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Chapter 1 Introduction 

1.1 Motivation 
In the field of material science, one aim is to understand materials fundamentally so that 
new materials with the desired properