Test Results of Functionally Graded Materials In chapter 2 it was
concluded, that overall culm strength and stiffness can be predicted conservatively by using
average material properties. In order to model local stress concentrations in a FGM, e.g. close to
a bolted connector, the microstructure needs to be modelled accurately or full scale experiments
need to be conducted; the latter was done to obtain bolt embedment strength and full-culm
compressive strength. For tensile strength, a conservative assumption is made based on literature
with consideration of the functionally-graded macro and microstructure.
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4.2.1 Tensile Capacity (literature)

4.2.1.1 Tension Parallel to Fibre (ISO 2004b)

Tensile capacity parallel to the fibre is determined by using dog-bone shaped specimens taken
from different radial positions (figure 4.1). The coupon thickness t is chosen equal to the culm
wall thickness, the coupon width b is a circumferential chord of the culm. The length of the
reduced cross-section is typically 50 to 100 mm. The ends of the specimen are wider to provide
enough area for clamping. The tensile strength is calculated as:

ft =
Ft
At

=
Ft
bt

Figure 4.1: dog-bone shaped tensile test specimen (Sharma, 2010)

This test is more difficult to carry out as it requires adequate clamps and a tensile test machine.
Therefore, conservative values from literature are used as a model input and to estimate tensile
connector capacity (table 4.2). The literature that is used to arrive at these values is discussed in
appendix B.1. Next to test method and sample size, external factors such as moisture content,
age, position along the height of the culm and position in a node versus internode affect the
measured tensile strength. Based on this knowledge, conservative assumptions can be made.

Table 4.2: Mean tensile strength of Guadua angustifolia and Phyllostachys pubescens (Moso),
conservative values taken from literature (see appendix B.1)

Guadua angustifolia 37 MPa

Phyllostachys pubescens (Moso) 100 MPa
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4.2.2 Dynamic Modulus of Elasticity (experiments)

The Modulus of Elasticity (MOE) is needed to determine the bending stiffness (EI) of bamboo
culms. Traditionally, the MOE is measured statically in 4-point or 3-point bending. Lately,
the measurement of the dynamic Modulus of Elasticity Edyn has become more popular, as it
can be measured cheaply and non-destructively. However, this requires knowledge about the
relationship between the static and dynamic MOE.

First, the relationship of local, global and dynamic Modulus of Elasticity is explained. Second,
related literature is presented. Subsequently, the experimental program is described and results
are discussed.

4.2.2.1 Relationships of Local, Global and Dynamic Modulus of Elasticity

There are three different properties, that are commonly referred to as static MOE: E3pt from
3-point bending (figure 4.2b), Eglobal from wglobal in 4-point bending, and Elocal from wlocal in 4-
point bending (figure 4.2a). The latter is free from shear deflection, as the local deflection wlocal
is measured between the two loads in the zone of pure bending. As wlocal is very small, accuracy
in Elocal is hard to achieve. But which property represents the static MOE most accurately?

(a) Elocal and Eglobal 4-point bending (b) E3pt 3-point bending

Figure 4.2: Test set-up for measurements of global and local MOE 3-point and 4-point bending

Shear Deflection and Elocal In practice, the impact of shear can often be neglected for two
main reasons:

1. From a mechanical point of view, Euler-Bernoulli beam theory can often be used instead
of Timoshenko beam theory, e.g. for slender structures including geodesic dome struts.

2. In isotropic materials the difference of the shear Modulus G and the Modulus of Elasticity
E is small enough that shear deflection becomes negligible.

Timber is – similar to bamboo – characterized by it’s anisotropy. Ravenshorst et al. established
relationships between Elocal and Eglobal as well as Edyn

2 for several timber species [67]. They
found an average relationship of Elocal/Eglobal = 1.16 and Elocal/Edyn = 0.92 and Eglobal/Edyn =
0.79. These results suggest that shear contributes significantly to the bending deflection in
timber. Considering the difficulties of accurate measurement of Elocal, Solli [83] and Ridley-
Ellis et al. [70] question whether Elocal is a good measure for the stiffness of timber.

A similar observation was made by Garcia-Aladin et al. [30] for bamboo. They eloquently
addressed the importance of shear deflection of bamboo beams in the measurement of the bending
deformation: “According to the traditional theory of elasticity, the total deflection of a beam

2from longitudinal stress wave measurements
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occurs due to the combined effect of both the bending moment and the shear force. In isotropic
materials such as steel and concrete, the deflection due to shear is usually not taken into account
since it represents only 1% of the total deformation approximately. However, in anisotropic
materials such as bamboo, the deflection due to shear should be taken into account because it may
represent more than 20% of the total deformation of the beam.” They found that for Guadua
angustifolia, the longitudinal Modulus of Elasticity obtained from whole culms and prismatic
specimens in three point bending was equal to 23.5 GPa, whereas the shear Modulus (G) was
only 0.298GPa! Therefore, shear deformation cannot be neglected when calculating
deflections of bamboo structures!

Difference between Eglobal and E3pt Subsequently, it makes sense to use either Eglobal or
E3pt to calculate the bending stiffness EI. Brancheriau et al. found that E3pt results in 19%
lower values than Eglobal for wooden samples [6]. Which of the two should thus be chosen for
the geodesic dome model? In axially loaded dome struts, the only bending deformation occurs
during Euler buckling (figure 4.3). The moment distribution in the Euler column is sinusoidal,
whereas 4-point bending results in a trapezoidal distribution and 3-point bending results in
a triangular distribution. Obviously, 4-point bending results in a closer approximation of the
moment distribution (and subsequently also deformation) of Euler buckling. Using Eglobal is
thus more accurate and economical, whereas E3pt is more conservative.

Figure 4.3: Euler buckling

Relationship between Estatic and Edyn To the present date, Lin et al. were the only re-
search group to derive a relationship between the static MOE (E3pt) and Edyn for Moso laminae
(figure 4.2b) [56]. They found E3pt,node/Edyn = 0.74 and E3pt,internode/Edyn = 0.77 for node
material and internode material respectively. It is assumed, that the difference between lami-
nae and full-culm bamboo can be neglected, considering that fibre orientation is identical and
influence of nodes was included.

As this is the only available data for bamboo, it is chosen to assume the following relationship
in the geodesic dome model:

Estatic = 0.75Edyn

Note that E3pt is very conservative and it is suggested to conduct tests in 4-point bending and
measurements of Edyn. This will help to isolate the shear contribution and establish a more
economic relationship between the static and dynamic MOE.
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4.2.2.2 Related Research

In literature, various values of Estatic from three point and four point bending can be found for
Guadua angustifolia and Phyllostachys pubescens (table 4.3). Additionally, values of Edyn are
given for sound pulse technique and vibration measurements (table 4.4). In the following, values
obtained from experimental testing are compared to those found in literature.

Table 4.3: Static Modulus of Elasticity from three point and four point bending, rounded values,
t culm wall thickness in mm, D0 outer culm diameter in mm, ρ density in kg/m3

Source Species Test set-up Estatic [GPa] Notes

Correal et al. [14] Guadua 4 point 17.2 regardless of age
and culm position

Luna et al. [59] Guadua not known 13.9

Gnanaharan et al. [34] Guadua 4 point 24.3ρ+ 25.6D0

20.7ρ+ 221.8t

Jiang et al. [24] Moso 3 point 11.81MC− 0.15%

Chung et al. [11] Moso 3 point 11.4 MC 5− 30%

Lin et al. [56] Moso 3 point 11.5 internode
10.9 node

Table 4.4: Dynamic Modulus of Elasticity from literature, rounded values

Source Species Test set-up Edyn [GPa] Notes

Cardenas et al. [9] Guadua acoustic waves 16 ... 25 sound pulse technique

Lin et al. [56] Moso vibrations 14.9 internode
14.8 node
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4.2.2.3 Test Set-Up

Set-Up A vibration based test is used to determine the dynamic Modulus of Elasticity of
bamboo culms (Edyn). The method makes use of vibration measurements of a bamboo culm
in which a longitudinal stress wave is initiated (figure 4.4). From vibration measurements, the
natural frequency can be determined by means of Fourier Transform. The dynamic Modulus of
Elasticity can then be calculated as Edyn = 4f2l2ρ. This method has been long established for
timber[67]. Even though full-culm measurements of Edyn are entirely new to bamboo engineer-
ing, similar behaviour as for knot-free timber (e.g. tropical hardwood) can be expected as both
materials are orthotropic and possess a similar microstructure.

Figure 4.4: test set-up (Dynamic MOE)

Procedure As specimen length and geometry affects accuracy of results, the experiments
were conducted on axially straight specimens of at least 1 metre length. The measurements
took place in a climate chamber with 65% relative humidity and a temperature of 20°C. The
moisture content was obtained as follows:

MC =
mw −md

md
; mw wet mass at test conditions; md dry mass after oven drying at 103°C

The Moso specimens had an average moisture content of 11.30% and the Guadua specimens
had an average moisture content of 13.58%. Average outside culm diameter and thickness were
measured four times at both ends of the culm and averaged over the length to obtain the volume
of the culm. Volume of nodes was calculated by assuming the height of nodes in Guadua as 5 mm
and Moso as 3 mm. The culms were weighed and the density was calculated. The culms were
placed on two supports of timber strips of approximately 2 cm width to minimize the influence
of the support3. Subsequently, the natural frequency fnat was obtained from signals that con-
tained a single distinct peak. For measurements of natural frequency, the measuring instrument
Timber Grader MTG and correspondent software were used (figure 4.5).

(a) Measurement of natural frequency f (b) Two thin supports

Figure 4.5: Measurement of Edyn with Timber Grader MTG

3Note that this is common practice for measurements on timber beams. However, the support area of the
bamboo culms is even smaller due to the round geometry.
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4.2.2.4 Test Results

Table 4.5 displays the results that were obtained for 14 Moso and 7 Guadua culms4. Detailed
results can be found in the appendix in table C.1 and C.2.

Table 4.5: Dynamic Modulus of Elasticity for Phyllostachys pubescens (Moso) and Guadua
angustifolia

Species no. fnat D0 t m lculm no. ρ Edyn
specimens [Hz] [cm] [cm] [kg] [cm] nodes [kg/m3] [MPa]

Moso x 14 1762 10.29 1.0 2.34 117.3 5.7 660 11431

Moso σ 14 177 0.65 0.14 0.43 12.7 1.2 74 1866

Guadua x 7 1641 12.91 1.4 5.82 158.2 5.7 740 19681

Guadua σ 7 266 1.73 0.16 0.62 23.3 1.9 151 3536

4.2.2.5 Discussion and Conclusions

Two linear regression formulas could be derived for density ρ and Edyn of Guadua and Moso
bamboo (figure 4.6). All test results were significant for both bamboo species. The coefficient
of determination R2 was greater than 0.7 in both cases which is relatively high considering the
small sample size and unknown age of the individual culm. R2 is smaller for Guadua than
for Moso; however, for Guadua only half as many specimens as for Moso were available. The
following two linear relationships could be established (Edyn in MPa and ρ in kg/m3):

Moso: Edyn = 21.692ρ− 2894.5; R2= 0.7407; p = 0.00004; α = 0.05

Guadua: Edyn = 19.687ρ+ 5111.7; R2= 0.7047; p = 0.00914; α = 0.05

(a) Phyllostachys pubescens (Moso) (b) Guadua angustifolia

Figure 4.6: Relationship of density and dynamic MOE

The generally lower R2 value for timber can be explained by the influence of knots. In bamboo,
nodes could be seen as a similar imperfection, but they occur more regularly and affect the entire
cross-section which leads to more homogeneous results.

4fnat natural frequency, D0 outside culm diameter, t wall thickness, m mass, lculm length of culm, ρ density,
Edyn dynamic Modulus of Elasticity
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Comparison to Literature The average measured dynamic Modulus of Elasticity for Moso
was 11 431 MPa. This value is lower than the values measured by Lin et al. [56]. This can
be explained by the fact that Lin et al. used bamboo lamella and not full culms. Bamboo
lamella are node-free and all fibres are axially oriented which results in higher values of MOE.
Furthermore, the Moso test results are higher than values of Estatic for dry and wet condition
given by Jiang et al. [24]. This should be the case as Estatic is generally lower than Edyn. The
average dynamic Modulus of Elasticity for Guadua was 19 681 MPa. This value is higher than
the values for Estatic given by Correal et al. [14] and Luna et al. [59], which should be the case.
Additionally, the value lies in the same range as the value for Edyn obtained by sound pulse
technique by Cardenas et al. [9].

Apparently it is possible to use NDT to derive the static MOE from Edyn. The remaining
question is, whether is is possible to use a straight forward relationship between culm geometry,
density and static MOE. In the following, an attempt is made to use the formulas of Gnanaharan
(1994) given in table 4.3, using the average material properties measured for Guadua angustifolia:
ρ = 740 kg/m3;D0 = 129.1 mm; t = 13.9 mm.

Eglobal = 24.309ρ+ 25.557D0 = 21 285 MPa

Eglobal = 20.72ρ− 221.842t = 12 249 MPa

Eglobal = 25.571ρ+ 475.843t− 163.925D0 = 4390 MPa

Ideally, all three values should be the same and smaller than the measured dynamic Modulus
of Elasticity (Edyn = 19 681 MPa). This is not the case. Apparently, more research is needed
to establish generally valid relationships between geometry, density and MOE. Using Edyn to
estimate Estatic provides a good alternative for the time being.

Conclusions Additional measurements of Eglobal and Elocal in 4-point bending for both Guadua
and Moso bamboo are necessary, to establish relationships similar to those found for timber,
and in order to quantify the shear contribution. As argued above, a conservative relationship of
Estatic ≈ 0.75Edyn can be assumed:

Moso: Estatic = 11431 · 0.75 ≈ 8570 MPa

Guadua: Estatic = 19681 · 0.75 ≈ 14 760 MPa
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4.2.3 Compressive Strength Parallel to Fibre (ISO 2004b) (experiments)

First, results from related previous research are presented. Subsequently, the experimental
program is described and results are discussed.

4.2.3.1 Related Research

In literature, values for compressive strength of both Phyllostachys pubescens and Guadua an-
gustifolia can be found. An overview of mean strength values from related research is given in
table 4.6. Note that the introduction of the ISO 2004b standard is relatively recent and tests in
literature were conducted according to different standards, e.g. the Chinese national standard
for performance testing of bamboo 1995 (GB/T 15780-1995) and Columbian standard (NTC),
which is based on the ISO 22157 (2004b) standard.

Table 4.6: Mean compressive strength fc and design values fc,d, t culm wall thickness in mm,
D0 outer culm diameter in mm, n number of specimens, ρ density in kg/m3, moisture content
MC in %

Source Species n fc Notes
Norm [MPa]

Janssen [46] [47] - - fc,d = 0.013 ρ = 1
7fc species independent

Chung and Yu [11] Moso 213 fc = 50 , 70 bottom, top; t ≈ 0.1D0

L=2D fc = 134 , 75 , 57 MC<5%, 5-30%, >30%

Lo et al. [57][58] Moso - fc = −0.28 D0 + 71.5 12.5-13% MC
ISO - fc = 2.63 B + 36 B vascular bundles %

Shao et al. [77] Moso - fc = 56.4 , 59.8 strips: internode , node
GB/T ρ = 712 , MC 12%

Jiang et al. [24] Moso 20 fc = 96.44− 2.50 MC[%] strips
GB/T 20

Wang et al. [96] Moso 640 fc
ρ =

(
76.62 + 739.90−76.62

1+e
MC+13.46

7.6296

)
strips

GB/T fc = 0.15123 ρ− 33.37 MC=wet...oven dried

Dixon and Gibson [19] Moso 36 fc = 0.1984 ρ− 49.69 blocks
-

Correal et al. [14] Guadua - fc = 36.8 independent of height
NTC ideal age 3 years

Luna et al. [59] Guadua - fc,d = 34 , 60 , 60 bottom, middle, top
NTC

Corto et al. [15] Guadua 120 fc = 41.6 h=35-70cm
NTC Drilling of diaphragm

has no effect!
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4.2.3.2 Test Set-Up

Set-up The compressive test according to the ISO 2004b standard is used to determine the full-
culm compressive capacity parallel to the fibres fc. For commercial purposes, the height of the
specimen should be equal to the outer culm diameter (h = D0). The applied compressive force
(Fc) is divided by the cross-sectional area of the entire culm (A). Friction between the loading
plates and the culm should be minimized by using an intermediate layer, e.g. a combination of
Teflon and wax on steel shims that glide freely. One end plate of the testing machine should be
equipped with a hemispherical bearing to obtain uniform load distribution (ISO 22157-1/9.3).
As literature contains contradicting results regarding the influence of nodes (chapter 2.2.3),
tests on specimens with and without nodes are carried out on both Guadua angustifolia and
Phyllostachys pubescens.

fc =
Fc
A

with A =
π

4
(D2

0 −D2
i ) =

π

4

(
D2

0 − (D0 − 2t)2
)

(a) Load application (b) Culm cross-section (c) Test set-up

Figure 4.7: ISO 2004b Compression test

Expected Failure Modes Two failure modes are possible: Crushing failure (similar to tim-
ber) given the culm wall is thick enough, and splitting failure as the maximum lateral strain ε⊥
is exceeded.

Procedure The specimens were cut from a batch of culms whose average density was closest
to the average density of all culms. ISO 2004b requires specimens to be taken from three different
locations in the culm: bottom, middle, top (ISO 22157-1/9.4.1). For Guadua, all culms were
cut 1.6m above the ground which translates to a middle position. For Moso, the position was
unknown. Both edges of the specimens were cut parallel to each other and perpendicular to the
culm axis5. In specimens with nodes, the node was located in the centre of the specimen. As
the ISO 2004b standard does not require a specific D0/h relationship for scientific research, it
was chosen to use specimens with a height of approximately h = 150mm for both Guadua and
Moso, which is an average height to diameter ratio of h = 1.5 D0 for Moso and h = 1.15 D0

for Guadua. The diameter D0 was measured at two locations at both ends of the specimen, the
thickness t was measured at four locations at each end respectively. The average diameter and
thickness were used to calculate the surface area A. The specimens were weighed and rounded
off to grams. The thickness of the nodes was taken as 3mm for Moso and 5mm for Guadua in
order to determine the density.

5For specimens that contained nodes, this was not always possible, as the culm changed growth direction at
the node.
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Two different test machines were used for Guadua and Moso, due to the fact that the Guadua
culms had a greater surface area and thus required a higher loading force. For both species, the
displacement rate was 0.01mm/s as prescribed in the ISO 2004b standard (ISO 22157-1/9.5.2).
For the Guadua specimens, one of the loading plates was hinged so that the load was always ap-
plied axially. For the Moso specimens, the bottom plate was made from a hemispherical bearing
that could glide freely (figure 4.8a and 4.8b). For both species, friction between the loading plate
and the specimens was reduced by greasing the specimen with a cast lubricant (figure 4.8c). The
difference of a test without reduced friction and a test with lubricant application can be seen in
figure 4.8d and figure 4.8e. The great difference in the observed failure pattern indicates that
the lubricant reduced friction sufficiently. For Moso, the displacement was measured between
the two loading plates as the machine experienced internal set. For Guadua, the test machine
was rigid enough so that actual displacements were identical to the computer-controlled dis-
placement. In both load cases, the loading plate was set with a force of less than 1kN before
computer-controlled displacement took over.

(a) Initial position (b) Rotation of loading plate

(c) Lubricant application (d) Failure with lubricant (e) Failure without lubricant

Figure 4.8: Pot bearing loading plate and application and effect of lubricant to reduce friction
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4.2.3.3 Test Results

Table 4.7 displays the average test results obtained for Phyllostachys pubescens (Moso) and
Guadua angustifolia6. The moisture content was 13.58% for Guadua and 11.30% for Moso.
Detailed results can be found in the appendix in table C.3 and C.4.

Table 4.7: Average compression results for Phyllostachys pubescens and Guadua angustifolia

Species no. D0 t h ρ fc Ec
7

samples [mm] [mm] [mm] [kg/m3] [MPa] [MPa]

Moso xclear 6 96.5 7.8 150.7 711 49.93 7745
Moso xnode 7 96.5 9.0 154.0 731 47.49 6817

Moso x 13 96.5 8.5 152.5 722 48.62 7246
Moso σ 13 7.7 2.0 4.4 80 5.31 1820

Guadua xclear 9 123.7 12.4 149.1 781 60.73 9845
Guadua xnode 6 123.3 13.0 152.5 818 58.57 8968

Guadua x 15 123.6 12.6 150.5 796 59.87 9540
Guadua σ 15 7.9 2.1 3.2 95 14.83 2736

Note: The density measurement was based on weight and geometry after 4 months storage in
a climate chamber at 20°C and relative humidity of RH = 65%. The thickness of the nodal
diaphragm was assumed to be 5mm for Guadua and 3mm for Moso, based on the longitudinal
cross-section of 3D nodal specimens. The average specimen density was 9% higher for Moso and
8% higher for Guadua than full-culm density. The difference for clear specimens was larger than
for specimens with nodes, which suggests that the height of the diaphragm was assumed rather
accurately. A different moisture content of culm and compression specimens is unlikely, as all
specimens were stored in the same climate during the entire process except for sawing, which
took place several days before testing during a single day. However, it is likely that the full-culm
volume was estimated too grossly, as culm wall thickness increases around the node. This could
possibly be the reason why culm density was found to be lower than specimen density.

Figure 4.9: Typical load displacement curve for bamboo compression test

Figure 4.9 shows a typical load displacement curve for compression specimens (independent of
species): 0© The load is applied. Single longitudinal cracks emerge either close to the loading
plates or in the centre of the specimen 1© and continue growing until a second crack emerges.

6culm outer diameter D0, wall thickness t, height h, density ρ, compressive strength fc, compressive Modulus
of Elasticity Ec

7obtained from individual stress strain diagram according to ISO 2004b 9.6.2 as an alternative to strain gauge
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Once a crack has propagated to both ends of the specimen 2©, the entire culm bulks out as
displacement continues and force decreases dramatically. Figure 4.10i and 4.10j show an example
of crack propagation between fibre strands in the parenchyma matrix. Figure 4.10k shows the
deformation at the end of the experiment.

(a) Crack initiation (b) Crack propagation (c) Crack initiation (d) Second crack

(e) Crack initiation (f) Crack propagation (g) Crack initiation
(h) Crack propagation
and second crack

(i) Crack initiation (j) Crack propagation (k) End of experiment

Figure 4.10: Crack initiation and propagation in Moso bamboo

All specimens of Phyllostachys pubescens failed by longitudinal cracks that were opened as the
maximum lateral strain ε⊥ was exceeded (figure 4.10). This suggests that the parenchyma matrix
is weaker in its transverse direction than in its radial direction. Most Guadua angustifolia speci-
mens failed by longitudinal cracks (figure 4.11a to 4.11d). Two specimens showed a compressive
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crushing failure prior to cracking (figure 4.11e and 4.11f). For both species, crack initiation was
always in the clear part of the culm, never in the node itself (figure 4.10).

(a) Crack in node specimen (b) Crack in node specimen (c) Crack in node specimen

(d) Crack propagation (e) Crushing failure (f) Crushing failure

Figure 4.11: Different failure modes in Guadua bamboo

4.2.3.4 Discussion and Conclusions

For both species, linear regression formulas could be derived for the density ρ and the compressive
strength fc as well as compressive Modulus of Elasticity Ec. Ec was determined from the
individual stress-strain-diagrams of a single specimen between 20% and 80% of the maximum
force Fc,max as suggested by ISO 2004b 9.6.28. In few cases, the stress-strain-curve was not
linear past 70% of the maximum load. In those cases, only the linear part of the curve was
considered.

A linear regression and p-value (p) analysis were carried out for both species. All results were
significant for a significance level of α = 0.05. Coefficients of determination were relatively
high, considering the small sample size and seeing that the age of the culm was unknown and
moisture content was not taken into account. The following linear relationships were established
for samples with and without nodes (clear):

8This was done as an alternative to the application of strain gauges.
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Moso (clear): fc,clear = 0.0554 ρ+ 10.6; R2 = 0.9963; p= 0.00005; α = 0.05

Moso (node): fc,node = 0.0721 ρ− 5.1948; R2 = 0.9408; p = 0.0003; α = 0.05

Moso (clear): Ec,clear= 11.236 ρ− 238.63; R2 = 0.9585; p = 0.0007; α = 0.05

Moso (node): Ec,node = 24.546 ρ− 11121; R2 = 0.6705; p= 0.00243; α = 0.05

Guadua (clear): fc,clear = 0.1772 ρ− 77.602; R2 = 0.833; p = 0.0006; α = 0.05

Guadua (node): fc,node = 0.1325 ρ− 49.76; R2 = 0.9916; p= 0.00003; α = 0.05

Guadua (clear): Ec,clear = 31.965 ρ− 15113; R2 = 0.7517; p = 0.0025; α = 0.05

Guadua (node): Ec,node = 21.579 ρ− 8564; R2 = 0.8658; p = 0.0071; α = 0.05

(a) Relationship of ρ and fc
Phyllostachys pubescens (Moso)

(b) Relationship of ρ and fc
Guadua angustifolia

(c) Relationship of ρ and Ec

Phyllostachys pubescens (Moso)
(d) Relationship of ρ and Ec

Guadua angustifolia

Figure 4.12: Relationship of density and compressive MOE

Table 4.8: Summary of compression results for Phyllostachys pubescens and Guadua angustifolia

fc,clear fc,node
fnode
fclear

Eclear Enode
Enode
Eclear

Species [MPa] [MPa] [−] [MPa] [MPa] [−]

Moso 49.9 47.5 0.95 7746 6817 0.88

Guadua 60.7 58.6 0.96 9845.0 9081.8 0.92
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In average, for both species fc,max and Ec of clear specimens were higher than for those that
contained nodes (table 4.8). The difference of was Ec smaller or equal to 12%. For fc,max, the
difference was only 5% or less and crack initiation occurred always in the clear part, never in
the node itself. This failure mechanism is expected, as radial nodal fibres act as reinforcement
and are able to transfer tangential stresses, causing the first crack to emerge in the clear part of
the specimen. The slightly lower compressive strength of specimens with nodes (4% for Guadua
and 5% for Moso) could be due to the fact that the culm diameter and wall thickness change
close to the nodes which results in stress concentration.

For Ec, the clear specimens were in average 12% stiffer for Moso and 8% stiffer for Guadua.
This can be explained by the microstructure of the node: In the nodes, some vascular bundles
deviate from the axial orientation. Vascular bundles consist not only of fibres but also of vessels,
which get compressed easily in transverse vascular bundles which causes the full-culm stiffness
to decrease. One could argue that nodes make only a small section compared to the rest a culm.
However, decrease in compressive stiffness is not negligible and should be taken into account.

Comparison of Ec to Edyn makes little sense at this point, as compressive specimens were taken
from too few culms to establish a relationship.

Comparison to Literature Let’s compare the test results to values from literature: Though
harvested beyond the “optimal” age of 3 years, the Guadua specimens achieved a compressive
strength higher than values reported by Correal et al. [14] and Corto et al. [15]. The measured fc
comes closest to the design values obtained by Luna et al. [59] which were 60MPa for specimens
at the middle of the culm.

Let’s try to apply the rule of thumb by Janssen on both Guadua and Moso: According to
Janssen [47], the mean compressive strength is fc,d = 0.091ρ. Inserting mean density of the test
specimens, we obtain a calculated value of fcalculated = 66 MPa for Moso and fcalculated = 72 MPa
for Guadua. The measured values (49 MPa for Moso and 60 MPa for Guadua) are only 74% and
83% respectively. Janssen’s rule of thumb thus clearly overestimates the strength in
the given case!

For Moso, Chung and Yu [11] predict a strength of 50 MPa for bottom pieces and 70 MPa for top
pieces. If the Moso specimens were cut from the bottom of the culm, the predicted and measured
strength match exactly. Using the formula of Lo et al. [57] relating outer culm diameter and
compressive strength of Moso, we arrive at a compressive strength of only 44.5 MPa for the
examined specimens. This is 91% of the measured value. Using the formula of Wang et al. [96]
and inserting the measured average density of the Moso specimens, we arrive at 76 MPa which
is 1.6 times the measured compressive strength. This however, does not take moisture content
into account. Last but not least, the formula of Dixon and Gibson suggests 93 MPa which is
almost 2 times the measured compressive strength of Moso.

It can be concluded that the measured values agree with some suggested by literature, whereas
the difference to other values is very large. This emphasizes the need of continued research.

Conclusions It could be shown that a strong correlation of density ρ and compressive strength
fc exists, and also a clear relationship between ρ and Ec. Few culms were chosen for compression
specimens to reduce scatter. This made it impossible to derive a relation between Edyn and Ec.
It can be said for sure that nodes do impart negative effects on full-culm compression strength
and Modulus of Elasticity of both Phyllostachys pubescens and Guadua angustifolia. Splitting
was never initiated in the node which hints to a reinforcing effect in the transverse direction.
Further information on the influence of nodes can be found in chapter 2.2.3 and 4.2.5. More
research needs to be carried out to establish general relationships between ρ, fc, Ec and Edyn.
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4.2.4 Bolt Shear Test (Janssen 1981; Sharma 2010) (experiments)

First, related research is presented. Subsequently, the experimental program is described, results
are reported and discussed.

4.2.4.1 Related Research

Several research groups conducted experiments on bolted connections. Fu et al. [29] investigated
the performance of Moso bamboo single bolted connections under tensile load. The culm wall
thickness was 10 mm and the edge distance was 60 mm. The tested specimen failed at 4.2 kN in
splitting failure: fs‖ = 4200

60·10 = 7 MPa (single crack).

Moreira and Ghavami [63] made a finite element model of a simple bamboo pin joint, based
on previous test results of Moso by Moreira et al. They included bearing, shear and splitting
failure into their model. They concluded that splitting failure has an “additional geometrical
resistance” compared to shear failure. They stated that shear stress has a “free path to propagate
through parenchyma cells”, whereas the risk of splitting is reduced if a node is located under the
pin. They also found that compression perpendicular to the fibres restrains crack initiation even
under relatively high shear stress and that splitting could be counteracted by steel reinforcement
under the pin hole.

Shao et al. [77] investigated the effect of the node on shear strength of Moso. They found
that average shearing strength of full-culm samples with nodes was 29% higher. For processed
samples (blocks), an increase from 18.3 MPa at the internode to 18.9 MPa at the node was found.
This contradicts the findings of Moreira and Ghavami [63].

Wang et al. [95] determined the Mode I interlaminar fracture toughness of Moso bamboo (for
failure modes see figure 4.13b). They found an average fracture toughness of 498 J/m2 and
1431 J/m2 for internode and node material respectively.

Ramirez et al. [66] determined the dowel-bearing strength of glued-laminated Guadua angustifo-
lia under nail and threaded bar fasteners with different diameters in different loading directions,
and developed a FEM. They concluded that, similar to timber, bamboo bearing strength de-
pends on both the dowel diameter and the specimen width-to-diameter ratio. They established
the following two relations for bearing strength perpendicular to the grain (though correlation
coefficients were rather low). It can be assumed, that a similar formula can be derived for
Phyllostachys pubescens.

fb = −4.1 d+ 55.9 (nail)

fb = −0.55 d+ 36.9 (threaded bar)

Corto [15] investigated the effect of drilling of the diaphragm on shear and compression strength
of Guadua angustifolia. He reported a shear strength of 3.08 MPa; drilling of the diaphragm had
no influence on either property. Tests were conducted according to the ISO 2004b standard and
the Columbian NTC 2007 standard. It can be assumed that drilling of the diaphragm also has
no influence on Phyllostachys pubescens.

Placing a bolted connector before a node seems to have a positive influence which will be
examined in the following. Influence of nodes on material properties is further discussed in
related literature in chapter 2.2.3 and experimental results in chapter 4.2.5.
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4.2.4.2 Test Set-Up

Set-up The bolt shear test is not part of the ISO 2004b standard yet. Janssen [46] and
Sharma [81] investigated the effect of a single round bolt in full-culm bamboo. They observed,
that the failure mode strongly depends on the edge distance of the bolt (ledge) and the load angle
(θ). For angles close to parallel to the fibre (θ ≈ 0°) and relatively short edge distances, block
shear occurs if a gap at the load plate allows this failure mode (Mode II figure 4.13b). If the
culm is restrained or θ ≈ 90°, bearing failure followed by longitudinal tensile splitting is more
likely to occur (Mode I, figure 4.13b) [81]. The name “bolt shear test” is misleading as bearing
strength rather than shear strength is measured. However, the test is known in literature by
this name and therefore the name was adopted in this research.

(a) Test set-up (b) Three fracture modes [88]

Figure 4.13: Bolt shear test

In his tensile timber connector design of 2000, de Vries employed square cross dowels [91]. At first
sight, introducing a square hole seems unfavourable due to stress concentrations in the corners.
This is generally true for an isotropic infinite plate loaded in uni-axial tension. However, in the
given case, an orthotropic circular hollow section is loaded by a rigid pin, which is an entirely
different situation9. As the de Vries connector was already successfully used in practice, it was
decided to use square bolts and compare them to round bolts of a similar diameter. Furthermore,
literature suggests that nodes can have an impact on the prevailing failure mode and strength
of the connection (see chapter 2.2.3). Therefore, it was decided to conduct experiments on both
specimens with and without nodes.

Expected Failure Modes A tensile connector that transfers both tensile and compressive
stresses prescribes an end plate without gaps. This rules out the possibility of block shear
(figure 4.14d).

For round bolts (#), bolt embedment (figure 4.14b) followed by tensile splitting (figure 4.14c)
can occur. For square bolts (�), embedment (figure 4.14f) followed by tensile splitting at a
corner (figure 4.14g) or out of plane shear (figure 4.14h) can occur.

Independent of the bolt shape, the strength is calculated as follows:

bearing failure: fb =
Fbolt
2Ab

=
Fbolt
2dt

(figure 4.14b and 4.14f)

splitting failure: fs‖ =
Fbolt
Acr

=
Fbolt
ledgetcr

(figure 4.14c and 4.14g)

block shear failure: fvbolt1 =
Fbolt
Ashear

=
Fbolt

4ledget
(prevented by end plate)

9it is suggested to model the resulting stress distribution in future research
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Out-of-plane shear is expected to only occur for square bolts:

� out-of-plane shear failure: fvbolt2 =
Fbolt
Ashear

=
Fbolt

4ledget
(figure 4.14h)

(a) # test set-up (b) # bearing failure (c) # splitting failure (d) # block shear failure

(e) � test set-up (f) � bearing failure (g) � splitting failure (h) � out-of-plane shear

Figure 4.14: Bolt test round and square configuration

Procedure Similar to the compression test set-up in chapter 4.2.3, a pot bearing bottom load
plate without gap was employed. The specimens were not greased to simulate the application
in the end plate connector. The experiment was displacement-controlled with a prescribed
displacement of 0.01mm/s, measured between the two loading plates which is identical to the
displacement of the bolt, as slip between steel components is small.

The test was only conducted on Moso specimens and required 10 specimens per bolt type (round
and square); each 5 with and 5 without nodes. For clear specimens, the height was chosen to
be h = 2D0 = 20 cm. The bolt was placed in the centre with a distance of at least 1 d to the
node which resulted in an edge distance of ledge ≈ 10 cm. The bolt diameter for both square
and round bolts was chosen d = 16 mm. A detailed drawing of the test set-up can be found in
appendix D. The specimens were stored in a climate chamber with relative humidity RH = 65%
and temperature of 20°C which resulted in a Moso moisture content of 11.30%; experiments
were conducted under the same conditions. For both round and rectangular holes, one node-
free specimen showed a longitudinal continuous tensile crack prior to load application. The
cracks developed only some time after manufacturing and the specimens were included in the
experiments. The crack in the specimen with the round hole did not run close to the hole and
did not affect strength in any kind. The crack in the specimen with the rectangular hole ran
through the corners of the hole. This specimen reached 87% of the average bearing strength of
similar initially intact specimens.

Experiments with round bolts were stopped after a significant force drop due to continuous lon-
gitudinal splitting. The square configuration was stopped when a displacement of approximately
∆s ≈ 10 mm was reached. Note that this chosen maximum displacement is greater than the
maximum displacement prescribed by the European standard on timber testing EN 383 [26].
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4.2.4.3 Test Results

Table 4.9 displays the bolt test results for round # and square � bolts10. The specimens with
initial cracks are included. Note that the tensile splitting capacity (fs‖) has the character of a
hypothetical material property as the bolt force and crack surface cannot be directly translated
into Mode I splitting capacity. This issue is discussed in detail by Mitch [62] and will not be
further addressed here. Instead, a fracture mechanics approach will be used in the discussion of
the experimental results. Note that bearing stiffness Eb was established and found lower than
compression stiffness Ec. However, for deformation capacity of a bolted connector, the elastic
bearing deformation is of little interest. Samples size was as follows: 5 clear #, 5 node #,
5 clear �, 6 node �. Detailed results can be found in the appendix in table C.5.

Table 4.9: Average bolt test results for Phyllostachys pubescens (round #; square �)

bolt D0 t ledge ρ tcr Ab Acr Fb fb Fcr fs‖
shape [mm] [mm] [mm] [ kg

m3 ] [mm] [mm2] [mm2] [kN] [MPa] [kN] [MPa]

xclear# 105 8.7 93 657 8.6 138 797 15.28 55.41 14.48 18.18
xnode# 98 8.9 93 738 8.8 141 825 17.58 62.56 17.05 20.89
σclear# 5 0.9 2 12 0.5 9 63 1.77 3.56 1.33 1.11
σnode# 9 1.1 4 41 1.1 18 132 2.91 7.83 2.28 2.71

xclear� 100 8.4 101 686 8.6 138 14.51 52.66
xnode� 98 9.6 98 692 9.6 153 16.54 54.27
σclear� 11 0.8 1 128 0.4 7 3.11 10.69
σnode� 8 1.4 8 111 1.4 23 1.78 3.26

Two typical load-displacement curves could be observed for the round and square bolt configu-
ration11 (figure 4.15). For the square bolt configuration, embedment displacements were at least
twice as large as maximum displacements of round bolts.

(a) round bolt (b) square bolt

Figure 4.15: Typical load-displacement curves bolt test

10outer diameter D0, thickness t, edge distance ledge, density ρ, culm thickness at the point of the continuous
crack tcr, bearing surface Ab = dt, splitting surface Acr, maximum bolt force Fb, bearing strength fb = Fb/2Ab =
2dt, crack opening force at onset of final tensile splitting (Fcr) and splitting capacity fs‖ = Fcr/Acr

11The maximum bolt force Fmax,bolt represents one data point of table C.5.
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(a) round bolt clear (b) round bolt node (c) square bolt clear (d) square bolt node

(e) round bolt clear (f) round bolt node (g) square bolt clear (h) square bolt node

(i) crack ↓ # (j) crack ↓, ↑ # (k) crack ↓ # (l) crack ↓, ↑ # (m) crack ↓ � (n) crack ↓, ↑ �

Figure 4.16: Bolt embedment and splitting failure

For round bolts, the individual points in figure 4.15a indicate the following events: 0© Contact
is made between bolt and adjacent bamboo material. Bearing (embedment) takes place (fig-
ure 4.16a and 4.16b) until the first crack begins to form at 1©. Crack growth of first crack and
new cracks emerge. 2© One crack has grown towards the bottom plate (figure 4.16i and 4.16k)
or towards both ends of the specimen (figure 4.16j and 4.16l). Force drops rapidly; end of ex-
periment. Splitting strength of round bolts in table 4.9 is established at point 2© of figure 4.15a
by dividing the bolt force by the area of one crack (Acr = ledgetcr).

For square bolts the events in figure 4.15b are as follows : 0© Contact is made between bolt and
adjacent bamboo material. Start of embedment of the bolt. Simultaneously, two cracks form
at the corners of the square hole. When cracks are ca. 5 mm long, the fibres under the bolt
buckle and a wedge is pushed out 1© (figure 4.16c and 4.16d). At 10 mm displacement12, the

12This chosen maximum displacement is more than the displacement prescribed by the European standard on
timber testing EN 383 [26].
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experiment is stopped 2©. Crack growth that resulted in entire tensile splitting occurred only in
half of the specimens and the cracks only propagated to the bottom loading plate13(figure 4.16m
and 4.16n). Splitting strength for square bolts was thus not established. Note: The wedge
resulted from buckling of the culm wall but it was not clear, whether the cracks resulted from
Mode I or Mode III failure.

Due to manufacturing of the specimens, the distance between square bolts and node was so
great that only one experiment could be continued until the wedge reached the node without
jeopardizing the intactness of the external displacement gauge. An interesting behaviour could
be observed in the resulting load-displacement diagram which is displayed in figure 4.17a: After
initial embedment 1©, a wedge is formed and the force decreases 2©. As displacement continues,
tensile splitting sets in and the bolt force increases again as soon as the displaced bolt reaches
the nodal region 3©. Due to comparability, the first force peak of 15.38 kN was used in table 4.9
and C.5. Figure 4.17d depicts failure of the node and subsequent splitting. It was not possible
to observe whether the node failed in Mode I (tensile splitting), Mode II (interlaminar shear)
or Mode III (out-of-plane shear) failure. In order to answer this question, the nodal fracture
toughness Mode I to III of Moso needs to be examined. Below the nodal region, the specimen
clearly failed in Mode I (tensile splitting).

(a) Load displacement curve (b) wedge forming

(c) bearing failure (d) bearing and splitting

Figure 4.17: Nodal impact on square bolt embedment

13except in the case of an initial continuous crack which was further opened by the load

58



4.2.4.4 Discussion and Conclusion

Figure 4.18 shows plots of the bearing (embedment) and splitting strength versus density and
bearing strength versus splitting strength.

(a) bearing strength (fb) versus density (ρ)
round bolts (#) and square bolts (�)

(b) bearing strength (fb) versus density (ρ)
square bolts (�)

(c) bearing strength (fb) and splitting strength (fs‖)
versus density (ρ); round bolts (#)

(d) bearing strength (fb) versus splitting strength
(fs‖); round bolts (#)

Figure 4.18: Bearing and splitting strength of round and square bolts

It was not possible to establish a correlation between bearing or splitting strength and density.
However, there was a weak correlation between bearing and splitting strength of specimens with
round bolts (figure 4.18d). For round bolts, average density of specimens with nodes was higher
than those without nodes (figure 4.18c).

Table 4.10: Summary of bolt test results for round and square bolts

Bolt ρclear ρnode
ρclear
ρnode

fb,clear fb,node
fb,clear
fb,node

fs‖,clear fs‖,node
fs,clear
fs,node

Shape [kg/m3] [kg/m3] [−] [MPa] [MPa] [−] [MPa] [MPa] [−]

# 657 738 0.89 55.41 62.56 0.89 18.18 20.89 0.87

� 686 692 0.99 52.66 54.27 0.97
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The average bolt force that led to tensile splitting Fcr was 95% of the average bolt bearing force
Fb for clear specimens and 97% for specimens with nodes. Both bearing strength fb,node and
splitting strength fs‖,node of specimens with nodes was higher than of clear specimens (fb,clear
and fs‖,clear, see table 4.10) which is in agreement with the theory presented in chapter 4.2.5.
As there was no correlation between density and bearing or splitting strength, it can be assumed
that the higher density of specimens with nodes is not the cause for the higher strength but that
the favourable microstructure of nodes leads to the strength increase.

For square bolts, average density of specimens with and without nodes was almost the same
(table 4.10). There was little difference between bearing strength of specimens with and without
nodes. However, the displaced bolt did barely enter the nodal region which makes it impossible
to evaluate the influence of nodes on a square bolt configuration. The square bolt showed distinct
embedment prior to crack propagation and final tensile splitting.

Remarkably, there is little difference in mean bolt bearing strength (fb) between a round or
square configuration. However, the displacement capacity of square bolt specimens was much
higher than of round specimens. Furthermore, splitting did only occur in half of the cases for
square bolts whereas every specimen with a round bolt showed at least one distinct continuous
longitudinal crack.

Comparison to Literature In the given case, it can only be said that splitting strength was
much higher than observed by Fu et al. [29]. Nodes had a positive influence on bearing and
splitting capacity which was suggested by literature.

Furthermore, the obtained bearing strength can be compared to the compressive strength that
was determined earlier. For Moso, compressive strength was fc,node = 49.9 MPa and fc,clear =
47.5 MPa. The average bearing strength for specimens with and without nodes with square and
round bolts was up to 25% higher than the compressive strength! This shows that a tensile
connector with an end plate is very suitable in terms of bearing, especially if square bolts (cross
dowels) are employed. In terms of nodes it seems favourable to place a connector close to a
node and use it as natural reinforcement. Still, the great bearing strength of clear specimens
(fb,clear) suggests that bolts can also be placed at a greater distance from the node. In all cases,
the edge distance ledge should be long enough to allow for ductile bearing failure and wedge
forming before crack growth can lead to brittle tensile splitting failure. The edge distance of
10 cm that was employed in the experiments satisfied this requirement and can thus be adopted
in the connector design.

Fracture Mechanics: Influence of Bolt Shape and Node The remaining task is to
attempt to explain the different failure modes that were induced by the different bolt shapes,
and quantiy the impact of the node. An attempt is made to provide an explanation using
fracture mechanics.

Shao et al. conducted experiments on Mode I interlaminar fracture toughness of Moso bam-
boo [79]. Wang et al. investigated the toughness contribution of the bamboo node to the Mode
I interlaminar fracture toughness of Moso bamboo [95]. Wang et al. conducted experiments on
Mode II interlaminar fracture toughness [94] of Moso bamboo. The findings were the following:

GIC,clear = 358 J/m2 [79]

GIC,clear = 498 J/m2 [95]

GIC,node = 1431 J/m2 [95]

GIIC,clear = 1303 J/m2 [94]
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Orthotropic composites (such as timber and bamboo) are in general more brittle than isotropic
materials and local stress concentrations are higher. For round bolts, there is one distinct stress
peak at the bottom centre of the hole [21][18] and for square bolts there are two stress peaks in
the corners. Round specimens failed clearly in Mode I splitting failure. For square specimens, it
was not clear whether the wedge was formed due to Mode I or Mode III failure. As GIIIC,clear
has not been determined yet, fracture mechanics cannot answer this question. However, fracture
mechanics suggest, that the wedge was not formed in Mode II, as GIIC,clear is up to three times
higher than GIC,clear.

The node had a clearly positive impact on splitting capacity of round bolts which is confirmed by
fracture mechanics (GIC,clear << GIC,node). GIIC,node and GIIIC,node have not been determined
yet and no statement can be made about shear capacity.

Conclusions For full-culm bamboo bolted connections, square bolts perform much better
in terms of failure mode and displacement capacity. Apparently, the stress concentrations in
the corners of the rectangular hole are crack initiators that lead to prescribed ductile wedge
forming rather than brittle splitting. The embedment surface is prescribed by the bolt shape
and thickness; a square bolt results in the more favourable contact area. Manufacturing of
square holes should be improved by using a square-hole drill instead of a saw chain.

For the round configuration, nodes have a positive effect on bearing and splitting capacity. In
future research, the impact of nodes on the square configuration could be examined by placing
the bolt closer to the node and continuing the experiment until splitting occurs.

It can be assumed that embedment capacity of square bolts can be increased by using a larger
bolt diameter. Additional research needs to be conducted to explore whether the relationship
of bolt diameter and embedment strength is linear.

The fact that Mode I fracture toughness of clear specimens is substantially lower than Mode II
fracture toughness suggests that splitting prevails in most cases. By changing the bottom loading
plate to a plate with a gap, increasing the bolt diameter d, and decreasing the edge distance
ledge, it can be investigated whether block shear can actually occur and whether the node has
a positive or negative effect. With the given square bolt configuration and edge distance, it is
safe to assume that connector strength is governed by embedment and splitting as long as the
end plate is in place. This conclusion will be used in chapter 7.
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4.2.5 Influence of Nodes (experiments)

In chapter 2.2.3, a literature review describes the macroscopic and microscopic structure of
nodes, and the influence of nodes on material properties. This chapter focusses on the experi-
mental program which consisted of a 3D nano scan and an electron microscopy of Guadua and
Moso nodes. The findings are discussed and related to results from compression and bolt shear
experiments.

4.2.5.1 3D Scan

Set-up A 3D nano scan of the nodal region of Phyllostachys pubescens and Guadua angustifolia
specimens was made in order to examine and compare the 3D microstructure of nodes. The
engaged scanner was a Phoenix Nanotom high resolution CT-scanner with a resolution of 5µm.
Figure 4.19 shows the preparation of the specimens, which were later cut into smaller pieces
for electron microscopy. The dimensions of the employed cross-sections were also basis for the
height assumption of the nodal diaphragm in the other experiments (3 mm for Moso and 5 mm
for Guadua).

(a) Moso specimen (b) Guadua specimen

Figure 4.19: Preparation of specimens for 3D nano scanner

Results Figure 4.20 shows the scan of the Phyllostachys pubescens (Moso) node and figure 4.21
shows the Guadua angustifolia node. On the scans it can be observed that most vascular bundles
run longitudinally through the culm wall without changing direction (solid arrow in figure 4.22).
Some vascular bundles close to the inside culm wall deviate into the nodal diaphragm. Bundles
from the diaphragm also run radially into the culm wall (dashed arrow in figure 4.22). This
results in an interwoven structure of longitudinal and transverse vascular bundles in the culm
wall. The 3D scan of the Moso nodes also shows vascular bundles that run circular close to the
inside culm wall at the top of the diaphragm (dotted arrow in figure 4.22). For Guadua, this
is also the case but less clearly developed. In the diaphragm itself, vascular bundles become
shorter and randomly oriented which can be especially well observed in the Guadua sample. For
both species, bundles close to the the outside culm wall end in the sheath where bamboo leaves
emerge. The 3D scans also suggested bifurcation of vascular bundles but it was not possible to
observe whether single fibre strands split up into two new strands.
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Figure 4.20: 3D scan of Moso node

Figure 4.21: 3D scan of Guadua node

Figure 4.22: Directions of vascular bundles in Moso node
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4.2.5.2 Electron Microscopy

Set-up From the 3D scans it was not possible to determine whether bifurcation of fibre strands
occurs. Therefore, small pieces of the scanned Guadua angustifolia node were examined in an
Environmental Scanning Electron Microscope (ESEM) with an enlargement up to 2000. The
obtained pictures in figure 4.23 have a resolution of 200µm (enlargement 100 respectively 125).

Results Although the fibre strand was slightly damaged by the preparation process, it can
be clearly observed that fibre bifurcation does indeed occur in the nodal region (figure 4.23b).
Fibre bifurcation could potentially add to the stability and isotropy of the interwoven nodal
structure. However, exact location of bifurcation and orientation of the new strands still need to
be examined. The remaining length of the strands after bifurcation also needs to be considered
to make a statement about additional stability of the weave.

Figure 4.23a shows a cross-section of a vascular bundle embedded in parenchyma tissue. The
structure of fibre strand, sclerenchyma sheath, phloem and metaxylem can be clearly observed
(figure 2.3 contains the respective labelling).

(a) Cross-section vascular bundle (b) Fibre bifurcation nodal region

Figure 4.23: Guadua electron microscope images

4.2.5.3 Discussion and Conclusion

The macroscopic findings of the influence of nodes on mechanical properties can be attributed
to the nodal microstructure. In the following, the results are summarized and a link between
macroscopic and microscopic properties is made. The findings are compared to relevant litera-
ture.

Axial Strength Full-culm compressive strength of both Guadua angustifolia and Phyllostachys
pubescens is negatively impacted by the presence of nodes. Cracking always occurred in the clear
part of the specimen, never in the node itself. This agrees with the findings of Shao et al. [77],
who found higher compression strength of small samples extracted from the nodal region. The
tangential fibre strands increase compression capacity of the node itself. However, change in culm
geometry at the edge of the nodal region leads to stress concentration and overall compression ca-
pacity of the full-culm specimen is decreased. This agrees with the findings of Ghavami et al. [32].

Tensile strength is negatively impacted by nodes on a small and large scale due to non-uni-axial
fibre orientation in the nodes [77][99].
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Both tensile and compressive Modulus of Elasticity suffer from the changed orientation of vas-
cular bundles. While tensile Modulus of Elasticity is decreased as there are less axial fibres that
contribute to the stiffness, compressive Modulus of Elasticity is decreased as transverse vessels
get compressed.

Bolts: Bearing, Splitting and Shear Strength For both bearing and splitting strength
of bolted connections, nodes have a positive influence. The tangential fibres in the node act
as reinforcement and result in 13% higher average splitting capacity and 11% higher bearing
capacity for round bolts. Subsequently, it makes sense to place bolts close to nodes and use
them as natural reinforcement. As block shear was prevented by the bottom loading plate
configuration, further research is needed in order to determine the impact of nodes on shear
capacity. However, as Mode II fracture toughness of clear specimens is about 3 times higher
than Mode I fracture toughness, and the shear area is twice the splitting area, Mode I splitting
is expected to be governing in round bolted connections, independent of the presence of nodes.

Square bolts introduced embedment and wedge forming due to either two Mode I or Mode III
cracks at the edges of the hole. In the wedge, the culm wall buckled to the outside which can be
attributed to the functionally graded microstructure of the culm wall: The fibre volume fraction
increases along the thickness of the wall, leading to less rigidity and a greater displacement
capacity at the inside culm wall. Therefore, the culm wall buckles to the outside.

There was only a single case in which the square dowel reached the nodal region: Culm wall buck-
ling did not occur until the nodal region was passed which resulted in an increase of force by 17%
compared to the initial bearing force. The late buckling can be attributed to the microstructure
of the node, which contains radial and tangential reinforcing fibres. From the failure pattern it
was not clear, whether the nodal region failed in Mode I or Mode III. More research needs to be
done to determine the average macroscopic effect of nodes on bearing strength of square bolts.
Variation of square bolt width d and edge distance ledge could provide additional insight into
the interaction of bearing, splitting and shear failure of square bolted connections. Furthermore,
future research should include the species Guadua angustifolia, in order to see whether the small
differences in the nodal microstructure have an impact of macroscopic mechanical properties.
Finally, GIC , GIIC and GIIIC of the node and internode should be determined for both species.

Conclusion Nodes have a clear negative effect on tensile strength. They have a local positive
effect on compression strength but a negative effect on full-culm compression strength and
Modulus of Elasticity. Nodes have a positive effect on bolt bearing and splitting strength,
independent of the bolt shape. More research needs to be done to make a statement about
longitudinal and out-of-plane shear strength.
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4.3 Summary and Conclusions

A linear relationship between density ρ and dynamic Modulus of Elasticity Edyn was found for
both Guadua angustifolia and Phyllostachys pubescens. Yet, a relationship between static and
dynamic Modulus of Elasticity still needs to be established.

Additionally, a very strong linear relationship between density ρ and compressive strength fc
and a relatively strong relationship between density ρ and compressive Modulus of Elasticity Ec
was found for both species. Crack initiation always occurred in the clear part of the specimen,
never in the node. This hints to a higher compressive capacity of the node itself, possibly as a
result of lateral reinforcing fibres. Compressive strength of clear specimens was approximately
5% higher than of specimens that contained nodes; Modulus of Elasticity was in average 10%
higher. The lower overall strength of specimens with nodes can be explained by changes of
culm geometry close to the node that induce stress concentrations which can lead to premature
cracking.

No relationship could be established for bolt bearing strength fb, bolt splitting strength fs‖ and
density ρ. The reinforcing nature of nodes had a positive effect on both bearing and splitting
strength. The square bolt resulted in a more favourable failure mechanisms (embedment with
large displacement) than the round bolt (little embedment and subsequent tensile splitting).
More research is needed concerning block shear and out-of-plane shear in bolted connection.

The following linear relationships were established (all of them significant: α = 0.05):

Edyn = 21.692 ρ− 2895; R2 = 0.7407; p = 0.00004

Ec,clear= 11.236 ρ− 238.63; R2 = 0.9585; p = 0.0007

Phyllostachys pubescens Ec,node= 24.546 ρ− 11121; R2 = 0.6705; p = 0.00243

fc,clear = 0.0554 ρ+ 10.6; R2 = 0.9963; p = 0.00005

fc,node = 0.0721 ρ− 5.1948; R2 = 0.9408; p = 0.0003

Edyn = 19.687 ρ+ 5112; R2 = 0.7047; p = 0.00914

Ec,clear= 31.965 ρ− 15113; R2 = 0.7517; p = 0.0025

Guadua angustifolia Ec,node= 21.579 ρ− 8564; R2 = 0.8658; p = 0.0071

fc,clear = 0.1772 ρ− 77.602; R2 = 0.8330; p = 0.0006

fc,node = 0.1325 ρ− 49.76; R2 = 0.9916; p = 0.00003

Table 4.11 provides a summary of the test results of the average dynamic Modulus of Elasticity.
Table 4.12 gives an overview of the average values of compression test results. Table 4.13
summarizes the findings of the bolt shear test with a round (#) and square (�) bolt.

Table 4.11: Summary of average dynamic Modulus of Elasticity for Phyllostachys pubescens and
Guadua angustifolia

fnat D0 t m lculm ρ Edyn Estat ≈ 0.75Edyn
Species [Hz] [cm] [cm] [kg] [cm] [kg/m3] [MPa] [MPa]

Moso x 1762 10.29 1.0 2.34 117.3 660 11431 8573

Guadua x 1641 12.91 1.4 5.82 158.2 740 19681 14760

Moso σ 178 0.65 0.1 0.43 12.7 74 1866

Guadua σ 266 1.73 0.2 0.62 23.3 151 3536
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Table 4.12: Summary of average compression test results for Phyllostachys pubescens and
Guadua angustifolia

D0 t h ρ fc,clear fc,node
fnode
fclear

Ec,clear Ec,node
Enode
Eclear

Species [mm] [mm] [mm] [ kg
m3 ] [MPa] [MPa] [−] [MPa] [MPa] [−]

Moso x 96.5 8.5 152.5 722 49.9 47.5 0.95 7746 6817 0.88

Guadua x 123.6 12.6 150.5 796 60.7 58.6 0.96 9845 9082 0.92

Moso σ 7.7 2.0 4.4 80 5.0 5.7 1030 2296

Guadua σ 7.9 2.1 3.2 95 14.6 16.4 2775 2867

Table 4.13: Summary of average bolt test results for round and square bolts for Phyllostachys
pubescens

Bolt ρclear ρnode
ρclear
ρnode

fb,clear fb,node
fb,clear
fb,node

fs‖,clear fs‖,node
fs,clear
fs,node

Shape [kg/m3] [kg/m3] [−] [MPa] [MPa] [−] [MPa] [MPa] [−]

#x 657 738 0.89 55.41 62.56 0.89 18.18 20.89 0.87

�x 686 692 0.99 52.66 54.27 0.97

#σ 12 41 3.56 7.83 1.11 2.71

�σ 128 111 10.69 3.26

Non-destructive testing e.g. by measurements of Edyn provides a feasible way of measuring
material properties without destructive testing. However, more destructive experiments need
to be conducted in order to establish relationships between non-destructively and destructively
obtained properties. The bolt shear test confirmed the positive influence of nodes on splitting
and bearing strength of round bolts. In only one specimen with a square bolt the nodal region
was entered and the positive effect of the node was confirmed. The remaining tasks for future
research are to (a) quantify the influence of the bolt diameter (b) adapted the bottom loading
plate to see whether block shear occurs and what influence the node has (c) determine KIC...IIIC

by fracture mechanics (d) make a FEM which simulates the stress distribution around the bolt
and accounts for the functionally graded structure. This way, the observed failure mechanisms
for different bolt shapes can be explained and predicted, and formulas for bolt embedment and
splitting strength depending on the bolt shape, ledge, θ and d can be derived.

The obtained results are sufficient to serve as input for the Grasshopper dome model. Further-
more, a tensile connector can be proposed and a component based strength prediction can be
conducted.
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Chapter 5

Geodesic Dome Model

The aim of this research is to work towards a parametric design tool for bamboo geodesic dome
structures. For this purpose, two example load cases are analysed in detail: self-weight and point
load on top of the dome. They serve to illustrate the underlying methods of the parametric
structural analysis and cover the analytical challenges of global buckling and geometrical non-
linearity.

Superimposed dead load by dome cladding, wind load, and snow load are implemented in the
model but are not included into the theoretical analysis. Dynamic load cases are not part of the
model.

The model input is based on mean strength values from experiments and literature. The prin-
ciple of superposition does generally not hold for global buckling and geometrically
non-linear analysis! In the following, it will be shown that for medium sized domes1, global
buckling does not occur. On the other hand, effects of geometrical non-linearity cannot be ne-
glected; linear superposition of load case is thus only possible for linear load cases. Strength of
tensile connectors is not considered in this chapter as it is not a material property but dependent
on connector design. The case study in chapter 8 takes connector strength into account and
makes use of a structural safety concept in the style of the Eurocodes2.

In chapter 5.1, general information about Grasshopper is given and the model and input param-
eters are explained. Subsequently, the research questions of chapter 1.3 are investigated:

� The effect of opening size and position on the maximum strut stresses is explored in a
parametric study in chapter 5.2.

� In chapter 5.3, the effect of the dome frequency f on strut stresses of half-spherical domes
is illustrated. The concept of stress normalization is explained and general relationships
between strut length L, dome frequency f and dome diameter D are derived.

� The phenomena of global and local buckling is explored in a parametric study in chapter 5.4
for self-weight and a point load on top of the dome. Boundary conditions are derived for
which global buckling does not occur and linear superposition of load cases is possible.
Additionally, rules of thumb are derived which indicate the limit diameter for geodesic
domes made of Guadua angustifolia and Phyllostachys pubescens.

� As an extension of the subject, the performance of shells and domes with respect to stability
is compared in chapter 5.5.

� Chapter 5.6 summarizes the findings and draws conclusions.

1e.g. D = 50 m, f = 8
2more information on probabilistic design is given in chapter 6
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5.1 Dome Model and Input

A parametric geodesic dome model is designed using the Rhinoceros plug-in Grasshopper. The
model data can be exchanged between Grasshopper and the finite element analysis software
Oasys GSA using the plug-in Geometry Gym. The Grasshopper script was partly inspired by
the MSc thesis of Arend van Waart [93], and is further discussed in appendix A. The general
characteristics of geodesic domes are explained in chapter 3.2.

5.1.1 General Information about Grasshopper

Figure 5.1: Flow Chart

Grasshopper is a graphical algorithm editor that allows to generate and interlink prepared pieces
of programming code by plugging wires (links) into components (pieces of code). This defines
the order in which the pieces of code are executed. A component performs an action based on an
input (incoming wires) and gives an output (outgoing wires). As the underlying programming
script is by default not seen by the user, a component works like a black box and results can
only be verified by checking the output data. All input data can be defined parametrically and
stored in variables (e.g. a number, an integer or a Boolean). Using the plug-in Geometry Gym,
the geometry generated by Grasshopper can be transformed into finite elements and exported to
various FE software, including Sofistik and Oasys GSA (GSA). In the given case, the structural
analysis was performed in GSA3, including linear static, geometrically non-linear (GNL) and
global buckling (GB) analysis. Results including load factors, stresses and displacements are
extracted by Geometry Gym and can be displayed in Grasshopper and Rhinoceros (figure 5.2).
Arend van Waart programmed a set of Grasshopper components called Elephant that export
results into an Excel file and automatically take screen shots of the Rhinoceros model. The
Hoopsnake component programmed by Yiannis Chatzikonstantinou allows to automatically loop
through sets of parameters, e.g. different dome sizes or load cases. Combining these tools, an
automated parametric structural analysis can easily be performed (figure 5.1)4.

3Geometry Gym is developed furthest for the exchange between Grasshopper and GSA; also simple beam and
bar elements of a geodesic domes don‘t require a ‘sophisticated’ analysis.

4Links for modelling with Grasshopper (accessed January 30, 2015): Grasshopper download and info
http://www.grasshopper3d.com; Geometry Gym download and info http://geometrygym.blogspot.nl/; Hoop-
snake download http://www.food4rhino.com/project/hoopsnake?etx; Elephant download https://github.

com/arendvw/ExportTools/commits/master.
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(a) Point load (b) Self-weight

Figure 5.2: Strut stresses and displacements

5.1.2 Input Physical and Mechanical Properties

The model input data in table 5.1 is based on experimental results (D0; t; fc; ρ : E) and val-
ues from literature (all other values). Nature only provides a limited range of bamboo culm
geometry: While the strut length L can be increased by axial connection of culms, the strut
outer diameter D0 and wall thickness t cannot be varied freely; a relationship of D0 = 0.1 t
with D0 ∈ [90; 130]mm is assumed unless stated differently. Limit values of dome diameter and
frequency are based on this input; rules of thumb cannot be applied beyond the given range of
input data.

Table 5.1: Input parameters strut and beam materials

property unit
bamboo struts

Guadua
angustifolia

bamboo struts
Phyllostachys

pubescens

steel beams
S235

tensile strength ft [MPa] 37 100 235

compr. strength fc [MPa] 60 50 235

Modulus of Elasticity E [MPa] 14760 8570 210000

strut diameter D0 [mm] 130 100 free

wall thickness t [mm] 13 10 0.1D

density ρ [kg/m3] 740 660 7850

Poisson’s ratio ν 0.38 0.38 0.3

5.1.3 Geodesic Dome Model

All geodesic domes presented in the following are based on icosahedra (figure 5.3a). Other
Platonic solids such as octahedron and tetrahedron can serve as an initial polyhedron, but result
in an unfavourable stress distribution due to greater variation in strut length [17]. Table 5.2
displays the denotation of model parameters.
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Table 5.2: Model parameters and denotations

Parameter Denotation Unit Description

Dome diameter D [m] Results in linear scaling of entire dome

Frequency f [−] Number of subdivisions of initial triangle

Trimming plane T ∈ [−0.5; 0.5]D [m]
Trims spherical polyhedron to dome:
T = −0.5 Geodesic Sphere

Opening size ∈ [0; 1]D [m]
0.5D: Opening diameter is half the dome
diameter

Z-position z ∈ [0; 1]D [m]
Position of opening with respect to z
z = 0: no intersection (figure 5.4)

Opening rotation ∈ [0; 360] [°]
Counter clockwise rotation of opening
around dome‘s z-axis

Strut diameter D0 [mm] External strut diameter

Wall thickness t [mm] If not defined differently: t = 0.1 D0

Strut length L [m] Maximum strut length

Load case LC [−] LC1: self-weight;
LC2: point load (linear or GNL)

Point load F [kN ] If not defined differently: F = 1 kN

The number of triangles that result from subdivision of the initial polyhedron’s faces is defined
by the frequency f (figure 5.3b and 5.3c). A higher frequency provides a better approximation of
a sphere. The model x-y-z-coordinate system is located in the centre of the approximated sphere
(figure 5.3c; red:x, green:y, up:z). The sphere can be trimmed to a dome at any perimeter parallel
to the equator. The z-coordinate of the trimming plane is denoted as T . The initial polyhedron
stays untrimmed for T = −0.5D and the dome vanishes entirely for T = 0.5D (figure 5.3d
to 5.3f). The dome diameter is denoted as D and equal to the initial sphere’s diameter which is
not the ‘true’ diameter Dtrue

5 of the trimmed dome. D can be varied freely and results in mere
scaling of the entire model.

An approximated ellipse opening is introduced by intersecting a cylinder with the dome and
linearly connecting the intersecting points (figure 5.4). The opening’s size as well as vertical
position with respect to the dome’s base plane can be changed freely (size: figure 5.3g to 5.3i;
z-position: figure 5.3j to 5.3l). The opening can also be rotated counter clockwise about the
dome’s z-axis (figure 5.3j to 5.3l). The edge of the opening is modelled as a rigid steel beam that
possesses enough stiffness to prevent buckling. The base points, which result from trimming at
T , are connected by a rigid steel beam and pinned supported by springs with stiffness ξ = 0.5
in x- and y-direction.

The dome can be subjected to self-weight (LC1) or a point load at the highest point of the dome
(LC2). Three different strut materials are implemented: S235, Guadua and Moso bamboo.
All struts are modelled as pinned-ended bars6 made from circular hollow sections. The nodal
structure of bamboo culms and stiffness of dome hubs are neglected.

5Dtrue is obtained by measuring the greatest distance of the dome’s base points. Dtrue < D always holds and
the inequality is greater for small frequencies and for trimming planes T 6= 0

6In real life application, torque and lateral displacements of bamboo struts are partially restrained by the
dome hub. However, it can be assumed that bending moments and shear forces cannot be transferred by the
proposed tensile connector without large deformations. Therefore, it is safe to assume that the bamboo struts are
indeed pinned-ended bars. Note that the actual strength of the tensile connector is only included in chapter 8.
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(a) Icosahedron f = 1
(b) Icosahedron-based
polyhedron f = 2

(c) Icosahedron-based
polyhedron f = 4

(d) Half-spherical geodesic
dome, T = 0 (e) Geodesic dome T = −0.2 (f) Geodesic dome T = −0.7

(g) Opening size 0.2D (h) Opening size 0.5D (i) Opening size 0.9D

(j) z=0.2, size 0.5D (k) z=0.5, size 0.5D (l) z=0.9, size 0.5D

(m) Rotation 0°,
z=0.5, size 0.5D

(n) Rotation -30°,
z=0.5, size 0.5D

(o) Rotation -90°,
z=0.5, size 0.5D

Figure 5.3: Model parameters 73



5.2 Parametric Study - Position and Size of Opening

5.2.1 Input Parameters

An opening is introduced and rotated around the z-axis of the dome for LC1 (self-weight).
The results are displayed in maximum strut stresses [MPa] which are material and geometry
dependent. Obviously, a change of strut surface area (D0; t) results in different strut stresses.
But also a change of material or geometry of the opening edge beam has an impact on strut
stresses. In chapter 5.3.1, the principle of normalizing stresses is presented. However, for the
given application, real stresses are considered more illustrative and the results will be discussed
qualitatively. For all results in this entire chapter (5.2), the following parameters were used7:

Table 5.3: Parameters used for parametric study of opening position

Geodesic dome Icosahedron-based

Dome diameter D = 50 m

Trimming plane T = 0

Opening size 0.5 D (except figure 5.6)

Z-position z ∈ [0; 1]

Struts Moso bamboo

Outer diameter D0 = 69 mm

Wall thickness t = 7 mm

Opening edge beam steel S235

Outer diameter D0 = 150 mm

Wall thickness t = 20 mm

5.2.2 Creation of Opening and Explanation of Z-Position

An opening is introduced by intersecting a cylinder with the initial geodesic dome (figure 5.4).
The opening size is 0.5 D which corresponds to 50% of the initial dome diameter. The z-position
indicates where the highest point of the cylinder is located with respect to the base plane of the
geodesic dome. Note that the base plane of the dome is generally not equivalent to the x-y-plane
of the initial sphere’s coordinate system unless T = 0.

(a) z=0 (b) z=1

Figure 5.4: Creation of opening by intersecting cylinder with geodesic dome in Rhinoceros

7The input of Moso was based on a literature study as this part of the model analysis was conducted prior to
experiments
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The z-position can be varied between 0 and 1 (figure 5.5). z = 0 results in no intersection of
dome and cylinder, thus no opening (figure 5.4a). z = 1 indicates that the top vertex of the
geodesic dome and the top of the cylinder coincide (figure 5.4b). The intersecting points of
cylinder and dome are detected by Grasshopper and connected by linear beam segments. The
resulting polyline is defined as a rigid steel beam and is referred to as “opening edge beam” in
this entire thesis.

(a) z=0.1 (b) z=0.2 (c) z=0.3

(d) z=0.4 (e) z=0.5 (f) z=0.9

Figure 5.5: Icosahedron-based geodesic dome. f = 5, T = 0, opening size 50%.

Next to the z-position, the opening size can also be adapted from 0 to 1 D. Different opening
sizes result in different stress distributions. Independent of the size, the highest stresses are
always located close to the bottom of the dome or close to the opening edge beams. Examples of
different combinations of frequencies f, opening sizes and z-positions z are displayed in figure 5.6.
The dimensions were kept constant according to table 5.3 except for the opening size. For
the following analysis, only openings of 0.5 D are considered. As an infinite number of size,
position and material combinations are possible, designers are encouraged to conduct their own
parametric analysis to find the optimal opening dimensions that fits the boundary conditions of
their given project.

Possible boundary conditions for a parametric study could be:

� Minimum opening height

� Minimum opening width

� Prescribed opening edge beam material

� Prescribed opening rotation due to connection of a secondary structure (e.g. intersections
with another geodesic dome or another building)

� Desired opening shape (aesthetics or connection of a secondary structure)

� Trimming plane different from T = 0 (often the case in larger structures!)

� . . .
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(a) f = 6, size=0.0D (b) f = 2, size=0.4D (c) f = 2, size=0.7D

(d) f = 4, size=0.2D (e) f = 4, size=0.8D (f) f = 8, size=0.2D

(g) f = 8, size=0.3D (h) f = 8, size=0.9D (i) f = 12, size=0.6D

Figure 5.6: Icosahedron-based geodesic dome. z=0.5, T = 0, various opening sizes

5.2.3 Stress Patterns

Frequency 1 Five equilateral triangles connect in one point at the top of a perfect icosahedron.
If this icosahedron is trimmed at its equator (T = 0), a base plane in the shape of a decagon
is obtained, which is the base plane of a geodesic dome with frequency f = 1. However, the
perimeter above the equator is still a pentagon which causes half of the trimmed triangles to
lean inward and the other half to lean outward (figure 5.7).

Figure 5.7: f = 1, size=0.5D

Rotating an opening around the z-axis, symmetric openings will be created 5 times. This
indicates that peak stresses should be repeated 5 times in every 360° thus once in 72°. Indeed we
see one distinct stress peak for tensile and compressive strut stresses in a 72° period for z = 0.1,
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namely at 36°(figure 5.8a). For z = 0.5, the stress pattern has changed its shape and magnitude
as the opening intersects the pentagonal top perimeter (figure 5.8b). It is remarkable, that stress
peaks again occur around 36°. This is not generally the case, as can be seen in figure 5.10 and
the appendix figure A.22 to A.25!

(a) Maximum strut stresses, f = 1, z=0.1 (b) Maximum strut stresses, f = 1, z=0.5

Figure 5.8: Frequency 1, opening size 50%

Frequency 2 For geodesic domes without openings that are subjected to self-weight, we can
observe that high stresses occur close to the bottom perimeter. For geodesic domes with open-
ings, we expect the highest stress to occur in struts that are close to the opening and/or close to
the bottom perimeter 8 (figure 5.6). The z-position and opening size determine the symmetry
pattern for the peak stresses that occur due to rotation. For a geodesic dome with frequency
f = 2, opening size 0.5D and z = 0.1, the peak stresses occur in the struts between the base
plane and first perimeter. The first perimeter is not flat which is the case for all even frequencies.
It consists of 5-way and 6-way knots which occur 5 times each (figure 5.9a). The initial edges of
icosahedron’s triangles were divided by two. The base plane of the dome is a regular decagon.
We therefore expect 10 stress peaks in 360° thus once in a 36° period. This is the case as can be
seen in figure 5.9d. We can also observe that a symmetric location of the opening results in a
favourable stress distribution (12°, 36°, etc.) but a small deviation from these angles can cause
high peak stresses (e.g. 74°).

(a) f = 2, z=0.1 (b) f = 2, no opening (c) f = 2, z=0.5

(d) Maximum strut stresses, f = 2, z=0.1 (e) Maximum strut stresses, f = 2, z=0.5

Figure 5.9: Frequency 2, dome with opening size 50% and without opening

8We are not interested in opening beam stresses as the steel profile can be adapted to those.
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In general, a non-symmetrical location of the opening is unfavourable for two main reasons:
1) Possible cause for high stresses as observed in figure 5.9d. 2) Introduction of very short
additional struts and thus requirement of extra joints which increase labour costs. For z = 0.5
we observe a different stress pattern, as the opening intersects the first perimeter above the
equator (figure 5.9c and figure 5.9e). Note that there are still 10 distinct compressive stress
peaks in a 360° rotation.

Higher frequencies The same analytical approach can be applied for higher frequencies: In
figure 5.10 maximum strut stresses are shown for z = 0.1 for frequency 1 to 5 and an opening
size of 0.5D. The dependence of number of stress peaks on frequency is clearly shown. In a
72° period we obtain one stress peak for f = 1, two peaks for f = 2, three peaks for f = 3, and
so on. However, one has to be careful as soon as the opening size is increased or if the opening
intersects one or more perimeters above the equator. Different effects will then take over. For
higher frequencies (f > 10), the peaks level out which is a result of generally shorter struts: When
an opening is introduced, struts must be cut to insert the steel opening edge beam. The higher
the frequency, the smaller the length difference of the new small struts in comparison to the long
struts. However, a higher frequency does not necessarily result in smaller stresses which will be
shown in chapter 5.3. While small tensile stresses are desirable for bamboo connector design,
small compressive stresses are desirable for local buckling. Compressive and tensile stress peaks
often occur together, but their magnitude might vary significantly. Therefore, a parametric study
is advised, i.e. if an opening is to be introduced non-symmetrically, and different frequencies,
z-positions and opening sizes need to be explored. More figures for different z-positions and
higher frequencies can be found in the appendix A.4.

Figure 5.10: Strut stresses for different frequencies z=0.1

5.2.3.1 Conclusions

The necessity for introduction of openings depends on several boundary conditions prescribed by
the application. Finding an optimal opening shape remains challenging. In this research, only
elliptical openings were explored. Nevertheless it could be demonstrated, that small variations
in opening size and position can lead to great changes in strut stresses. Special care must be
taken when openings are introduced non-symmetrically and a parametric study is advised in all
cases.
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5.3 Parametric Study - Half-Spherical Geodesic Domes
Without Openings - Influence of Dome Frequency

A parametric study for different frequencies f and dome diameters D was conducted for half-
spherical icosahedron-based geodesic domes made out of steel struts. The following parameters
were kept constant: ρ = 7850kg/m3, strut diameter D0 = 69mm, strut thickness t = 7mm,
trimming plane T = 0, load case LC1 (self-weight). With increasing dome diameter, axial
maximum strut stresses increase linearly which is expected. Surprisingly at first, a higher dome
frequency does not lead to smaller strut stresses even though the individual strut length L is
decreased. A simplified explanation is that the total amount of struts is increased which results
in greater self-weight. On the upside, short struts are favourable for Euler buckling resistance
(fLB = π2EI

AL2 ); the effect of local and global buckling is further explored in chapter 5.4.

Another phenomena is the difference of stresses between even and odd frequencies. Tensile
maximum stresses have the same magnitude for frequency f = 1 and f = 2 and the lines are
overlaid in figure 5.11. Tensile stresses for frequency 1, 2 and 4 are smaller than tensile stresses
for frequency 3, and for frequency 6 and 8 they are still smaller than for frequency 5. Only domes
with even frequencies have a ‘natural equator’ which is a perimeter of horizontally running struts
at T = 0. For odd frequencies, a perimeter below or above the equator has to be chosen, or a new
perimeter is inserted at the equator, which results in the maximum stresses of figure 5.11. The
last perimeter above the equator is subjected to high stresses (figure 5.14c). For odd frequencies,
this perimeter lies closer to the equator which results in an unfavourable stress distribution.

Figure 5.11: Maximum strut stress in icosahedron-based geodesic domes. T = 0
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5.3.1 Normalized Stresses (Shell Approach)

The stresses in geodesic dome struts can be normalized. Dimensionless quantities are useful
when the influence of different input parameters is compared. First, an approach derived from
monolithic shells is used. Later, other decisive parameters will be isolated to obtain dimensionless
quantities.

For shells, the normal force flow due to distributed self-weight pz is known:

nxx =
1

2
pza = pz

D

4
= ρgts

D

4
for a half-spherical dome with a =

D

2

A shell segment of length L, width b and thickness ts can be transformed into a dome strut of
length L and area A with equivalent self-weight (figure 5.12). Every strut represents 1

3 of the

weight of two neighbouring shell triangles. A regular triangle has the area
√
3
4 L

2. The width b
of an equivalent rectangular shell segment is thus

b = 2
1

3

√
3

4
L2/L =

√
3

6
L

By setting the weight of a shell segment and strut equal, the equivalent shell thickness ts is
obtained

ρgts

√
3

6
L2 = ρgAL ⇒ ts =

6√
3

A

L

The stresses in the struts can be obtained with

σxx = nxxL/A ⇒ σxx = ρg
6√
3

D

4

The normalized strut stress is: σxx,norm ∼
σxx
ρgD

[−]

The normalized stresses are independent of the surface area of the strut A, the dome diameter
D and the density of the struts ρ. Figure 5.13 displays normalized strut stresses for self-weight
of half-spherical icosahedron-based domes.

(a) Shell segments approximated by struts (b) Normal forces Nxx

Figure 5.12: Transformation of shell membrane into geodesic dome struts
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(a) Normalized maximum strut stresses (b) Normalized stress for even frequencies

Figure 5.13: Normalized maximum strut stresses icosahedron-based half-spherical geodesic
domes

Two phenomena can be observed in figure 5.13a:
(1) Maximum stresses alternate for odd and even frequencies.
(2) Normalized stresses increase with and increasing frequency.

The first observation is expected due to the unfavourable strut distribution of odd frequencies.
The second observation is puzzling at first, as f was not part of the derivation of σxx,norm and
one would assume that the magnitude of normalized stresses should thus be independent of the
frequency. Still, maximum compressive strut stresses increase, e.g. by a factor α2→4 = 1.0824
for a change from f = 2 to f = 4 (figure 5.13b). The explanation is found by the following
considerations:

If the frequency is doubled, the edge length of a single triangle increases approximately from 3L
to 9L2 = 4.5L (figure 5.14d and 5.14e) and the entire edge length increases by a factor of 1.5.
A doubled frequency leads thus to an increase of self-weight by a factor 1.5 (and a small factor
that compensates the vertex projection9).

The highest tensile stresses occur in the lowest perimeter above the equator and the highest
compressive stresses occur just above the equator (figure 5.14c). For frequency f = 4, 40 bottom
struts are available to carry the dome’s weight instead of the 20 for f = 2. The dome’s weight is
thus distributed on twice as many bottom struts if the frequency is doubled.

The last important aspect is the strut distribution within the dome: For f = 2, a total of 20
compressive struts in the bottom ring have to carry the weight of another 35 struts that are
located higher. This is equal to 35/55 = 63.6% of the dome’s weight. For f = 4, a total of 40
bottom compressive struts have to carry the weight of 190 struts which equals 19/23 = 82.6%
of the dome’s weight.

Combining these insights, the increase of strut stress is α2→4 = 1.5·1.107/2·0.826/0.636 = 1.079.
This is close enough to the stress increase obtained by the Grasshopper model (1.0824).

The stress increase α is independent of the dome material. For f = 4 to f = 6 it is only
α4→6 = 1.0223 and for f = 12 to f = 14 it is only α12→14 = 1.0036. For higher frequencies, the
maximum strut stresses thus converge to a constant magnitude independent of the frequency.
This agrees with figure 5.13b and makes sense, as for f→∞, the geodesic dome becomes a shell.

9The real increase is slightly larger, as the new vertices are projected onto the initial sphere which means that
the new struts are slightly longer (1.107 [17] times for f = 1 to f = 2).
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(a) Dome f = 2 (b) Dome f = 4

(c) Location of highest strut
stresses (d) Struts f = 1 (e) Struts f = 2

Figure 5.14: Distribution of struts for f = 2 and f = 4

5.3.2 Relationships of Strut Length, Dome Diameter and Frequency

For a constant dome diameter D, the strut length L of an icosahedron-based dome is inversely
linearly-dependent on the dome frequency f. This is a logical property, as for f = 2, the initial
triangle is divided into four triangles (figure 5.15b), dividing the initial strut length by two10.
For frequency 3, we arrive at three edges, for frequency 4 at four edges, etc. The new vertices
are projected onto a sphere and the length of the flat edge changes, resulting in a factor 1.515 in
figure 5.15c. If the dome diameter is increased, the strut length is increased by the same factor
as the entire dome is scaled. The same approach can be used for the sum of all struts

∑
L. We

can derive the following relationships for the maximum strut length L and entire strut length∑
L of a half-spherical icosahedron-based geodesic dome with diameter D and frequency f:

L

D
= 0.66

1

f
⇔ D

L
= 1.515f

∑
L

D
= 8.674f (5.1)

(a) f = 1 (b) f = 2 (c) Relationship of D/L, f (d) Relationship of
∑
L/D, f

Figure 5.15: Relationships of D, L,
∑
L, f

10Note that for frequencies higher than 1, there will be different strut sizes as the surface triangles will not be
equilateral any more. We can use the maximum or average strut length in order to compare results.
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5.4 Parametric Study - Instability of Half-Spherical Geodesic
Domes and Limit Dome Diameter

For geodesic domes, two instability limit states exist: Local buckling (LB) of a single strut
and global buckling (GB), where several struts simultaneously ‘snap through’ into a deformed
state. If the frequency f of a geodesic dome is increased, the strut length L becomes shorter
and local buckling is less likely to occur. At the same time, the dome approaches the shape
of a monolithic shell which is prone to global buckling. There is thus a transition point for
a certain frequency f, where local buckling changes into global buckling. It is interesting to
determine this transition point as designers generally want to avoid the risk of global buckling
for several reasons: Global buckling is a sudden and dangerous failure that is hard to grasp
and almost impossible to calculate by hand. Furthermore, the derived global buckling load
factors can not be combined by superposition as every load combination results in a different
global buckling shape. Therefore, it is useful for the designer to establish boundary conditions
under which global buckling is not decisive, so it can be excluded from an automated structural
analysis. Subsequently, rules of thumb can be derived which indicate the limit dome diameter
for geodesic domes made of Guadua angustifolia and Phyllostachys pubescens. In the following,
the dome struts are modelled as pinned-pinned bars which results in local buckling Euler case
2. The Modulus of Elasticity is derived from tests and literature (chapter 4.2.2). All domes are
half-spherical with T = 0.

5.4.1 Load Case 1: Self-Weight

Prior to investigating the transition point from global to local buckling, it makes sense to look
at the two instability cases separately.

5.4.1.1 LC1: Local Buckling

For local buckling of half-spherical icosahedron-based geodesic domes subjected to self-weight, it
is possible to derive an analytical expression for the maximum possible dome diameter Dmax,LB.
For even frequencies and bamboo domes with t = 0.1D0 this expression reads:

Dmax,LB,t=0.1D0 = 1.373
(
D2

0f
2E

ρg

)1/3
(5.2a derivation below)

A local buckling analysis can also be conducted in Grasshopper by comparing the maximum
strut stress to the Euler buckling resistance of the longest strut. A safe zone can be derived for
different materials (figure 5.16). Note that in real life application adequate safety factors need
to applied and the safe zone might become a lot smaller!

Naturally, one would expect that a greater outer diameter D0 increases the local buckling re-
sistance if the t/D0 ratio stays the same. In figure 5.16 however, the curve of Guadua130 runs
slightly lower than the curve of Guadua100. The answer is found in the dimensionless quantity
D/D0 of the ordinate:

Dmax,LB,t=0.1D0 = 1.373
(D2

0f
2E

ρg

)1/3
⇒ Dmax,LB ∼ D

2
3
0 ⇔

Dmax,LB

D0
∼
( 1

D0

)1/3
An increased outer strut diameter D0 results in higher maximum dome diameter Dmax,LB but
a smaller Dmax,LB/D0 ratio. For the above example of Guadua100 (D0 = 100 mm, t = 10 mm)
and Guadua130 (D0 = 130 mm, t = 13 mm) we find:

Dmax,LB ∼ D
2
3
0 Dmax,LB,1.3D0 ∼ (1.3D0)

2
3 = 1.1911D

2
3
0

Dmax,LB

D0
∼
( 1

D0

)1/3 Dmax,LB,1.3D0

1.3D0
∼ 1.1911

1.3

( 1

D0

)1/3
= 0.9163

Dmax,LB

D0
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Figure 5.16: LB for different materials, self-weight

Apparently, a 1.3 times larger strut diameter D0 allows for 1.19 larger dome diameter Dmax,LB

but decreases the D/D0 ratio to 0.916. If figure 5.16 was normalized by (D2
0f

2E/ρg)1/3, we
would get the same curves for all materials! However, this is impractical once we compare local
and global buckling.

Derivation An expression for Dmax,LB can be derived that depends on material properties
and strut geometry. A conservative failure criterion for local buckling is met, when the local
buckling resistance of the longest strut fLB equals the highest compressive strut stress due to
self-weight σmax,LC1. We can derive an expression for the maximum strut length L by replacing
the surface area A and inertia I by expressions containing D0 and t. Note that the wall thickness
t is assumed to be 0.1D0 for the given application. For sake of simplicity we will only consider
even frequencies f = 2n to derive an exact formula11.

fLB =
π2EI

AL2
=
π2E

(
4( t
D0

)2 − 4 t
D0

+ 2
)
D2

0

L2

t=0.1D0≈ 1.0116
ED2

0

L2

with
D

L
= 1.515f (figure 5.15c) ⇒ fLB ≈ 2.3219

ED2
0f

2

D2

The maximum strut stress in the bottom struts is equal to the self-weight of the dome FG divided
by the strut area and the number of bottom struts. For even frequencies, the number of bottom
struts is equal to 10f:

σmax,LC1 =
FG

#bottom struts

f=2n
=

∑
LAρg

10Af
=

∑
Lρg

10f

with
∑

L = 8.967fD (figure 5.15d) ⇒ σmax,LC1 = 0.8967Dρg

The local buckling criterion is met for µLB = σmax,LC1/fLB = 1.0

fLB = σmax,LC1 ⇔ 2.32
ED2

0f
2

D2
= 0.8967Dρg

We arrive at the maximum possible dome diameter Dmax,LB for LC1:

even frequencies : Dmax,LB,t=0.1D0 ≈ 1.373
(D2

0f
2E

ρg

)1/3 [(
m2 N

m2

kg
m3

N
kg

)1/3]
= [m] (5.2a)

11This approach is conservative: For odd frequencies, maximum compressive stresses are slightly higher than
for even frequencies (figure 5.13) but Euler buckling strength is 4 times higher as bottom struts are 1/2L long.
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The same analysis can be conducted for different t/D0 ratios:

even frequencies : Dmax,LB = C1

(D2
0f

2E

ρg

)1/3
C1 = 1.1313

( t

D0

)2
− 1.2067

( t

D0

)
+ 1.4837 R2 = 0.9995; t ∈ [0.08; 0.5]D0

(5.2b)

5.4.1.2 LC1: Global Buckling

Let’s take a closer look at global buckling of geodesic domes subjected to self-weight: The dots in
figure 5.17a indicate the location and magnitude of global displacements of nodes due to linear
static self-weight. The colour code of the struts is: red = tensile stress, blue = compressive
stress. The global buckling pattern for mode 1 is non-symmetrical (figure 5.17b). The higher
the frequency, the more it will approximate the buckling shape of a shell: Close to the bottom
edge beam of the dome, several struts start to bulge out. The struts themselves do not buckle
but the nodal displacement leads to a global buckling deformation. The global buckling load
factor can be extracted from GSA which is the reciprocal of the global buckling utilization µGB.

(a) Linear displacements for LC1 (b) Displacements for GB mode 1 LC1

Figure 5.17: LC1: self-weight

5.4.1.3 LC1: Transition Local to Global Buckling

It is possible to derive the frequency f and D/D0 ratio at which the utilization of global and
local buckling are identical (µGB = µLB). This is the point at which the governing stability
limit state changes from local buckling to global buckling if the frequency f is further increased.
The transition graph in figure 5.18 is derived for t = 0.1D0.

The transition point is independent of Young’s Modulus, density and strength of
the material!

A formula for the transition of global to local buckling for circular hollow sections with t = 0.1 D0

can be established12:

LC1, t = 0.1D0 :
D

D0 (µGB=µLB)
= 5.0515 f2 − 4.398 f (5.3)

12This D0/t ratio is derived from measurements on Moso bamboo (D0 = 100mm, t = 10mm) and Guadua
bamboo (D0 = 130mm, t = 13mm).
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Figure 5.18: Transition GB to LB for different materials, t = 0.1D0, LC1: self-weight

5.4.1.4 LC1: Limit Dome Diameter

A maximum frequency fmax can be determined, where both local and global buckling resistance
are utilized to their maximum (µLB = µGB = 1.0). The dome fails simultaneously in local and
global buckling. A higher frequency f > fmax will automatically result in global buckling failure,
unless the D/D0 ratio is decreased. For LC1, there are three methods to derive at fmax:

Method 1 fmax can be derived by plotting the utilization of the transition curve (µLB = µGB)
against the frequency. For µ = 1.0, the maximum frequency fmax is reached and can be read
from the graphs in figure 5.19. Substituting fmax into equation 5.3, we find the limiting D/D0

ratio. Figure 5.19a displays a plot for Guadua bamboo with t = 0.1D0 and D0 = 100 mm. We
find fmax,Guadua = 28 with D/D0 = 3836.5 and utilization µ = 90.52% for both local and global
buckling13. The same is done for Moso bamboo with the same dimensions in figure 5.19b. The
respective values are fmax,Moso = 25 with D/D0 = 3300 and µ = 91.06%.

Method 2 Alternatively, we can overlap the local buckling graphs of figure 5.16 and the
transition graph of figure 5.18 which results in figure 5.20. The intersection of the transition
graph (µLB = µGB) and the local buckling graph (µ = 1.0) results in the maximum frequency
fmax. For Guadua100 and Moso100, we arrive at the same frequency fmax,Guadua = 28 and
fmax,Moso = 25, that we derived before.

13D/D0 = 3836.5 is found for f = 28. The actual limiting D/D0 ratio for failure (µLB = µGB = 1.0) is
approximately 4000 which translates to a frequency f = 28.6 which of course doesn’t make any sense.
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(a) Utilization at transition point GB to LB
Guadua bamboo D0 = 100mm, t = 10mm

(b) Utilization at transition point GB to LB
Moso bamboo D0 = 100mm, t = 10mm

Figure 5.19: Method 1: Utilization at transition point GB to LB

(a) LB intersection Guadua angustifolia (b) LB intersection Phyllostachys pubescens

Figure 5.20: Method 2: Intersection of LB and transition curve

Method 3 The third method is purely numerical: We divide equation 5.2a by D0, set it equal
to equation 5.3 and solve for f. This is the maximum frequency fmax:

1.373
( f2E

D0ρg

)1/3
= 5.0515 f2 − 4.398 f ⇒ fmax

f can be re-substituted into equation 5.3 to derive the maximum D/D0 ratio. Using the property
Dmax,LB,1.3D0/1.3D0 ∼ 0.9163Dmax,LB/D0 we find for Guadua100 and Guadua130 :

Guadua100: f = 28.5→ 28 ⇒ Dmax

D0
= 5.0515 f2 − 4.398 f = 3836.5

Guadua130: f = 27.3→ 27 ⇒ Dmax

D0
= 0.916 · 3836.5 = 3514
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Rule Of Thumb Method 3 can be used to derive a linearised expression for the maximum
possible dome diameter Dmax,LBGB,LC1 where global and local buckling occur simultaneously
(derivations are provided in the appendix A.5.1.214). For Moso and Guadua, the only t/D0 ratios
that occur in nature lie between 0.8 and 1.2. Figure 5.21 shows that both the transition curves for
t ∈ [0.08; 0.12]D0 and local buckling curves can be approximated by t = 0.1D0. We will thus only
derive one equation assuming t = 0.1D0 for different values of D0. An analysis for significantly
different t/D0 ratios of steel circular hollow sections can be found in the appendix A.5.1.1.

(a) Transition global to local buckling
for t ∈ [0.08; 0.12]D0

(b) Local buckling of Moso D0 = 100 mm
for t ∈ [0.08; 0.12]D0

Figure 5.21: Influence of t/D0 ratio for bamboo

Dmax,LBGB,LC1 = (5760.5− 16.81D0)D0; Guadua

Dmax,LBGB,LC1 = (4853.6− 15.43D0)D0; Moso

}
t ∈ [0.08; 0.12]D0

D0 ∈ [90; 130]mm
(5.4a)

fmax,GB = 35.28− 0.0613D0; Guadua

fmax,GB = 32.41− 0.0613D0; Moso

}
safe lower bound for global buckling

t ∈ [0.08; 0.12]D0; D0 ∈ [90; 130]mm
(5.4b)

Note that Dmax and D0 need to have the same dimensions. These limit values are derived from
theory and adequate safety factors need to be applied prior to real life application.

14Note that there is a difference of 15% between model data and formula 5.2b due to the assumption of Fg

which is overestimating the amount of material leading to the highest strut stress σmax.
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5.4.1.5 LC1: Conclusions

Figure 5.22 shows a general scheme of the global buckling curve (µGB = 1.0), local buckling
curve (µLB = 1.0), transition curve (µLB = µGB) and the intersection point (µLB = µGB = 1.0)
which defines the maximum frequency fmax and maximum possible dome diameter (Dmax,LBGB)
which still needs to me multiplied by D0.

Figure 5.22: Scheme of transition LB to GB and fmax LC1

We can conclude the following:

1. For frequencies below f ≤ fmax, local buckling is the decisive stability limit state15 and
global buckling does not occur. This corresponds to a maximum frequency of 27 for
Guadua and 25 for Moso respectively.

2. The outer strut diameter D0 has a positive correlation with the maximum possible dome
diameter Dmax,LB. However, an increased outer strut diameter D0 results in a smaller
maximum frequency fmax. This effect is negligible for bamboo (limited range of D0) but
needs to be considered for steel.

3. The maximum possible dome diameters can be found by substitutingD0 into equation 5.4a.
We find 475.4 m for Guadua angustifolia and 331.1 m for Phyllostachys pubescens.

15This can be said for sure as at the point of local buckling (µLB = 1.0), tensile and compressive stresses
are less than 10% of the tensile and compressive capacity for all investigated materials, frequencies and dome
diameters. Whether local buckling actually occurs, depends on the strut diameter D0, the density ρ, Young’s
Modulus E, frequency f and dome diameter D.
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5.4.2 Load Case 2: Point Load

A point load F = 1 kN is applied at the top of the dome (figure 5.23a); self-weight is not applied16.
Global buckling (GB) and local buckling (LB) analysis are computed for a static linear and static
geometrically non-linear (GNL) analysis. The straight-forward theoretical derivation of the local
buckling limit diameter Dmax,LB is only possible for a linear analysis. Geometrically non-linear
analysis requires the load F to be applied incrementally, i.e. the resulting deformation δn must
be added as initial imperfection in the next load step n + 1 (figure 5.23b). Alternatively, an
equivalent load (Fn+1;Mn+1) can be applied that results in the same deformation.

(a) Grasshopper point load
(b) GNL buckling:
Initial imperfections

Figure 5.23: LC2: Point load

It is possible to derive a correction factor for equation 5.5 of chapter 5.4.2.1 (this is often done in
practice for non-linear column buckling). However, this is tedious work, as the geometry of the
entire dome changes with every load step, which changes the boundary conditions of the Euler
bar. Instead, there is a much smarter solution to avoid this, as will be shown in chapter 5.4.2.4.

5.4.2.1 LC2: Local Buckling Geometrically Linear

The local buckling limit diameter Dmax,LB can be described by a power law similar to equa-
tion 5.2a for linear load application. Note that the struts directly under the point load will
buckle first. These are always five struts independent of the frequency f !

Dmax,LB,t=0.1D0 = 1.472
(
fD4

0E
F

)1/2
(5.5 derivation below)

Derivation First we need to derive the compression force Fs in one of the five struts under
the point load. We will use the definitions in figure 5.24. The complete derivation can be found
in the appendix A.5.2.

cos (φ) = 1− L2

2
(
D
2

)2 = 1− 1

2
(1.515f

2

)2 = 1− 2

(1.515f)2

Fs =
F

5

√( sin (φ)

1− cos (φ)

)2
+ 1 =

1.515

5
F f

16As mentioned before, the load cases are treated separately and can be combined by superposition.
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(a) Equilateral triangle in dome (b) Strut force Fs

Figure 5.24: Relationship of φ and L

Buckling occurs for fLB = σmax,LC2

fLB =
π2EI

AL2

t=0.1D0= 0.009225π3
ED4

0

AL2
= σmax,LC2 =

Fs
A

=
1.515F f

5A

⇒ L =
(

0.009225π3
5

1.515

ED4
0

F f

)1/2
= 0.972

(ED4
0

F f

)1/2
with D = 1.515fL

⇒ Dmax,LB,t=0.1D0 = 1.472
( fD4

0E

F

)1/2
units:

[(
m4 N

m2

N

)1/2]
= [m] (5.5)

For different t/D0 ratios: Dmax,LB = C2

( fD4
0E

F

)1/2
C2 = −5.6638

( t

D0

)2
+ 4.4528

( t

D0

)
+ 1.0806 R2 = 0.9779; t ∈ [0.08; 0.5]D0

(5.6)

5.4.2.2 LC2: Global Buckling

For a given material with strut diameter D0, wall thickness t, E-Modulus E and dome frequency
f, the global buckling load factor is constant but depends on the analysis type (geometrically
linear or non-linear). Figure 5.25 displays the global buckling utilization µGB for different
materials and strut diameters with t = 0.1 D0. For each material with strut diameter D0

and thickness t, a maximum frequency fmax can be derived that leads to global buckling in
the linear or non-linear load case. For Guadua with D0 = 130 mm, t = 13 mm, F = 1 kN, the
maximum frequency for non-linear global buckling is fmax,GB,GNL = 20 and independent of the
dome diameter (figure 5.27). For Moso with D0 = 100 mm, t = 10 mm, F = 1 kN, the maximum
frequency for global buckling is fmax,GB,GNL = 14. For the linear load case, the maximum
frequencies are 26 and 18 respectively.

For frequencies f < 9, the difference between linear and non-linear global buckling utilization
is negligible. Or vice versa: The higher the point load, the smaller the difference in maximum
frequency for the linear and GNL case.
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(a) GB utilization, LC2 non-linear (b) GB utilization, LC2 linear

Figure 5.25: GB utilization, material dependent, independent of dome diameter, t = 0.1D0

5.4.2.3 LC2: Transition Local to Global Buckling

The transition curve from global to local buckling is almost the same for both linear and non-
linear analysis17 (figure 5.26). A transition curve similar to equation 5.3 can be derived:

LC2, t = 0.1D0 :
D

D0 (µGB=µLB)
= 6.667 f2 − 3.7311 f (5.7)

Figure 5.26: Transition from global to local buckling, point load

17Mode 1 global buckling only affects one ring of struts under the point load (figure 5.31e). This is also the
area where local buckling occurs. Changed boundary conditions due to incremental increase of the load affect
both local and global buckling. The effects of geometrical non-linearity are therefore negligible for the transition
from local to global buckling.
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5.4.2.4 LC2: Limit Dome Diameter t = 0.1D0

There are three different methods to derive the limit dome diameter Dmax,LBGB,LC2.

Method 1 This method is available for any magnitude of F and holds for both geometrically
linear and GNL load application. Graphs similar to figure 5.25 can be produced with the
results from Grasshopper. Depending on the type of material (D0, t and E) and the magnitude
of the applied load F , the maximum frequency fmax can be determined graphically and then
inserted into equation 5.7. For example, for an incremental force application of F = 2 kN, we
find a maximum frequency of fmax = 12 and Dmax,LBGB,LC2 = 91.5m for Moso bamboo with
D0 = 100 mm and t = 0.1D0.

Method 2 Alternatively, we can plot a graph for local buckling (equation 5.5) and add it to
figure 5.26. We can derive a “safe” zone for every material, where neither local or global buckling
occurs if only a point load of F = 1 kN is applied (figure 5.27). The same graph can be produced
for geometrical non-linearity if a correction factor is applied to equation 5.6. This method has
the disadvantage, that a new local buckling curve must be produced if the magnitude of the
point load is changed.

Figure 5.27: Transition from global to local buckling, linear point load

Method 3 The maximum possible dome diameter Dmax,LBGB,LC2 can also be obtained by
setting equation 5.6 equal to equation 5.7. This results in a cubic formula for fmax and ultimately
in the same maximum frequency as obtained in chapter 5.4.2.2. As we already implicitly used this
information to derive equation 5.7, it is of course easier to insert fmax directly into equation 5.6.
Method 3 has the drawback, that the formula only holds for geometrically linear load application
unless a correction factor is applied.

Dmax,LBGB,LC2 = C2

( fmaxD4
0E

F

) 1
2

(5.8)

Note that fmax does not only depend on the type of material, D0, t and E but also on the
magnitude of the applied load F . Figure 5.25 can be used to derive a maximum frequency for
different forces.
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5.4.2.5 LC2: Influence of t/D0 Ratio

The impact of different t/D0 ratios on global buckling utilization of Moso bamboo and the
material independent transition point from global to local buckling is displayed in figure 5.28.
Note that for LC1, different t/D0 ratios (within 0.08 and 0.12) had a negligible impact on the
transition curve. This is not the case for LC2!

(a) GB utilization, Moso bam-
boo, different t/D0 ratios, GNL (b) Transition from global to local buckling, different t/D0 ratios

Figure 5.28: Impact of different t/D0 ratios

A higher t/D0 ratio apparently leads to a higher maximum frequency fmax but also to a smaller
maximum dome diameter Dmax. This effect is illustrated for Moso in figure 5.29.

Figure 5.29: Maximum frequency and dome diameter, different t/D0 ratios, Moso, GNL
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5.4.2.6 LC2: Conclusions

Figure 5.30 shows a scheme of the local buckling curve (µLB = 1.0), the global buckling curve
(µGB = 1.0), the transition curve (µGB = µLB), the maximum frequency fmax and the maximum
diameter Dmax,LBGB which still needs to be multiplied by D0. The nature of the scheme is
independent of the material, type of load application (geometrically linear or non-linear) and
t/D0 ratio. Note that global buckling will definitely occur, once fmax is exceeded. This was not
the case for load case self-weight. However, also for self-weight it is highly recommended not
to exceed fmax., as it does not lead to higher dome diameters and the sudden global buckling
failure will occur before a single strut buckles which is dangerous and should be avoided in all
cases!

Figure 5.30: Scheme of transition local to global buckling and maximum frequency LC2

We can conclude the following:

1. The global buckling load factor and maximum frequency fmax are independent of the dome
diameter D.

2. The maximum possible dome diameter Dmax,LBGB,LC2 depends on the type of material,
in particular the t/D0 ratio, and the magnitude of the applied load.

3. The impact of geometrical non-linearity is negligible for the transition from local to global
buckling but needs to be taken into account for the derivation of fmax and Dmax,LBGB,LC2.

4. Linear superposition of load cases is only possible for geometrically linear point load appli-
cation. For small frequencies however (f < 9), the difference between linear and non-linear
global buckling is small. For local buckling, non-linearity can have a strong impact even
for small displacements and GNL analysis is strongly advised.
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5.4.2.7 Displacements in GSA

Note that mode 1 global buckling is displayed with an upward displacement in GSA for geo-
metrically linear load application (figure 5.31e). This is of course not the case in reality. For a
geometrically linear analysis, GSA increases the load until bifurcation (global buckling) occurs.
This is done without ‘knowing’ in which direction the dome will actually buckle – for geomet-
rically linear load application, buckling occurs suddenly. This effect can be compared to local
buckling of a pinned-pinned bar in figure 5.31a: For a perfectly straight bar it is impossible to
predict whether it will buckle to the left or right side. For the geometrically non-linear analysis
on the contrary, small load increments are applied. The first increments determines the direc-
tion of the displacement and we arrive at the “real” buckling pattern (figure 5.31f). In order to
determine the transition point of GB to LB, only the load factor needs to be known and it does
not matter that the displacement is displayed in the wrong direction.

(a) Instability and bifurcation of pinned-pinned bar, Euler case 2 [61]

(b) Grasshopper point load (c) GSA point load (d) linear displacement

(e) GB mode 1, linear static (f) GB mode 1, GNL

Figure 5.31: Load application and displacements for LC2: point load, f = 4
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5.5 Comparison of Shells and Geodesic Domes

5.5.1 Influence Length of Edge Disturbances

In chapter 5.3.1 it was found that the thickness of a half-spherical shell can be expressed in
geometrical properties of a geodesic dome:

ρALg = ρts

√
3

6
gL2 ⇒ ts =

6√
3

A

L

With equation 5.1

D

L
= 1.515f⇒ ts =

6√
3

A
D

1.515f

≈ 5.248
A

D
f

We know from shell analysis [41], that the influence length of edge disturbances for spherical
caps is approximately:

li = 2.4
√
ats with a =

1

2
D for half-spherical shells (Hoogenboom, 2014)

⇒ li = 2.4

√
1

2
Dts = 2.4

√
1

2
D 5.248

A

D
f ≈ 3.888

√
Af

for t = 0.1D0 : li;t=0.1D0 ≈ 2.067D0

√
f

This suggests that the edge disturbance length is independent of the dome diameter D and only
depends on the frequency f and strut diameter D0. Previously, we observed in chapter 5.3.1
that the highest compressive stresses are located in the bottom ring of struts and the highest
tensile stresses are located in the first perimeter above the equator. The length of these struts
is of course dependent on the dome diameter D. So the derived influence length li is not really
useful for geodesic domes.

Figure 5.32: Influence length li (Hoogenboom, 2014) [41]
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5.5.2 Shell Buckling Self-Weight

We observed previously that geodesic domes will fail in local buckling prior to global buckling,
given the frequency is not too high and there is no superposition of load cases. This means that
up to a specific frequency, global buckling does not need to be taken into account in a structural
analysis. This maximum frequency is material dependent and for Moso and Guadua bamboo it
lies well above f = 20. Let’s imagine we construct a shell made out of isotropic OSB bamboo
with randomly oriented fibre strands. This material has the same density, strength and Young’s
Modulus as full bamboo culms and can be supplied in any thickness ts. We want to know,
whether there is a criteria to choose a geodesic dome over a shell when both have the same
self-weight. We will ignore imperfections (knock-down factors) for now and assume bamboo
struts with t = 0.1D0. We will see, that it makes sense to choose a geodesic dome of a frequency
f ≥ 4 over a shell from a stability point of view. Let’s first have a look at the derivation and
then discuss the results.

Derivation We know that a half-spherical shell buckles for a critical loading [42] of:

pcr =
2√

3(1− ν2)
Et2s
a2

a=1/2D; ν=0.38(bamboo)
≈ 4.993

Et2s
D2

(Hoogenboom, 2014)

The thickness of a shell segment ts can be approximated by a dome strut of length L and surface
area A with similar weight (see chapter 5.3.1):

ts=̂
6√
3

A

L

D/L=1.515f
= 5.248

Af

D

t=0.1D0= 1.484
D2

0f

D

Buckling of the shell occurs for pcr = pz = ρgts

⇒ 4.993
Et2s
D2

= ρgts ⇔ 1 = 4.993
Ets
D2ρg

= 4.993 · 1.484
ED2

0f

D3ρg
= 7.4095

ED2
0f

D3ρg

⇒ Dmax,Shell = 1.9495
(ED2

0f

ρg

)1/3
(5.9)

We can compare this value to the previously obtained value for local buckling of geodesic domes:

Dmax,GeoDome,LB = 1.3732
(ED2

0f
2

ρg

)1/3
(5.2a see above)

Results Figure 5.33 shows a plot of equation 5.2a and 5.9. A shell and a geodesic dome
with a similar diameter D and same self-weight buckle simultaneously at the intersection point
f = 2.86 → 3; the shell fails in global buckling, the geodesic dome fails in local buckling of one
of the bottom struts. As we only considered even frequencies in equation 5.2a, it is safe to say
that it makes sense to choose a geodesic dome with f ≥ 4 over a shell in terms of stability! Or in
other words: When constructing a geodesic dome, it makes sense to choose at least
a frequency f = 4! This result does not take imperfection sensibility into account. The real
capacity of a shell is much lower (approximately 6 times!) due to this effect [42], and also Euler
buckling capacity of dome struts is decreased by initial imperfections. Note that the chosen
t = 0.1D0 ratio and ν = 0.38 are the only limitations of this conclusion!

Note: If a comparison to geodesic domes is not necessary, Dmax,Shell can be also be calculated
straight forward for pcr = pz:

4.993
Et2s

D2
max,Shell

= ρgts ⇒ Dmax,Shell = 2.2345
(Ets
ρg

)1/2
(5.10)
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Figure 5.33: Shell buckling and local buckling of geodesic domes

Remark In chapter 5.5.1 it was shown that it is not possible to find a straight forward re-
lationship between “local buckling” of shells (edge effects) and local buckling of geodesic dome
struts. However, the global buckling curve18 of geodesic domes can be added to figure 5.33 which
results in figure 5.34. The global buckling curve (red) converges with the shell buckling curve
(blue) as a geodesic dome with f→∞ becomes a shell. Note that these curves do not converge
with a finite value; still, there is a definite limit diameter Dmax,Shell as material strength (fc or
ft) is exceeded for ts →∞ (D0 →∞). For geodesic domes, the limit diameter Dmax,GeoDome is
determined by the maximum frequency fmax which depends on the dome material.

Figure 5.34: Scheme of stability shells and geodesic domes

18Note that this curve is a trend. More research needs to be done to determine the nature of the global buckling
curve and derive an exact global buckling expression Dmax,GeoDome,GB
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5.5.3 Shell Buckling Point Load

Let’s imagine another case. We want to construct a bamboo half-spherical shell of thin isotropic
bamboo panels with a point load applied on top. From the shell equations we know that this
is theoretically impossible as the membrane forces would be infinitely large. The point load
thus needs to be spread out. However, we could also replace the top part of the shell by five
dome struts and an edge ring, that equally distributes the loads and transfers them to the shell
membrane. The resulting opening should be as small as possible and at the same time, the
shell should not buckle. Another requirement is that the self-weight stays the same. We are
thus looking for an opening angle φ and related frequency f, where both geodesic dome struts
and the shell membrane buckle simultaneously. This hypothetical consideration has a real life
application, e.g. when a window is supposed to be inserted into a shell and at night it is to be
illuminated by a light installation that is fixed at the top of the shell (point load).

Figure 5.35: Replacement of part of shell by geodesic dome struts

Derivation Previously, we found a formulation for the maximum dome diameter Dmax for
local buckling of geodesic domes that are subjected to a point load:

Dmax,GeoDome = 1.472
( fD4

0E

F

)1/2
(5.5 see above)

We also found that there are dome diameter independent maximum frequencies fmax, where
global buckling will occur depending on the applied material (figure 5.26). Global buckling due
to point load is a localized phenomenon in the first ring of struts under the point load. With
this information, we can try to find the smallest possible ring of struts (or the diameter of the
“skylight”Dskylight) that is needed to safely introduce a point load to a shell.

The membrane force in a shell at any angle φ due to an applied point load R is [28]:

nφ =
−R

2πr0 sin(φ)
(Farnsworth, 1999)

for a half-spherical dome with r0 = a = D/2; −R = F : ⇒ nφ =
F

πD sin(φ)

the critical membrane force that leads to shell buckling is

ncr =
1√

3(1− ν2)
Et2s
a

a=1/2D; ν=0.38(bamboo)
≈ 1.2483

Et2s
D

(Hoogenboom, 2014)

buckling occurs for ncr = nφ ⇒ F

πD sin(φ)
= 1.2483

Et2s
D
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with the previous derivation of ts = 5.248
Af

D

t=0.1D0≈ 1.4839
D2

0f

D
we arrive at

F

πD sin(φ)
= 1.2483

E

D

(
1.4839

D2
0f

D

)2
⇒Dmax,shell =

(
8.6353 sin(φ)

D4
0Ef2

F

) 1
2

= 2.9386 f sin(φ)
1
2

(D4
0E

F

) 1
2

we can set the maximum diameters equal Dmax,shell = Dmax,GeoDome and arrive at

1.472 f
1
2

(D4
0E

F

) 1
2

= 2.9386 f sin(φ)
1
2

(D4
0E

F

) 1
2 ⇔ 1.472

2.9386
f−

1
2 = sin(φ)

1
2

⇒ sin(φ) =
0.251

f

from the equilateral triangle we know (figure 5.35):

cos (φ) = 1− L2

2
(
D
2

)2 = 1− 1

2
(1.515f

2

)2 = 1− 2

(1.515f)2

sin (φ)2 = 1− cos (φ)2 ⇔ 0.2512

f2
= 1−

(
1− 2

(1.515f)2

)2
⇒1− 1 + 2

2

(1.515f)2
− 22

(1.515f)4
− 0.2512

f2
= 0

4

1.5152
f2 − 0.2512f2 − 4

1.5154
= 0

⇒f =
√

0.452 = 0.6723 ⇒ φ = 9.71°

the length L of the struts at this angle is

L =

√
2
(D

2

)2(
1− cos(φ)

)
= D

√
1

2

(
1− cos(9.71°)

)
= 0.0847D

⇒ Dskylight = 2 sin(φ)
D

2
= 0.167D

a possible solution for this problem is to choose one ring of struts of a frequency f = 7

⇒f =
D

1.515L
=

D

1.151 · 0.0847D
= 7.8→ 7

cos (φ2) = 1− 2

(1.515f)2
= 1− 2

(1.515 · 7)2
⇒ φ2 = 10.82°

Results This result shows that at an angle φ = 9.71°, the critical membrane stress of a shell
is reached. We can thus replace the top part of a shell with a geodesic dome skylight with
Dskylight = 0.167D in order to safely distribute the point load to the shell membrane. The
derived frequency f = 7 with adapted opening angle φ2 = 10.82° is one possibility to do this
efficiently without cutting struts in half. We could of course also use two rings of struts of
a frequency f = 14 or any other approximation. However, we need to make sure that global
buckling does not occur! If the angle φ is changed (it can only be increased in order to prevent
shell buckling), a new optimal frequency has to be found. It makes sense to adapt φ to a frequency
and not the other way around to prevent cutting struts. Note that the chosen t = 0.1D0 ratio
and ν = 0.38 are the only limitation of this conclusion!

101



5.6 Conclusions

5.6.1 Transition Local to Global Buckling

Two instability limit states exist for geodesic domes: Local buckling (LB) of a single strut and
global buckling (GB), where several struts snap simultaneously into a deformed state. If the
frequency f of a geodesic dome is increased, the strut length L becomes shorter and local buckling
is less likely to occur. At the same time, the dome approaches the shape of a monolithic shell
which is prone to global buckling. There is a transition point where local buckling changes into
global buckling and utilization of both limit states is equal (µLB = µGB). A transition curves
can be plotted for different frequencies f and D/D0 ratios (figure 5.36). The transition curve
depends on the t/D0 ratio of the struts19 but is independent of the material!

(a) Scheme of transition LB to GB and fmax LC1 (b) Scheme of transition LB to GB and fmax LC2

Figure 5.36: Transition scheme

Explanation of figure 5.36:

� In the green zones, neither local nor global buckling occurs (µGB < 1.0 and µLB < 1.0),
this zone is ”safe” in terms of stability.

� In the pink zone, local buckling occurs (µLB > 1.0).

� In the purple zone, global buckling occurs (µGB > 1.0).

� The point where both local and global buckling utilization are identical and equal to 1.0
(µGB = µLB = 1.0) determines the maximum frequency fmax.

� For LC2, global buckling does occur if f > fmax.

� For LC1, global buckling can occur if f > fmax.

� Note: As global buckling is a brittle failure without warning, fmax should also not be
exceeded in LC1 for safety reasons.

� At the point of f = fmax, the maximum dome diameter Dmax,LBGB is obtained by mul-
tiplying the D/D0 ratio by D0 or inserting fmax into the equation of the transition curve
(µGB = µLB).

19except for t/D0 ∈ [0.08; 0.12] for LC1; the difference is of transition curves is negligible
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� The transition curve (blue; µGB = µLB) has the nature D/D0 = Af2 + Bf (equation 5.3
and 5.7):

LC1, t = 0.1D0 :
D

D0 (µGB=µLB)
= 5.0515 f2 − 4.398 f

LC2, t = 0.1D0 :
D

D0 (µGB=µLB)
= 6.667 f2 − 3.7311 f

� The geometrically linear local buckling curve (red; µLB = 1.0) can be derived analytically:

Local Buckling Load Case 1 (even frequencies)

Dmax,LB,LC1 = C1

(D2
0f

2E

ρg

)1/3
C1 = 1.1313

( t

D0

)2
− 1.2067

( t

D0

)
+ 1.4837 t ∈ [0.08; 0.5]D0

Local Buckling Load Case 2 (linear point load)

Dmax,LB,LC2 = C2

( fD4
0E

F

)1/2
C2 = −5.6638

( t

D0

)2
+ 4.4528

( t

D0

)
+ 1.0806 t ∈ [0.08; 0.5]D0

� An expression for the global buckling curve (purple; µGB = 1.0) still needs to be found.
This is in theory possible with the present geodesic dome model but very time consuming
and a task for future research.

Similar graphs can be derived for load cases such as superimposed distributed dead load20, snow
and wind. However, detailed analysis of these load cases was beyond the scope of this research
project.

5.6.2 Limit Dome Diameter

Formulas for the maximum possible dome diameter can be derived with equation 5.3 and equa-
tion 5.7. They are independent of the dome material.

Load Case 1 (requires knowledge of fmax which depends on the material)

t = 0.1D0 : Dmax,LBGB,LC1 =
(
5.0515 f2max − 4.398 fmax

)
D0 applicable for any material

Load Case 2 (requires knowledge of fmax which depends on the material and magnitude of
applied load F )

t = 0.1D0 : Dmax,LBGB,LC2 =
(
6.667 f2max − 3.7311 fmax

)
D0 applicable for any material

For load case 1, equation 5.4a provides a straight forward formula for Guadua angustifolia and
Phyllostachys pubescens. Nodes and imperfections are neglected and the values are based on
mean strength. The rules of thumb do not take maximum available length of bamboo culms
into account.

Dmax,LBGB,LC1 = (5760.5− 16.81D0)D0; Guadua

Dmax,LBGB,LC1 = (4853.6− 15.43D0)D0; Moso

}
t ∈ [0.08; 0.12]D0

D0 ∈ [90; 130]mm

20Note: As the LC1 transition curve is independent of the magnitude of the load, superimposed dead load
results in the same transition curve as LC1.
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Substituting D0 and fmax of the culms used in experiments, we find:

Load case 1 (self-weight):

Dmax = (5760.5− 16.81 · 130)130 = 475.4m; Guadua

Dmax = (4853.6− 15.43 · 100)100 = 331.1m; Moso

Load case 2 (GNL, point load of 1kN)

Dmax = (6.667 · 202 − 3.7311 · 20)130 = 337.0m; Guadua

Dmax = (6.667 · 142 − 3.7311 · 14)100 = 125.4m; Moso

Load case 2 (GNL, point load of 2kN)

Dmax = (6.667 · 152 − 3.7311 · 15)130 = 187.7.0m; Guadua

Dmax = (6.667 · 122 − 3.7311 · 12)100 = 91.5m; Moso

Load case 2 (GNL, point load of 5kN)

Dmax = (6.667 · 142 − 3.7311 · 14)130 = 163.1m; Guadua

Dmax = (6.667 · 102 − 3.7311 · 10)100 = 62.9m; Moso

Load case 2 (linear, load of 1kN)

Dmax = (6.667 · 262 − 3.7311 · 26)130 = 573.3m; Guadua

Dmax = (6.667 · 162 − 3.7311 · 16)100 = 164.7m; Moso

5.6.3 Superposition

Superposition of load factors resulting from geometrical non-linearity or global buckling is gen-
erally not possible. However, it was found that global buckling does not occur for self-weight or
point load unless a maximum frequency fmax is exceeded. Additionally, for frequencies f < 9,
the difference of global buckling load factors resulting from linear and non-linear analysis of a
single point load is negligible. However, non-linearity has a huge impact for larger frequencies
and cannot be neglected, in particular for deflections and local instabilities. Superposition is
thus only possible for linear load cases with f < fmax.

5.6.4 Stability of Shells and Geodesic Domes

In terms of stability of shells loaded by self-weight, it makes sense to replace the shell by a
geodesic dome with a frequency 3 (4) or higher. For application of point loads, the top part of
the shell can be replaced by geodesic dome struts; formulas can be derived for the opening angle
that leads to most efficient material use while preventing buckling of the shell and dome struts.
In general, it makes sense to choose a geodesic dome with f ≥ 4 over a shell, for
both self-weight and point load or a combination of both.
Sometimes, for aesthetic or acoustic reasons, architects choose shell structures. These can then
be reinforced by a geodesic dome of a frequency 4 up to fmax.
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Chapter 6

Safety Concepts and Probabilistic
Design

A common approach to guarantee a certain degree of structural safety, is the employment of
probabilistic design. This can for example be realized with partial safety factors. Statistical
distributions of loads and material properties are used to derive these factors based on a certain
percentile (usually 5%) in which the load may be exceeded or the assumed strength is not met.
For different materials, the probability curves are differently wide spread, depending on the
spread of experimental results. Man-made materials such as steel have well controlled material
properties and the spread is small. Natural materials such as timber and bamboo have a wider
spread as can be seen in figure 6.1.

Figure 6.1: Gaussian distribution of strength
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In chapter 5, all assumed strength values are experimental mean strength values (denoted as
fR,mean, x or µ) if not stated differently. However, fR,mean is not a safe assumption for the
strength of the material, as 50% of the times this strength is not met. Of course, an architect
or engineer wants to construct a safe structure with little risk of failure. Unfortunately, high
safety also implies high costs. Therefore, the designer needs to choose a threshold below which
the material strength is not met. Common consensus for buildings is a “characteristic” strength
fRk, which is not met in 5% of the cases (5%-percentile). The 5%-percentile is calculated using
the mean value µ and standard deviation σ of a population, for example experimental results
similar to those of chapter 4. A wide-spread strength distribution results in lower 5%-values and
less structural efficiency. Therefore, it is important to reduce scatter of test results.

The design value of the action is denoted as fEd and is derived from the probabilistic distribution
of the load that acts on the structure. Examples of the implementation can be found in chapter 7
and 8. A structure is very efficient if the design value of the action fEd and the design value
of the provided strength fRd lie close together or are identical. In general, fRd is obtained by
reducing fRk by a partial material safety factor γm. Additional reduction depends on exposure
and purpose of the structure. One way to derive safety factors is the application of a target
reliability index β, which defines the probability of failure (fRd < fEd) in a certain time span.
This is an ethical and economical decision and often statements can be made like: “the dyke‘s
strength may be exceeded once in 500 years”.

For natural materials, material strength often depends on external factors. Therefore, modifica-
tion factors are applied that represent the load duration, nature of the load (static or dynamic),
exposure (e.g. moisture content) and creep of the material. On the load side, safety factors are
applied according to type of load and the use of the structure – if it is a public building for exam-
ple, the structure needs to withstand fire and other extreme events for a certain time. Naturally,
different countries employ different safety concepts that meet the needs of their people. The Eu-
rocodes try to enable this concept through National Annexes. While in the Netherlands, there
is little need for consideration of snow loading in combination with strong winds, in the Alps in
Germany it would be a horrendous mistake not to combine the two. Accordingly, earthquake
design is not necessary in most parts of Europe but for countries with seismic activity, it is a
crucial part of structural safety. Still, different countries have different safety philosophies. In
Germany, the partial safety factor for dead load is defined as 1.35, whereas in the Netherlands,
it is only taken as 1.2. While in practice, this has little impact on the user, the designer has to
be aware of these standards. Especially if the utilization of a building is changed or structural
safety has to be assessed after damage due to natural disasters, it is useful to know what safety
concept was employed.

In chapter 5, theoretical limits for dome dimensions were derived which makes them universally
applicable beyond national borders and safety concepts. However, these values only hold within
the boundary conditions of experiments and model calculations conducted. The found results
and derived rules of thumbs should be seen as “raw data” rather then a ready-made design guide.
Providing entire sets of test results, including the boundary conditions of the experiments, en-
ables scientists to compare their own research to values obtained by other researchers. Structural
designers and architects are encouraged to use the model results and test results provided in this
thesis to aid their own design. However, verification of all provided values is strongly advised!
The need for employment of safety factors (or any other method of probabilistic design that
provides sufficient safety) prior to real life application is emphasized accordingly.
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Chapter 7

Tensile Connector

7.1 Proposal: Cross Dowel Joint 2014 TU Delft

A bolted connector is proposed inspired by the connector of Peter de Vries [91]. Two perpendic-
ular bolts (cross dowels) are connected by a threaded rod that runs through an end plate and
can be fastened to a dome hub by a nut (figure 7.1). If the threaded rod is loaded in tension,
the cross dowels transfer the tensile force to the bamboo culm by bolt bearing, shear and / or
tensile splitting. A node can be used as natural reinforcement. Compressive forces are trans-
ferred by contact of the end plate to the culm cross-section. All calculations are based on Moso
bamboo. However, the connector could be applied for any bamboo species, given the mechanical
properties are known.

(a) View from side (b) Transparent view from top (c) Schematic sketch

Figure 7.1: Cross dowel connector

In chapter 4.2.4 it was found that a square cross dowel provides a much safer failure mode
(wedge forming and large displacements during embedment, figure 7.2b) than a round cross
dowel (brittle tensile splitting, figure 7.2a). The dowel geometry and edge distance are adopted
from experiments with a square dowel diameter d = 16 mm and edge distance ledge1 = 100 mm
and ledge2 = 150 mm.
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(a) Splitting round dowel (b) Embedment square dowel (c) Square cross dowel

Figure 7.2: Failure modes and dowel geometry

7.2 Predicted Strength

In order to compare the strength of steel and bamboo components in this chapter, safety factors
in the style of the Eurocodes are employed. Any other safety concept could be used to dimension
the steel components. For the proposed connector, the threaded rod is designed to fail in
ductile yielding. This results in better predictability and reduced scatter of test results once
the connector is assembled and tested. Chapter 6 provides a more detailed explanation of the
philosophy of safety concepts.

All calculations in chapter 7 and 8 are based on the following assumptions:

� Material properties are distributed in a normal distribution.

� The the sample mean x and population mean µ are almost identical.

� In the given application (case study of chapter 8), the design life is less than a year and
consequence in case of failure is small. The target reliability index for a one year reference
period is β = 4.25 which corresponds to a probability of failure of P = 1.05 10−5 per
year1. For comparison: for buildings with a design life of 50 years and low to medium
consequence in case of failure, a common reliability index is β = 3.6 (β = 4.5 for one year)
(Eurocode 0 table B1 and B2 [25]).

� According to Eurocode 0 it is safe to assume αR = −1.0 and αE = 0.4 for the calculation
of partial safety factors2 γ (Eurocode 0, C7(4) [25]).

� A modification factor kmod = 0.6 for permanent use (self-weight) is adopted in the style of
Eurocode 5 table 3.1 [27] to account for the load duration and exposure of the structure.
This is a very conservative value as it assumes a load duration of more than 10 years.
Greater values of kmod are possible, depending on the application.

� A creep factor kdef is not included in the strength calculation of the connector. Janssen [47]
states that creep is negligible in bamboo. However, recent research suggests that creep
has a strengthening effect on compressive strength and a weakening effect on tensile

1This probability is less than the odds of being struck by lightning in a person’s lifetime: P � = 0.84 10−5 [7].
2The larger absolute α value is used for the property with more scatter. In general, the scatter of the load is

larger than the scatter of the material properties, which results in larger material safety factors. While this might
not be the case for bamboo, it is certainly the case for steel. As the connector is designed in such a way, that
steel fails prior to bamboo, it makes sense to assume larger scatter in the load.
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strength [36][87]. Further research is necessary to establish values for kdef . In chap-
ter 8, kdef is adopted from Eurocode 5 in order to derive the design value of the Modulus
of Elasticity Ed which is needed for stability considerations.

� In accordance with the Eurocodes, values of resistance are denoted with the subscript
XR and values of actions are indicated with a subscript XE . Characteristic values (5%-
percentile values) are indicated by the subscript Xk, design values are denoted as Xd.

� Design strength values fRd of bamboo are calculated individually for each material prop-
erty as ductile failure (e.g. bearing) results in little scatter of test results and higher design
values fRd than brittle failure (e.g. splitting, tensile failure). Using only one γm for bamboo
would punish ductile failure modes [92][16]:

γm =
fRk
fRd

; fRk : 5%− percentile; fRd = µ(f) + αRβσ(f)

Table 7.1: Material properties Moso, β = 4.25, nodes taken into account if negative effect

property unit x ≈ µ fRk σ fRd γ

tensile strength ft [MPa] 102.7 76.73 15.81 35.5 2.2

compression strength fc [MPa] 47.5 38.1 5.7 23.3 1.6

bearing strength fb [MPa] 52.7 49.9 1.7 45.5 1.1

splitting strength4 fs [MPa] 18.18 16.4 1.1 13.5 1.2

shear strength fv [MPa] 18.33 13.23 3.12 5.1 2.6

Modulus of Elasticity E [MPa] 8570

Strut diameter D0 [mm] 100

wall thickness t [mm] 10

density ρ [kg/m3] 660

For steel components, S235 is used with fy = 235 MPa, fu = 360 MPa, E = 210 000 MPa. The
cross dowels are square with d = 16 mm, d1 = 16 + 1 = 17 mm (figure 7.2c).

The material safety factors are adopted from Eurocode 35:

Table 7.2: Safety factors steel components

tension bending shear

γM0 γM1 γM2

1.0 1.1 1.25

The following calculations should be seen as an example of connector design and
not as the actual strength of the connector, which requires experimental testing!

3Shao et al. [77] assuming a Gaussian distribution: x5% = x− 1.645σ
4Note that this is a hypothetical property obtained from a round bolt shear test and not e.g. a split pin test.
5As the design life is one year, these factors could be reduced. However, the connector is designed to fail in

tensile yielding which prescribes γM0 = 1.0 and a safety factor smaller than 1.0 makes little sense.
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7.2.1 Bamboo Components

7.2.1.1 Bamboo Axial Tensile Strength of Net Cross-Section

In order to calculate the axial tensile strength of the culm, the net cross-section at the height of
one cross dowel has to be considered. The net cross-section can be approximated by:

Anet = A−
(

2 d1 t
)

(figure 7.3b)

Ft,Rd = ft,Rd Anet = ft,Rd

[
A−

(
2 d1 t

)]
= ft,Rd

[(π
4

(D2
0 −D2

i )
)
−
(

2 d1 t
)]

= ft,Rd

[(π
4

(
D2

0 − (D0 − 2t)2
) )
−
(

2 d1 t
)]

= 35.5 · 2487 = 88.32 kN

(a) Tensile load (b) Net cross-section (c) bearing failure

Figure 7.3: Tensile, compressive and bearing strength

7.2.1.2 Bamboo Axial Compressive Strength of Net Cross-Section

Compression is transferred by contact between hub and end-plate. Again the net cross-section
is used to derive the maximum allowable compression force.

Fc,Rd = fc,Rd Anet = 23.3 · 2487 = 57.90 kN

7.2.1.3 Bamboo Bearing Strength under Cross Dowel

The bearing strength fb is obtained by bolt testing (figure 7.3). Experiments showed that mean
bearing strength fb is close to equal to the mean compression strength fc which is in agreement
with the assumption of Widyowijatnoko [99]. However, scatter for bearing is significantly smaller,
which results in a much higher design value fb,Rd!

Fb,Rd = 4 fb,Rd d t = 4 · 45.5 · 16 · 10 = 29.10 kN
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7.2.1.4 Bamboo Shear Strength under Cross Dowel

When the dowels start to displace in embedment, the tight fit of the end plate is not given
any more and block shear can theoretically occur6. The orientation of the cross dowels results
in eight shear planes that don‘t intersect each other. Dowel interaction does not need to be
considered. The shear plane is assumed to run over the thickness of the culm until the edge
Av = ledge t. Every dowel introduces two shear planes at each end, resulting in a total of eight
shear planes for two orthogonal cross dowels. Note that the influence of the node is neglected.

Fv,Rd = 4 fv,Rd t ledge1 + 4 fv,Rdt ledge2 = 4 fv,Rd t
(
ledge1 + ledge2

)
= 4 · 5.1 · 10 (100 + 150) = 50.70 kN

(a) shear planes single dowel
(b) perpendicular
shear planes (c) splitting plane single dowel

(d) splitting plane
perspective view

Figure 7.4: shear failure and tensile splitting failure

7.2.1.5 Bamboo Tensile Splitting Strength under Cross Dowel

For splitting failure, nodes have a positive effect which can be neglected in a conservative ap-
proach. It is assumed that interaction of the splitting planes does not occur and one distinct
crack per bolt end (4 cracks in total) is required for final failure of the connection.

Fs,Rd = 2 fs,Rd t
(
ledge1 + ledge2

)
= 2 · 13.5 · 10 (100 + 150) = 67.53 kN

6In chapter 4.2.4 it was argued that splitting will occur rather than block shear. Nevertheless, the calculation
for block shear is included here for sake of completeness.
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7.2.2 Steel Components

For the bamboo components, ductile bolt bearing Fb,Rd = 29.10kN is decisive. A modification
factor for permanent action kmod = 0.6 is adopted from Eurocode 5 7. The final design force is:

Fb,Rd,mod = kmodFb,Rd = 0.6 · 29.10 = 17.46 kN

The diameter of the threaded rod is chosen to yield with γM0 = 1.0

Frod,y,Rd =
fy
γM0

π

4
D2
rod ≤ Fb,Rd ⇒ Drod ≤

√
1746

235π4
= 9.7 mm

→ Drod = 8 mm

The maximum resistance of the threaded rod is

Frod,y,Rd = 11.81 kN

Each cross dowel can be verified elastically as follows:

shear force: VEd = Frod/4 = 11.81/4 = 2.95 kN

shear resistance: Vdowel,Rd =
fy

γM2

√
3
Av =

235

1.25
√

3
162 = 27.79 kN > 2.95 kN okay

bending moment: MEd =
Frod

4

D0 − 2t

2
=

11.81

4

100− 2 · 10

2
= 118.12kNmm

bending resistance: Mdowel,Rd =
fyW

γM1
=

235 · d3/6
1.1

= 145.84kNmm > 118.12kNmm okay

It is assumed that stripping of the thread does not occur. Material of sufficient quality needs to
be used.

Figure 7.5: Bamboo square cross dowel connector steel components

7kdef does not need to be applied as creep as a positive influence on compressive strength [36] and it can be
assumed that creep also has a positive influence on bearing strength.
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7.2.3 Predicted Connector Strength

The connector strength is determined by yielding of the threaded rod. The strength of the entire
connector with a 8 mm rod is thus Frod,y,Rd = 11.81 kN8.

7.2.3.1 Comparison to Literature

In chapter 2.3, several tensile connectors were presented. The Phyllostachys pubescens single
bolted joint tested by Fu et al. [29] only reached a tensile strength of 4.2 kN and failed in splitting.
The predicted strength of the single lashing joint by Widyowijatnoko [99] made from Guadua
angustifolia was 19 kN by bearing failure. In experiments, the joint failed in radial crushing and
reached a maximum strength of 31 kN to 38 kN.

The predicted bearing strength of the Phyllostachys pubescens cross dowel connector proposed as
part of this research is Fb,Rd = 29.10kN, which is close to the capacity measured by Widyowijat-
noko. As the connectors are made of different species, a direct strength comparison makes little
sense. In order to find out whether tensile capacity lies in a similar range, the two connectors
could be assembled and tested in future research, i.e. by mounting the different connector types
at the opposite ends of the same culm. In this context, ease of assembly and work intensity
should also be assessed.

7.3 Connection to Dome Hub

Figure 7.6: Bamboo square cross dowel joints connected to dome hub

The dome hub could be made out of a conical steel ring. Both thickness and strength class of
the hub should be chosen so that large deformations of the hub occur prior to yielding of the

8This corresponds to a design tensile strut stress of ft,Rd = F
A

= 1181
2827

= 4.18 MPa which is used in chapter 8
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threaded rod and thus prior to failure of any bamboo component in any manner. Yielding and
plastic deformation in the hub is easily recognized and clearly shows if overloading occurs. In
case of overloading or damage, the hub can be easily replaced. Alternatively, it can be chosen
that yielding of the threaded rod is decisive. This is also recognized rather easily and in case
of overloading, only the rod needs to replaced and not the entire connector. Assembly becomes
easy if a hexagonal socket is cut into the end of the rod. Prior to assembly, the rod is located
entirely within the culm. After all struts are fit around a hub, the rods can be extracted with a
hex-wrench (Allen key®).

7.4 Discussion and Conclusions

A tensile connector is proposed which makes use of two perpendicular square cross dowels.
The decisive failure mechanism in the bamboo culm is bolt bearing which is a ductile failure
mode that provides great deformation capacity. The diameter of a threaded steel rod is chosen
such that ductile yielding occurs prior to bolt bearing failure. This increases predictability of
connector strength and facilitates replacement after overloading, as only the rod needs to be
replaced. If connected to a dome hub, the hub can be designed to be the weakest link and show
large displacements prior to yielding of the rod. This way, overloading can be easily observed
by the user. The strength of the connector can be increased by using a larger dowel diameter
d which results in higher embedment strength. Experiments need to be conducted first, as the
relationship of bearing strength and dowel diameter is not necessarily linear.

114



Chapter 8

Case Study

Let’s study the following case:

A geodesic dome made out of Moso bamboo is constructed inside an exhibition hall as part of a
scientific conference that promotes the advancements in bamboo research. The conference host
formulates the following requirements:

� The dome can have a maximum diameter of 20 m, and a height of 5 m. It needs to have
an opening with a height of at least 2 m and a bottom width of at least 4 m so that people
can enter and exit the dome.

� At the top of the dome, 5 spot lights are installed to illuminate the dome, which weigh
75 kg in total.

� The minimum frequency is f = 4 to demonstrate the geodesic design, but should not be
higher than f = 6 as making connections is expensive and time consuming.

We can assume the following boundary conditions for the preliminary design:

� As the frequency is well below f = 9, linear analysis is justifiable in terms of global
stability. For tensile strength, positive effects of non-linear material behaviour (yielding of
steel rod in connector) can be used as a simplistic counterweight to the negative effects of
geometrical non-linearity; if tensile strength is governing, both material and geometry are
thus assumed linear-elastic. If local buckling is decisive, GNL analysis is strongly advised
for final verification of stresses and strains.

� It is assumed that connections undergo only small, elastic deformation. Therefore, dome
nodes (hub connections) are modelled as hinged.

� As neither snow nor wind act on the structure, all loads are permanent and Eurocode 0
theoretically allows for smaller FORM sensitivity factors α (Eurocode 0, C7(4)) [25]. How-
ever, care must be taken, as bamboo and steel are employed. Scatter of steel strength is
still smaller than scatter of bamboo dead load. Therefore, αR = −1.0 and αE = 0.4 must
be employed. This results in a self-weight safety factor of γG,1 = 1.46, which is close to
γG,2 = 1.35 (spot lights) prescribed by Eurocode 0 (table A1.2(A)) [25].

� kmod = 0.6 and kdef = 0.6 are adopted from Eurocode 5 (table 3.1 and table 3.2) [27]
for static permanent load. If variable action was applied (wind, snow), the value of kmod
would be more favourable but kdef would also be much larger (unfavourable)!
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� The strength of the proposed connector with d = 16mm square cross dowels and a 8 mm
rod is Ft,Rd = 11.81 kN. This corresponds to a design tensile strut strength of ft,Rd =
Ft,Rd/A = 11812/2827 = 4.18 MPa which is 12% of the culm’s tensile design strength.

� Creep has a negative effect on stiffness (Modulus of Elasticity) and tensile strength of
bamboo [36]. As tensile strength is governed by yielding of the threaded rod in the tensile
connector, kdef only needs to be included into Ed .

8.0.1 Input Materials

Table 8.1 displays the model input of material properties. Note that these are design strength
values. Density ρ is applied as a mean value as the stresses resulting from self-weight are later
multiplied by γG,1.

Table 8.1: Material properties case study

property unit design value γ kmod kdef
tensile strength 1 ft,Rd [MPa] 4.18 2.2 0.6 -

compression strength fc,Rd [MPa] 13.97 1.6 0.6 -

Modulus of Elasticity Ed [MPa] 2328.5 1.74 - 0.6

property unit mean value

strut diameter D0 [mm] 100.0

wall thickness t [mm] 10.0

beam diameter DCHS [mm] 130.0

beam thickness tCHS [mm] 26.0

density bamboo ρ [kg/m3] 660

ft,Rd =
Frod,y,Rd

A
; A =

π

4

(
D2

0 − (D0 − 2t)2
)

;

fc,Rd = kmod
fc,Rk
γm,c

; γm,c =
fc,Rk

µ(fc) + αRβσ(fc)
= 1.6 (αR = −1.0; chapter 7.2)

Ed =
Ek

γm,E(1 + kdef )
; γm,E = 1.74 (average of γm,i from experiments);

kdef = 0.6 (adopted from EC 5)

The buckling resistance of a pinned-pinned bar is calculated according to the British Steel
Code BS5950 [103] which is almost similar to Eurocode 3. This is done for convenience as the
Robertson Constant a of Moso culms was determined by Yu et al. [103]. Note that it would
also be possible to use Eurocode 5, which only leads to a change of denotation. Initial out-of-
straightness and second order effects are not considered in this geometrically-linear analysis.

fcr,Rd = π2
EdI

AL2
; fcc,Rd =

fcr,Rdfc,Rd

Φ + (Φ2 − fcr,Rdfc,Rd)1/2

Φ =
fc,Rd + fcr,Rd(1 + η)

2
; η = 0.001 a(λ1 − λ0); a = 15 for Moso

λ0 = 0.2π
√
Ed/fc,Rd ; λ1 =

L√
I/A

1limited by connector capacity
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Note that Yu et al. used Emean which is not modified by material safety factors or creep factors.
This results in much higher Euler buckling strength fcr,Rd [103]. This case study makes use of

Ed = Ek
γm,E(1+kdef )

for two reasons:

1. Using Ed instead of Emean is one possibility to apply a safety factor to global buckling and
include the effects of creep.

2. Using Ed in the local buckling analysis preserves the comparability of local and global
buckling.

Note further that the interaction formula for the compressive local buckling capacity fcc,Rd is
based on design strength values (fcr,Rd and fc,Rd). This is punishing in comparison to the
calculation of other design strength values. However, as several different material safety factors
γm,i are employed in this case study, an interaction of strength values needs to be based on
design values in order to be consistent2. On the upside, resulting utilisation for local buckling
µLB can be directly compared to the utilisation factor µGB obtained by the global buckling
analysis in Oasys GSA.

The load safety factor γG,1 for self-weight of bamboo struts is based on the density:

γG,1 =
ρd
ρk

= 1.46; ρk : 5%− percentile; ρd = µ+ αEβσ; αE = 0.4

For the point load that is introduced by the spot lights, a load safety factor γG,2 = 1.35 according
to Eurocode 0 (table A1.2(A)) is adopted [25]. The actions are then combined in the following
manner:

XEd = γG,1Gk + γG,2Fk;
} Gk characteristic static dead load (self-weight)

Fk characteristic static geometrically linear point load

The utilisation factors µi are obtained as follows:

µt =
ft,Ed
ft,Rd

; ft,Rd is the design strength of the tensile connector

µc =
fc,Ed
fc,Rd

;

µLB =
fc,Ed
fcc,Rd

; fcc,Rd as an interaction of fcr,Rd and fc,Rd

µGB =
1

LF
; load factor LF depends on Ed (from GSA analysis)

2If one single material safety factor γm is used (e.g. for steel or timber constructions where such material safety
factors are well established), the author of this thesis suggests that fcc,Rk should be obtained with characteristic
values and then reduced by γm and kmod.
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(a) Material properties (b) γG

(c) Dome input values

Figure 8.1: Input data

8.0.2 Input Dome Geometry

The dome parameters in the Grasshopper model can be determined as follows:

� The dome diameter is D = 20 m and the trimming plane is T = 0.75D which results in a
height of 20(1− 0.75) = 5 m.

� The opening radius is chosen 0.26D which results in an maximum opening width of 4.1 m
for z = 0.1.

� The z-position should be greater than or equal to z = 0.1D = 2 m to provide sufficient
opening height.

8.0.3 Parametric Study

First, the influence of the frequency is examined. The z-position is adapted later in a parametric
study to obtain optimal stress utilisation and displacements.

(a) f = 4 (b) f = 5 (c) f = 6

Figure 8.2: Displacement and stresses for z = 0.1D = 2 m and opening width 4.1 m

The results are shown in table 8.2.
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Table 8.2: Results frequency

frequency µt µc µLB µGB δ [mm]

f = 4 0.538 0.253 0.733 0.133 9.1
f = 5 0.102 0.070 0.141 0.178 11.8
f = 6 0.609 0.279 0.388 0.399 14.3

Obviously, frequency f = 5 results in the smallest utilization factors. We will thus proceed with
this frequency. In a next step, the z-position is varied to find a compromise between displacement
and tensile stresses. The results are shown in table 8.3.

Table 8.3: Results z-position f = 5

z µt µc µLB µGB δ [mm]

0.10 0.102 0.070 0.142 0.178 11.8
0.11 0.135 0.084 0.170 0.179 11.7
0.12 0.165 0.096 0.196 0.179 11.6
0.13 0.199 0.111 0.225 0.229 11.5
0.14 0.239 0.128 0.259 0.418 11.8
0.15 0.789 0.352 0.714 0.355 11.1
0.16 0.149 0.103 0.210 0.179 10.8
0.17 0.213 0.129 0.261 0.181 10.4
0.18 0.282 0.153 0.311 0.184 11.9
0.19 0.405 0.172 0.349 0.762 120.3
0.20 0.414 0.209 0.423 0.333 18.5

Apparently, z = 0.19 results in very large displacements which hints to a loose node in the model.
In practice, often displacements in SLS become critical and not the utilisation of strength in
ULS. In our case, z = 0.16 and z = 0.17 result in the smallest displacements. In terms of tensile
strength utilisation, z = 0.16 performs much better than z = 0.17 and the other utilisation
factors are also smaller. If for example, an additional membrane should be attached to the dome
or the point load becomes heavier, we are on the safe side if we choose z = 0.16!

8.0.4 Verification ULS

The final design and strength utilisation factors in ULS are indicated in table 8.4.

Table 8.4: Results f = 5; z = 0.16

f z µt µc µLB µGB δ [mm]

5 0.16 0.149 0.103 0.210 0.179 10.8

All unity checks in ULS are met. However, as local buckling is governing, an addition GNL
analysis should be conducted!

8.0.5 Verification SLS

Another important aspect is the verification of displacements in SLS and the practicality of the
design as shown in figure 8.3.
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Figure 8.3: Displacement and stresses for z = 0.16D

We can state the following:

� The maximum length of struts is L = 2.62 m which does not exceed the length of a normal
sized bamboo culm.

� The maximum ULS displacement at the top of the dome is 10.78mm. The true dome
diameter is Dtrue = 12.936 m. The displacement is thus 10.78

12936 = 0.83% of the true dome
diameter, which is a very acceptable displacement.

� For SLS verification, it is allowed to use the mean value of Eglobal which results in Eglobal =
1.19E3pt = 1.19 · 8570 = 10198.3MPa. Additionally, the load safety factors can be reduced
to γG = 1.0 (we can simply divide by 1.35 to be conservative). The SLS deflection is then
only Ed/Eglobal · δ/1.35 = 2328.5/10198.3 · 10.78/1.35 = 1.82mm which corresponds to
2.46
2620 = 0.07% of a strut length. Obviously, there is large safety margin in case the dead
load is increased, e.g. by a membrane or heavier point load.

� Note that in practice, displacements become larger if connector stiffness and geometrical
non-linearity are considered.

8.0.6 Next Steps and Conclusions

In a next step, the model can be exported to Oasys GSA to perform a detailed analysis. The
stresses in the steel edge beams can be extracted and the beams can be dimensioned accordingly.
For the given circular hollow section, the axial stresses in the steel beams are smaller than the
maximum strut stresses. As the yield strength of S235 is much higher than the strength of Moso
bamboo, a detailed structural analysis of the steel beams does not need to be performed at this
point.

At this preliminary design stage, all unity checks are met and the construction is safe. Prior
to construction, a detailed structural analysis including the steel elements and connections (e.g.
dome hub and welds in steel beams) needs to be performed. Limited stiffness of connectors must
be modelled accordingly. Initial out-of-straightness of culms should be considered and a GNL
analysis should be conducted.

With respect to the research questions of chapter 1.3, it could be shown that it is possible
to design a bolted tensile connector that avoids splitting and provides sufficient strength and
ductility for geodesic dome application. The main limiting parameters in real life application
are tensile connector strength (e.g. z = 0.15, table 8.3) and stability (e.g. local z = 0.17 and
global z = 0.10). Care should be taken, that global buckling does not occur. If local buckling
is governing, a GNL analysis needs to be conducted; alternatively, a higher frequency can be
chosen to reduce strut length. If tensile connector strength is governing, the cross dowel diameter
d can be increased or different dome parameters can be chosen that reduce tensile stresses.
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Figure 8.4a shows the final design as retrieved from Grasshopper. Note that the shape of the
opening can be improved (figure 8.4c) which results in more efficiency, less joints and a better
stress distribution.

(a) perspective view (b) top view

(c) improved design

Figure 8.4: Design of bamboo geodesic dome

This case study has shown, that a parametric model is very useful to obtain an optimized
preliminary design. General rules of thumb concerning stability and geometrical non-linearity
are handy when making a first guess of the required frequency. If the geodesic dome model is
equipped with a user-friendly interface, it can become a useful tool for dome designers. After
sufficient testing, the bamboo tensile connector is also suited for practice application – in geodesic
domes or other structures.
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Chapter 9

Conclusions and Future Work

9.1 Contributions

In the present Master of Science final project, a parametric geodesic dome model was designed
using the graphical algorithm editor Grasshopper which is a plug-in of the 3D CAD software
Rhinoceros. The model offers variation of the polyhedron type (e.g. icosahedron, octahedron
or tetrahedron), dome frequency f (number of subdivisions of the polyhedron’s initial surfaces),
dome diameter D, and the introduction of elliptical openings. The structural analysis includes
the load cases self-weight, a point load on top of the dome, superimposed dead load by dome
cladding, and snow and wind load. Additionally, geometrical non-linearity and local and global
stability can be analysed. Material input data can be based on mean strength values or design
strength values, including partial safety factors and design strength of individual components,
i.e. tensile connectors. The model allows for combination of load cases, including non-linear and
stability cases, and performs unity checks for dome strut stresses and deflections. All results can
be exported graphically as JPEG and numerically in an Excel file.
As a result of the model analysis, rules of thumb were derived for the maximum possible dome
diameter of half-spherical icosahedron-based geodesic domes made of Guadua angustifolia and
Phyllostachys pubescens loaded by self-weight and point load, the latter including non-linearity.
For this purpose, relationships between the strut length, dome diameter and frequency were
established. For both load cases, a manual linear local buckling analysis was performed and
confirmed by model calculation, and exact formulas for the maximum dome diameter governed
by local buckling were derived. Additionally, a material independent formula for the transition
point of local to global buckling was derived for circular hollow sections with different t/D0

ratios (t wall thickness, D0 outer diameter). For both load cases, formulas for the maximum
dome frequency fmax were established below which global buckling does not occur. Furthermore,
stability of geodesic domes and shells was compared, and it was found that geodesic domes of
a frequency f ≥ 4 are superior to shells in terms of self-weight induced buckling. Last but not
least, a formula was derived that indicates how the top part of a shell can be replaced by geodesic
dome struts in order to safely introduce point loads to the shell membrane.

Experiments were conducted to determine the dynamic Modulus of Elasticity, and full-culm
compression strength and stiffness of Guadua angustifolia and Phyllostachys pubescens. Linear
relationships were established between density and dynamic Modulus of Elasticity, compression
Modulus of Elasticity, and compression strength. Additionally, the behaviour of bolted connec-
tions in full-culm Phyllostachys pubescens was examined by determination of the bolt bearing
and splitting strength in a single bolt test with square and round bolts. It was found that square
bolts are superior to round bolts of the same diameter in terms of failure mode and deformation
capacity. A tensile connector with square cross dowels was proposed which avoids splitting and
whose governing failure mode is ductile bolt embedment. Special focus was paid to the influence
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of nodes on compression strength and stiffness, and bolt bearing and splitting capacity. For
this purpose, a 3D scan (ESEM) and electron microscopy of the nodes of Guadua angustifolia
and Phyllostachys pubescens were conducted, showing that some nodal fibre strands deviate
from the orthotropic orientation, and that fibre strands and single fibres bifurcate; this confirms
previous findings of other research groups. In experiments it was found that nodes increase bolt
bearing, splitting, and local compression strength owing to radial and tangential fibres in the
node. On a larger scale, full-culm compression strength is decreased due to stress concentrations
induced by the change of culm geometry in the nodal region. Full-culm compression stiffness is
also negatively impacted by nodes as vascular bundles in non-axial nodal fibres are compressed
easily.

9.2 Conclusions

A parametric structural analysis of bamboo geodesic domes was performed, assessing the influ-
ence of openings and local and global stability of domes constructed with Guadua angustifolia
and Phyllostachys pubescens. It can be concluded that non-symmetrical openings result in high
strut stress-concentrations that are reduced with increasing frequency f; a preliminary para-
metric study and subsequent manual design adaptation are advisable in all cases. In terms of
stability, global buckling does not occur for half-spherical icosahedron-based domes loaded in
self-weight, unless a frequency 27 for Guadua angustifolia and a frequency 25 for Phyllostachys
pubescens is exceeded. For point load, this frequency depends on magnitude and application
of the load. The respective maximum possible dome diameters were 475.4m in self-weight and
337.0m for a 1 kN point load on top of the dome for Guadua angustifolia (geometrically non-
linear analysis). For Phyllostachys pubescens they were 331.1m in self-weight and 125.4m for a
1 kN point load. These conclusions are based on mean strength values, a linear-elastic material
and don’t take connector strength into account.

Nodes have a negative influence on full-culm compression strength and compressive Modulus of
Elasticity, although the compressive strength of the node itself is higher than the strength of clear
specimens. For Phyllostachys pubescens a mean compression strength of 49.9 MPa and mean
compression Modulus of Elasticity of 7746 MPa were found for clear specimens, respectively
47.5 MPa and 6817 MPa for specimens with nodes. For Guadua angustifolia the values were
60.7 MPa and 9845 MPa for clear specimens, respectively 58.6 MPa and 9082 MPa for specimens
with nodes. These findings can be attributed to change of culm geometry around nodes and nodal
microstructure. The dynamic Modulus of Elasticity was established by vibrational measurements
and a mean value of 11 431 MPa was found for Phyllostachys pubescens and 19 681 MPa for
Guadua angustifolia. Linear relationships between density and dynamic Modulus of Elasticity,
and density and compressive strength and Modulus of Elasticity were found for both species,
which suggests that fibre content and density are correlated. Yet, a relationship between static
and dynamic Modulus of Elasticity still needs to be established.

Nodes have a positive influence on bolt embedment and splitting strength of Phyllostachys
pubescens. Square bolts result in a more favourable failure mechanism than round bolts: Square
bolts fail in large displacements and embedment, whereas round bolts fail in tensile splitting
after small embedment. The strength values for round bolts were a mean embedment strength
of 55.4 MPa for clear specimens and 62.6 MPa for specimens with nodes. For square bolts the
values were 52.7 MPa for clear specimens and 54.3 MPa for specimens with nodes; whereas in the
latter, the bolt was located too far from the node to reflect the nodal influence. Bolt splitting
strength was only established for round bolts, resulting in a mean strength of 18.2 MPa for
clear specimens and 20.9 MPa for specimens with nodes. No relationship could be established
for density and bolt embedment or splitting strength. All findings agreed with results from
microscopic analysis of the node.
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9.2.1 Answers to Research Questions

The research questions are answered briefly; more information is provided in the referenced
chapters.

Q1: What are the limiting parameters in the design of bamboo geodesic domes and
can a maximum diameter be derived?
Answer: The limiting factor is often the strength of tensile connectors. If a sufficiently strong
tensile connector is used, e.g. the one proposed in this research, local buckling of dome struts
becomes limiting, unless very high dome frequencies are reached, in which case global buckling
becomes decisive for self-weight and a single point load on top of the dome (chapter 5).

Q2: Does a limiting diameter exist for bamboo geodesic domes made of Guadua angustifolia and
Phyllostachys pubescens (if connector strength is not taken into account) and what parameters
are decisive?
Answer: There is a definite limit ratio of dome diameter to culm outer diameter for both
examined load cases (Dmax/D0). The maximum dome diameter Dmax is reached for a certain
maximum frequency fmax, where the dome fails in simultaneous local and global buckling. Dmax

and fmax depend on the load case, magnitude of the load, material, and the ratio of culm wall
thickness and culm outer diameter(t/D0). For the given material the limiting diameters are
(chapter 5):
Guadua angustifolia: 475.4 m in self-weight and 337.0 m for a 1 kN point load on top of the
dome, geometrically non-linear (applied in discrete load steps with large deformation enabled;
e.g. a heavy construction worker standing on top of the dome).
Phyllostachys pubescens: 331.1 m in self-weight and 125.4 m for a 1 kN point load on top of the
dome, geometrically non-linear.

Q3: Is it possible to determine boundary conditions under which global buckling does not occur
and is linear superposition then possible?
Answer: Yes. For both examined load cases, maximum frequencies fmax can be derived below
global buckling does not occurs (as local buckling is decisive). Linear superposition is then
possible for linear load cases (chapter 5).

Q4: What is the effect of opening size and position on the maximum strut stresses in bamboo
geodesic dome struts?
Answer: Under certain conditions, very high strut stresses will occur which can lead to tensile
connector failure or strut buckling. Especially if openings are inserted non-symmetrically, a
preliminary parametric study of different opening shapes is advisable as no general rules of
thumb can be derived (chapter 5).

Q5: What is the effect of nodes on compression capacity?
Answer: Compression strength and Modulus of Elasticity are decreased by nodes (about 5%
and 10% respectively). This finding agrees with the findings from microstructural investigations
(chapter 4.2.3).

Q6: What is the effect of nodes on bearing and splitting capacity of bolted connections?
Answer: The splitting and bearing capacity are increased by nodes as they work as natural
reinforcement. This finding agrees with the findings from microstructural investigations (chap-
ter 4.2.4).

Q7: What influence does the shape of the bolt (round or square) have?
Answer: A square configuration allows for large ductile displacements in embedment. This
is more favourable than round bolts, which induce tensile splitting after comparatively little
displacement (chapter 4.2.4).

Q8: Is it possible to suggest a bolted tensile connector that avoids splitting and provides sufficient
strength and ductility for geodesic dome application?
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Answer: Yes, it is possible to suggest such a bolted tensile connector, namely a connector with
square bolts (chapter 7).

Q9: What are the main limiting parameters in real life application (including limited tensile
connector strength) and how can bamboo geodesic dome performance be generally improved?
Answer: The main limiting parameters are stability and tensile strength of connectors. The
latter can be improved by using square bolted connections that make use of wide bolts close
to nodes. The former requires a dome frequency smaller fmax in order to avoid global buckling
(chapter 8).

9.3 Future Work

Suggestions for future research were made in the respective chapters. This is a summary of all
suggestions:

� In the present experiments, the bottom load plate configuration prevented block shear. If
a gap is introduced in the load plate, it can be investigated whether block shear actually
occurs, and what influence nodes have.

� The nodal region was not reached by the displaced square bolts. If the bolts are placed
closer to the node, the effect of nodes on square bolt bearing capacity can be examined.

� Different square and round bolt diameters d could be applied to derive a relationship
between bolt diameter and embedment strength.

� A FEM based on fracture mechanics could be created to simulate bolt bearing and splitting,
and related stress concentrations. For this purpose, KII,C and KIII,c of clear and nodal
bamboo should be derived from experiments.

� In the present research, only Phyllostachys pubescens was included in the bolt experiments.
In a next step, Guadua angustifolia could be examined.

� In terms of connector strength, the next step is the assembly and testing of the full con-
nector. For this purpose, the steel rod should still be under-matched as this permits most
accurate strength prediction.

� With the present model, a systematic global buckling analysis due to point load and
self-weight should be conducted for variation of f, D0, t, ρ, E, and F . Subsequently,
the nature of the global buckling curve can be determined and an expression can be
derived for the maximum possible diameter due to global buckling of geodesic domes
Dmax,GB = f(f, D0, t, ρ, E). For self-weight and f→∞, the expression of Dmax,GB should
converge with the expression for shells Dmax,Shells.

� In a next step, the load cases superimposed dead load, wind and snow could be analysed
in detail and formulas for transition of local to global buckling and limit diameters could
be derived. Additionally, seismic load could be added to the model.
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Appendix A

Geodesic Dome Model

A.1 Interaction of Components

Basic information on Grasshopper can be found on http://www.grasshopper3d.com/:

“For designers who are exploring new shapes using generative algorithms, Grasshopper® is a
graphical algorithm editor tightly integrated with Rhino‘s 3-D modelling tools. Unlike Rhino-
Script, Grasshopper requires no knowledge of programming or scripting, but still allows designers
to build form generators from the simple to the awe-inspiring.”

The interaction of different plug-ins and components is described in chapter 5. The flow chart
below illustrates this interaction.

Figure A.1: Flow Chart
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A.2 Explanation of Grasshopper Script

Large parts of the Grasshopper script were inspired by the MSc thesis of Arend van Waart [93].
For a more detailed explanation of the automated generation of geodesic domes in Grasshopper,
it is advised to read the appendix of his thesis.

A.2.1 Input Parameters

Figure A.2: Input Parameters

In order to run a parametric analysis using Hoopsnake, the input parameters are defined as a
series of numbers that are combined in all possible combinations (figure A.2). TheHoopsnake
component allows to automatically loop through all combinations (figure A.3).
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Figure A.3: Hoopsnake

The material properties are stored separately and an individual strut material can be selected.
Note that the thickness t and outer diameter D0 of the circular hollow section can either be
selected as shown in figure A.4 or defined freely and iterated in Hoopsnake. The material of the
beams is always steel S235.

Figure A.4: Material Properties
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A.2.2 Generation of a Geodesic Dome in Grasshopper

A geodesic sphere can be created by using the Geometry Gym1 component shown in figure A.5a.
It generates a geodesic sphere with a given radius (D/2), frequency f (the number of struts used
to approximate the sphere) and polyhedron type (icosahedron, tetrahedron or octahedron). The
input parameters diameter D, frequency f and polyhedron type (icosahedron) result from the
current parameter combination displayed in figure A.2.

(a) Grasshopper (b) Rhinoceros

Figure A.5: Generation of geodesic sphere

The geodesic sphere can be trimmed at any plane to a geodesic dome. The distance from the
centre of the sphere is defined as [−0.5; 0.5]D which results in an untrimmed geodesic sphere, no
dome at all and all shapes in between. In this example, the trimming plane lies at T = 0 which
is equivalent to cutting the sphere in half at its equator (figure A.6).

(a) Grasshopper (b) Rhinoceros

Figure A.6: Trim sphere to dome

Next, an opening can be created in the dome. This is easiest done by intersecting a cylinder
with the dome and cutting the struts at the intersecting points (figure A.7). The z-position
defines the vertical position with respect to the trimming plane. The opening size can be varied
between [0; 1]D. Additionally, the cylinder can be rotated about the dome’s z-axis. All three
parameters are defined in the input parameters.

1plug-in for Grasshopper developed by Jon Mirtschin
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(a) Grasshopper (b) Rhinoceros

Figure A.7: Cut out cylinder

All lose nodes are connected by poly-lines that are later defined as steel edge beams. This results
in a bottom edge beam, connecting the nodes at the bottom of the dome and an opening edge
beam, connecting the nodes around the opening (figure A.8). The longest and shortest strut
length can be computed and the actual trimmed dome diameter (depending on the trimming it
can be smaller than the defined diameter D). The length of the longest strut (figure A.8b) is
important for the local buckling analysis.

(a) Grasshopper creates edge beam poly-lines

(b) Grasshopper computes longest strut length (c) Rhinoceros

Figure A.8: Create edge beams
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A.2.3 Exporting the Grasshopper Model to Oasys GSA

So far only points and curves were generated by Grasshopper. Geometry Gym components are
able to assign material properties to these elements and export them as structural elements to
Oasys GSA (GSA) (figure A.9).

(a) Grasshopper defines GSA struts (bars)

(b) Grasshopper defines GSA edge beams (steel)

(c) Grasshopper detects nodes (d) Rhinoceros

Figure A.9: Cut out cylinder
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The material that is assigned to the bars is an orthotropic material e.g. bamboo. All material
parameters can be edited to match the properties of a certain bamboo species. The edge beams
are made of steel S235 but the cross-section of the edge beam around the opening and bottom
edge beam can be defined independently. The bars are rigidly connected and able to transfer
bending moments.

Note that bamboo is modelled by a circular hollow section and material properties such as E-
Modulus (E), Shear Modulus (G), density (ρ) and Poisson‘s Ratio (ν). The influence of nodes
is accounted for in the strength properties. All input parameters can be adjusted to match test
results of previous and future research.

The nodes are subdivided into base nodes (bottom perimeter) and other nodes. The base nodes
are restrained in x, y, z-direction by springs of ξ = 0.5 but different boundary conditions are
also possible (figure A.9c).

The length of the beams and bars is computed to manually calculate the self-weight of the
structure and perform a “sanity check” later on.

Figure A.10: Grasshopper computes length of struts and beams
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A.2.4 Structural Analysis

By linking certain parameters to the Hoopsnake component, the model is able to automatically
iterate through different sets of parameters. The actual structural analysis is performed individ-
ually per combination of parameters. Grasshopper sends information to GSA, GSA computes a
structural analysis in the background and Grasshopper requests this data back. The retrieved
values (e.g. axial stresses) can be compared to a limit value and the result is exported by the
Elephant component.

A.2.4.1 Load Case

The most basic load case is self-weight. Additionally, a point load can be applied on top of the
dome (figure A.11). Note that superimposed dead load, snow, and wind are not shown here
as they are not part of the theoretical analysis. The defined load case and dome geometry are
sent to GSA. The GSA analysis can be run in the background and subsequently visualized in
Grasshopper.

Figure A.11: Load Cases

Another method is to “bake” the model to GSA and analyse it within GSA. This is more time
consuming (computation wise [93] as well as for the user) but especially attractive when a dome
variant needs to be analysed in detail. Of course the results in GSA and Grasshopper should
match, which will be shown in the following. Note that matching results don‘t mean that the
analysis results are true from an engineering point of few. It only means that we didn‘t make a
mistake in Grasshopper after reimporting the data from GSA.
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“Sanity check” A sanity check is conducted in order to see whether reaction forces in z-
direction match the self-weight of the model calculated by hand and by GSA (figure A.12).

Figure A.12: Grasshopper : self-weight = reaction forces?

If these results match, other results can be retrieved, e.g. maximum axial stresses in the struts,
maximum bending stresses in the edge beams and nodal displacements. Note that only one
solver2 component is used for the analysis but as there are several input queries also several
outputs are generated (figure A.13).

Figure A.13: Geometry Gym Solver

2A ‘solver’ is the Geometry Gym component that requests results from GSA and reimports them into Grasshop-
per
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A.2.4.2 Nodal Displacements and Strut Stresses

We will proceed with the load case point load. Nodal displacements can be visualized in
Rhinoceros by translating the initial Grasshopper nodes along a displacement vector that is
imported from GSA. In order to make the displacements visible, an amplification factor is in-
troduced in Grasshopper. The axial stresses that are retrieved from GSA can also be visualized
(figure A.14b). The results can be compared to results obtained in GSA.

(a) Grasshopper displacements

(b) Grasshopper stresses

(c) Rhinoceros (d) GSA displacements (e) GSA strains

Figure A.14: Strut stresses and displacements
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A.2.5 Exporting Results to Excel File

The last step is to perform unity checks and export results to Excel with the Elephant compo-
nents. Additionally, a “screenshot” can be taken of the visualized model in Rhinoceros.

(a) Grasshopper stresses

(b) Grasshopper unity check

(c) Grasshopper export data

Figure A.15: Export results
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A.3 Explanation of Dome Parameters

A.3.1 Polyhedron Type

Different polyhedron types can be implemented. Icosahedra result in a smooth, regular appear-
ance with little variance in strut length. This results in a more even stress distribution.

(a) Icosahedron (b) Octahedron (c) Tetrahedron

Figure A.16: Polyhedron Types for Frequency 2

A.3.2 Dome Frequency

The dome frequency f reflects the order of triangulation that is used to approximate the sphere
or dome. With higher frequency the struts become short and the dome becomes smoother and
appears more elegant. Even frequencies can be cut at the equator of the geodesic sphere without
cutting struts in half. Odd frequencies require a bottom edge beam or need to be cut slightly
above or below the equator.

(a) f = 1 (b) f = 2 (c) f = 3 (d) f = 4 (e) f = 5

Figure A.17: Frequencies

A.3.3 Trimming Plane

The sphere can be trimmed to a dome at any height (in % of initial dome radius). Obviously
trimming directly below an existing ring of horizontal struts makes little sense.

Figure A.18: Trimming Plane: -30% ; 0% ; +40%
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A.3.4 Z-Position Opening

The openingis moved up and down with respect to the global z-axis (in % of the initial dome
radius) Note that the created opening appraoches an ellipse – not a circle – as a sphere is
intersected by a cylinder.

Figure A.19: z-position

A.3.5 Opening Size

A minimum clear height can be defined and the opening size can be increased (in % of the initial
dome radius) until only half a dome is left.

Figure A.20: Opening size

A.3.6 Rotation of Opening around Z-Axis

All angles are possible and for certain angles the opening becomes asymmetric! This results in
unfavourable stress distributions which is shown in the parametric study.

Figure A.21: Opening rotation
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A.4 Strut Stresses Opening Rotation

Additional figures for maximum strut stresses resulting from opening rotation are shown below.

Figure A.22: Strut stresses for different frequencies z=0.2

Figure A.23: Strut stresses for different frequencies z=0.3

Figure A.24: Strut stresses for different frequencies z=0.4
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Figure A.25: Strut stresses for different frequencies z=0.5

Figure A.26: Strut stresses for higher frequencies z=0.5
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A.5 Derivations

A.5.1 Derivations for Transition from Local to Global Buckling

A.5.1.1 Influence of t/D0 ratio (steel S235)

For bamboo, it was possible to assume t = 0.1D0 for the transition of global to local buckling
and the local buckling curve. The only variable in equation 5.4a and 5.4b was D0 as the t/D0

ratio remained unchanged. Now we will change the wall thickness t while keeping the outer
diameter D0 constant. As nature only provides t = 0.1D0 for bamboo, we will proceed with
steel S235. An analysis for transition from global to local buckling for different t/D0 ratios is
displayed in figure A.27a. The transition point is again independent of the strut material. Note
that the regression formula for t = 0.1 D0 is slightly different from figure 5.18 as only frequencies
up to f = 25 are considered in figure A.27a.

(a) Transition GB to LB for different t/D0 ratios, inde-
pendent of material

(b) Derivation of maximum frequency fmax for
Steel S235 D0 = 100 mm

Figure A.27: Global and local buckling for different t/D0 ratios

Figure A.27b shows how the maximum frequencies and Dmax/D0 ratios can be derived on the
example of Steel S235 D0 = 100 mm with multiple t/D0 ratios. The same principle can be used
for any material. The transition lines from global to local buckling stay unchanged as they are
material independent. Only the lines indicating the safe zone (µLB = 1.0) will change according
to figure 5.16.

Again we can set the expressions for transition from global to local buckling equal to the local
buckling expression derived in equation 5.2b and linearised to derive the maximum possible
dome diameter Dmax,LBGB for µLB = µGB = 1.03. Examples of how this is done can be found
in the appendix A.5.1.2.

We can derive the following equation:

Dmax,LBGB,LC1 =
[
s1

( t

D0

)2
+ s2

( t

D0

)
+ s3

]
D0; Steel S235

}
t

D0
∈ [0.1; 0.4] (A.1a)

3Note that there is a difference of 15% between model data and formula 5.2b due to the assumption of Fg

which is overestimating the amount of material leading to the highest strut stress σmax.
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s1 = 0.0349D2
0 − 21.22D0 + 6341.4

s2 = −0.0269D2
0 + 16.406D0 − 4812.1

s3 = 0.0344D2
0 − 21.036D0 + 6099

 D0 in mm (A.1b)

If we linearise equation A.1a, we will find an expression Dmax,LBGB,LC1 = −s′1 t+ s′2 D0. This
indicates that low t/D0 ratios are favourable. Let’s try to explain this mathematically:

If we keep the outer strut diameter D0 constant and only increase the wall thickness t, the area
A and inertia I are increased accordingly: A = π

4 (D2
0 − (D0 − 2t)2

)
I = π

64

(
D4

0 − (D0 − 2t)4
)

This results in the following values for A and I:

Table A.1: Values for A and I for different t and constant D0

t/D0 A/D2
0 I/D4

0 I/AD2
0

0.1 0.09π 0.009225π 0.1025

0.2 0.16π 0.013600π 0.0850

0.3 0.21π 0.015225π 0.0725

0.4 0.24π 0.015600π 0.0650

0.5 0.25π 0.015625π 0.0625

The local buckling resistance is similar to fLB = π2EI
AL2 . If E, L and D0 are kept constant, we

arrive at: fLB ∼ I
A = D2

0

(
1
4( t
D0

)2 − 1
4
t
D0

+ 1
8

)
. The advantage of a larger inertia decreases thus

with an increasing wall thickness t. This decrease can also be approximated with a linear fit
with fLB ∼ D2

0(−1
8
t
D0

+ 0.1125) for t = 0.1D0 to t = 0.4D0. A similar linear fit was employed
in equation 5.4a in order to simplify the rules of thumb for bamboo.

For bamboo, an analysis for different t/D0 ratios is mere hypothetical as nature only provides
t/D0 ratios of about 0.8 to 1.2. For steel struts however, this investigation is certainly interesting.
If material costs increase linearly, an increase of wall thickness should be considered with care.
Let”s consider the following case: We want to reinforce the bottom struts of a f = 2 geodesic
dome to prevent local buckling due to dead load. Doubling the wall thickness from t = 0.1D0

to t = 0.2D0 results in an area increase of 0.16/0.09 = 1.78. This results in 1.78 times the
material costs and a stress reduction to 1/1.78 = 56.1% of the initial stresses. However, the
buckling resistance is also decreased to 0.085/0.1025 = 82.9%. This means that a geodesic dome
with thicker bottom struts has a new utilization factor of µLB = σmax

fLB
= 56.1

82.9 = 67.8%. This
is only a gain of 33.2% of structural safety for t = 0.2D0 compared to the previous version
t = 0.1D0. But it comes at 1.78 times the initial material costs for the bottom struts. In the
given example we need to reinforce 20 struts for frequency f = 2 out of 55 struts in total. This
results in (1.78 · 20 + 35)/55 = 1.28 times the initial costs. As frequencies increase, this relation
becomes more favourable and reinforcing bottom struts might be an option to counteract local
buckling (similar to edge effects in monolithic shells). Note that the gained safety decreases with
increased wall thickness: If utilization is 1.0 for t = 0.1D0, then there is an additional safety of
33.2% from 0.1 to 0.2 – from 0.4 to 0.5 the increase is only 1.1%! Thin circular hollow sections
are thus desirable from a structural and economical point of view. If the wall thickness becomes
too small however, localized buckling of the hollow section’s wall might occur.
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A.5.1.2 Derivation of equation A.1a

In the case of self-weight, we found the maximum possible dome diameter due to local buckling
for even frequencies:

even frequencies : Dmax,LB = C1

(D2
0f

2E

ρg

)1/3
with C1 = 1.1313

( t

D0

)2
− 1.2067

( t

D0

)
+ 1.4837 R2 = 0.9995

(A.2)

This equation can be set equal with the transition curves for global to local buckling to find the
intersecting point (see figure below):

t = 0.1D0 :
DµGB=µLB

D0
= 4.8950f2 − 2.7650f

t = 0.2D0 :
DµGB=µLB

D0
= 4.5443f2 − 4.4138f

t = 0.3D0 :
DµGB=µLB

D0
= 4.1447f2 − 3.6795f

t = 0.4D0 :
DµGB=µLB

D0
= 3.7313f2 − 2.2248f

(A.3)

C1

( f2E

ρgD0

)1/3
= C2f

2 − C3f (A.4)

Table A.2: Coefficients C1, C2, C3

t/D0 C1 C2 C3

0.1 1.57915691 4.895 2.765
0.2 1.483623277 4.5443 4.4138
0.3 1.40700832 4.1447 3.6795
0.4 1.356714444 3.7313 2.2248

Figure A.28: Transition GB to LB for different t/D0 ratios

We can solve for
Dmax,LB

D0
=
DµGB=µLB

D0
graphically:
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Figure A.29: Simultaneous GB and LB for different t/D0 ratios

We can also solve equation A.4 numerically and find the following graphs:

Figure A.30: Relationship of Dmax, D0 and t

In general
Dmax,LBGB

D0
= s1

(
t
D0

)2
+ s2

(
t
D0

)
+ s3.

The coefficients s1 to s2 for different diameters D0 can be displayed in a table:

Table A.3: Coefficients s1, s2, s3

D0[mm] s1 s2 s3
100 4345.3 -3445.1 4574.3
150 3701.2 -2943.4 3926.5
200 3285.9 -2620.7 3511.2
250 2986.1 -2388.1 3212.5

And a regression formula can be found:
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s1 = 0.0349D2
0 − 21.22D0 + 6341.4

s2 = −0.0269D2
0 + 16.406D0 − 4812.1

s3 = 0.0344D2
0 − 21.036D0 + 6099

We can derive a safe zone for all materials dependent on the t/D0 ratio and the frequency. For
bamboo, ratios other than 0.08 to 0.12 don’t occur in nature but are displayed here for sake of
completeness. The number after the material indicates D0 in mm.

Figure A.31: Onset of global buckling

A.5.2 Derivation of maximum strut force Fs due to point load

Figure A.32: Strut force Fs
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cos (φ) = 1− L2
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Appendix B

Additional Literature Review

B.1 Tensile strength

The tensile strength of bamboo fibres can be very high [47]. However, strength decreases with
increasing size of specimens. The ISO 2004b standard prescribes tests on dog-bone shaped
specimens, assuming that these reflect full-culm tensile strength sufficiently. Whether this is the
case, should be further discussed in future research. At the present time, the dog-bone test is
the only available method to obtain bamboo tensile strength and results from previous research
on small specimens will be adopted for the present research.

B.1.1 Guadua angustifolia

Ghavami and Marinho 2002 (data retrieved from [81]) conducted a series of tests on six specimens
of Guadua angustifolia. Amongst other properties they determined the longitudinal tensile
strength of 20 x 1 mm coupons and compressive strength for D=h.

Property n x̃ s COV [%]

External Diameter Do [mm] 6 76.68 43.29 56

Wall thickness t [mm] 6 13.19 7.51 57

Internodal Length [mm] 6 271.65 103.39 38

Tensile strength [MPa] 6 102.7 21.9 21

Compressive strength [MPa] 6 32.9 5.3 16

Table B.1: Mechanical and geometric properties of Guadua angustifolia (Ghavami and Marinho,
2002)

In 2008, Ghavami conducted tensile and compressive tests1 according to the ISO 2004b standard
on Guadua angustifolia specimens with and without nodes [32] (table B.2). The findings suggest
that nodes decrease tensile as well as compressive strength2

1Dimensions h = D, average taken from top and bottom of culm
2This contradicts the findings of Shao et al. [77] for Phyllostachys pubescens, who found slightly increased

compressive strength. In order to find out whether nodes increase or decrease compressive strength, compressive
tests on both Guadua angustifolia and Phyllostachys pubescens should be conducted for specimens with and
without nodes (chapter 4.2.3).
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Property node node free node/node free

Tensile strength ft [MPa] 112.3 146.8 0.76

MOE Et [GPa] 8.87 11.15 0.80

Compression strength fc [MPa] 35.70 47.80 0.75

MOE Ec [GPa] 2.64 3.33 0.79

Table B.2: Average mechanical properties for Guadua angustifolia (Ghavami, 2008)

Tests on compression, tension, shear parallel to the fibre, compression perpendicular to the fibre
and bending were carried out by Luna et al. in 2012 [59]. The samples of Guadua angustifolia
came from different areas of Colombia and were tested in “wet” condition (MC far above fibre
saturation point). They found the following characteristic strength values3:

Tensile strength ft‖ [MPa] 40.7

Compression strength fc‖ [MPa] 20.3

Compression strength perp. fc⊥ [MPa] 1.7

Shear parallel fv‖ [GPa] 3.5

Table B.3: Average mechanical properties for Guadua angustifolia (Luna et al., 2012)

In 2012, Gonzalez et al. conducted tensile tests on dog-bone shaped specimens of Colombian
Guadua angustifolia for different moisture contents (figure B.1). All measured values of tensile
strength for a range of 5 to 35% MC were well above 50 N/mm2 [35]. The moisture content is
defined as MC% = m−m0

m0
× 100; m...mass before drying; m0...dry mass

(a) dog-bone shaped specimens (b) Tensile strength as a function of MC

Figure B.1: Tensile tests on Guadua angustifolia (Gonzalez et al., 2012)

In 2013, Estrada et al. modelled the characteristic tensile strength for Guadua angustifolia by
means of digital image processing. They found a tensile strength of 250 N/mm2 for a cluster
with 5000 fibre bundles and 40% fibre content [23]. If an average fibre content of 40% is assumed
and tensile strength of the parenchyma matrix is safely set to 0, the rule of mixture provides:

3average taken from top, middle and bottom of culm
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rule of mixture: ft = ft,f · Vf + ft,m · (1− Vf ) = 250 · 0.4 + 0 = 100 N/mm2

Vf ...fibre volume fraction; ft,f ...tensile strength fibre; ft,m...tensile strength matrix

This result agrees with the findings of Ghavami. However, the results of Gonzalez et al. and
Luna et al. are significantly lower and cannot be neglected. Combining the findings of Ghavami
on the influence of nodes and the values from Gonzalez at al, it can be concluded that a mean
tensile strength of 0.76 ·50 = 38N/mm2 is a conservative assumption for full-culm cross-sections
with nodes and a moisture content of MC < 30%. This assumption is in close agreement with
Trujillo‘s publication of 2007 in The Structural Engineer where he reports a tensile strength of
Guadua angustifolia of > 35N/mm2 [85]. For all model calculations and strength predictions, a
mean tensile strength of 38N/mm2 is assumed for Guadua angustifolia with and without nodes.

B.1.2 Phyllostachys pubescens (Moso)

In 2008, Yu and al sliced Moso bamboo cross-sections into 6 radial layers and determined their
tensile strength and MOE [101]. They reported a range of MOE from 8.99 to 27.40 GPa and
a longitudinal tensile strength of 115.35 to 309.32 MPa. The highest strength and MOE were
found in the most outer layer of the cross-section. In the same year, Yu et al. also developed a
linear equation relating tensile strength and MOE to air-dried density [g/cm3] [102]. The sample
geometry is shown in figure B.2. Air-dried density for node as well as internode material typically
varies around 0.6 to 0.8[g/cm3] for full cross-sections of Moso bamboo [56] [101] [102]. For an
air-dried density of 0.7[g/cm3] we arrive at

compression: MOE = 41.956 · ρ− 18.431
tensile strength ft = 334.941 · ρ− 93.866

For an air-dried density of 0.7[g/cm3] we arrive at ft = 334.941 · 0.7− 93.866 = 140.6N/mm2

Figure B.2: Tensile test specimens, thickness 0.94 to 2.34mm (Yu et al., 2008)

In 2009, Shao et al. reported a linear relationship between tensile strength and fibre content
for Moso bamboo [78]: ft = 562.69 · Vf + 19.04 which results in a tensile strength of ft =
562.69 · 0.4 + 19.04 = 244 N/mm2 for 40% fibre content.

In 2010, Shao et al. investigated the effect of nodes on tensile, bending, parallel shear and parallel
and transverse compression strength of Moso bamboo. For all properties except tensile strength,
the effects of nodes was positive. The effect on parallel compressive strength however, was very
small (increase of 6%). Tensile strength of specimens with nodes dropped to on 67% of those
without nodes [77].
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Property x̃ s COV [%] without node / node

Tensile strength without node [MPa] 154.24 13.92 9.00

Tensile strength with node [MPa] 102.70 15.81 15.40 1:0.67

Compr. strength without node [MPa] 56.40 4.97 8.80

Compr. strength with node [MPa] 59.80 5.65 9.50 1:1.06

Table B.4: Influence of nodes on tensile and compression strength of Phyllostachys pubescens
(Moso) (Shao, 2010)

In 2014, Chen et al. reported a linear relationship between tensile strength and fibre content for
4-year old Moso bamboo with a moisture content of about 9.7% [10]: ft = 617.789 · Vf + 6.936
which results in a tensile strength of ft = 617.789 · 0.4 + 6.936 = 254 N/mm2 for 40% fibre
content.

Figure B.3: Tensile test specimens, thickness 10mm (Chen et al., 2014)

Comparing the different results to each other, Shao‘s findings of 2010 produce the lowest values
for specimens with nodes. Therefore a mean tensile strength of 100 N/mm2 is a safe estimate
and will be assumed in this thesis for Phyllostachys pubescens (Moso) with and without nodes.
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Appendix C

Test Results

C.0.3 Dynamic Modulus of Elasticity

The following results were obtained for 14 culms of Moso and 7 culms Guadua bamboo respec-
tively (fnat natural frequency, D0 outside culm diameter, t wall thickness, m mass, lculm length
of culm, ρ density, Edyn Dynamic Modulus of Elasticity):

Table C.1: Dynamic Modulus of Elasticity for Phyllostachys pubescens (Moso)

Culm fnat D0 t m lculm no. ρ Edyn
No. [Hz] [cm] [cm] [kg] [cm] nodes [kg/m3] [MPa]

1 1647 8.65 0.9 1.84 125.0 6 689 11982

2 1254 9.88 1.1 3.00 157.0 9 614 9770

3 1808 10.38 1.0 1.92 109.0 5 583 9291

4 1806 10.45 1.0 2.98 112.0 6 870 14667

5 1752 10.00 1.3 2.54 112.5 7 642 10210

6 1996 11.13 1.2 2.70 109.5 6 666 13074

7 1723 10.33 0.9 2.12 121.0 5 640 11431

8 1635 11.08 1.2 2.48 113.5 6 573 8085

9 1755 10.43 1.0 2.64 119.0 5 732 13072

10 1827 9.58 0.8 1.68 113.5 5 652 11544

11 1847 10.73 1.0 2.52 120.5 5 699 14203

12 1859 10.90 1.2 2.42 109.0 6 614 10352

13 1801 10.10 1.0 2.06 116.0 5 634 11353

14 1960 10.40 0.9 1.84 104.5 4 640 11000

mean x 1762 10.29 1.0 2.34 117.3 6 660 11431

SD σ 177.48 0.65 0.14 0.43 12.73 1.20 74.02 1865.63
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Table C.2: Dynamic Modulus of Elasticity for Guadua angustifolia

Culm fnat D0 t m lculm no. ρ Edyn
No. [Hz] [cm] [cm] [kg] [cm] nodes [kg/m3] [MPa]

1 1732 14.50 1.2 5.58 157.5 5 682 21032

2 2176 15.03 1.6 5.64 117.0 3 719 19047

3 1532 11.75 1.2 5.30 165.0 5 787 20642

4 1488 13.70 1.5 7.08 185.0 5 671 20788

5 1645 10.00 1.3 5.46 147.5 6 1050 25369

6 1342 12.25 1.5 5.50 183.5 9 573 14352

7 1575 13.13 1.6 6.18 152.0 7 699 16537

mean x 1641 12.91 1.4 5.82 158.2 6 740 19681

SD σ 265.70 1.73 0.16 0.62 23.29 1.89 150.77 3535.96

C.0.4 Compression Strength and Stiffness

The following test results were obtained for compression tests of Phyllostachys pubescens (Moso)
and Guadua angustifolia, for a culm diameter D0, wall thickness t, specimen height h, surface
area A, specimen density ρ1, maximum reached compressive force Fc,max, ultimate compressive
strength fc, compressive Modulus of Elasticity Ec. GX denotes specimens taken from short
culm pieces for which Edyn and ρculm were not determined. The moisture content was 13.58%
for Guadua angustifolia and 11.30% for Phyllostachys pubescens (Moso).

Table C.3: Compression results for Phyllostachys pubescens (Moso)

Culm D0 t h A Node ρ Fc,max fc Ec
No. [mm] [mm] [mm] [mm2] y/n [kg/m3] [kN] [MPa] [MPa]

M02 96 10.5 150 2804 n 564 117.1 41.76 6034

M02 97 11.5 166 3071 y 610 123.4 40.19 4787

M01 89 7.5 151 1920 y 768 95.8 49.86 8212

M06 112 10.0 150 3189 y 751 162.4 50.93 4715

M10 92 6.5 153 1746 y 801 90.5 51.85 8517

M01 88 7.5 150 1885 y 771 93.5 49.59 9126

M01 90 7.5 153 1944 y 783 100.4 51.64 8644

M05 109 12.5 155 3790 y 633 145.4 38.37 3719

M10 93 6.5 151 1756 n 778 93.8 53.43 8420

M10 97 6.5 150 1838 n 810 102.4 55.72 8784

M10 90 6.5 150 1695 n 754 88.5 52.21 8266

M13 103 8.5 150 2510 n 663 119.9 47.78 7016

M13 103 8.5 153 2510 n 693 122.2 48.68 7954

x 96.5 8.5 152.5 721.5 48.62 7246
xclear 96.5 7.8 150.7 710.6 49.93 7745
xnode 96.5 9.0 154.0 730.8 47.49 6817
σ 7.7 2.0 4.4 80 5.31 1820

1The height of the diaphragm was taken as 5 mm for Guadua angustifolia and 3 mm for Phyllostachys pubescens
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Table C.4: Compression results for Guadua angustifolia

Culm D0 t h A Node ρ Fc,max fc Ec
No. [mm] [mm] [mm] [mm2] y/n [kg/m3] [kN] [MPa] [MPa]

GXX2 127 12.5 144 4477 n 855 318 71.06 9249

G07 131 16.0 153 5781 y 691 245 42.31 6179

G07 133 13.5 151 5047 n 744 229 45.31 7883

G03 114 10.5 151 3414 y 935 258 75.44 11982

G03 114 10.5 151 3398 n 854 255 74.93 13560

G03 119 10.5 150 3563 n 856 263 73.84 12676

G03 116 10.5 153 3464 y 936 255 73.53 12856

G07 131 14.5 154 5284 y 733 237 44.91 6549

G07 132 15.5 151 5649 n 688 236 41.74 6783

G03 117 10.5 150 3497 n 859 269 77.00 13985

G07 132 15.5 152 5649 y 693 246 43.64 7274

G03 115 11.5 151 3721 n 766 239 64.23 8750

GXX2 127 12.5 142 4477 n 693 250 55.89 7847

G07 134 14.5 152 5421 n 711 231 42.59 7872

G03 118 11.0 152 3680 y 918 264 71.60 9651

x 124 12.6 150 796 59.87 9540
xclear 124 12.4 149 781 60.73 9845
xnode 123 13.0 153 818 58.57 8968
σ 7.9 2.1 3.2 95 14.83 2736

C.0.5 Bolt Shear Test

Table C.5 displays the following test results: Bolt shape round(#) or square (�), culm average
outer diameter (D0), culm average thickness (t), height of the specimen (h – of little importance
for this test), edge distance from bottom of bolt to bottom end of specimen (ledge), node (yes/no),
average specimen density (/rho), culm thickness at the point of the continuous crack (tcr),
bearing surface (Ab = td), crack opening or splitting surface (Acr = ntcrledge), maximum bolt
force (Fb), bearing strength (Fb/2Ab), crack opening force at onset of final tensile splitting (Fcr)
and splitting capacity (fs‖). The specimens with initial cracks are included in these results and
it was found that bearing strength was not distinctly smaller than for intact specimens. Note
that the tensile splitting capacity (fs‖) has the character of a hypothetical material property as
the bolt force and crack surface cannot be directly translated into Mode I splitting capacity. For
further reading this issue is discussed in detail by Mitch [62]. Comparing bearing stiffness Eb
to compression stiffness Ec, we find that bolt bearing is a little softer than pure compression,
especially for the square bolt. However, for bearing deformation capacity, the elastic part is of
little interest and Eb is not further discussed.

2Indicates short specimen for which density and dynamic MOE of entire culm was not determined.
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Appendix D

Drawings

(a) Square cross dowels (b) Round cross dowels

Figure D.1: Dome Hubs
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(a) Test set-up bolt shear test

(b) Adjustable angle

Figure D.2: Bolt shear test set-up
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Figure D.3: Tensile connector
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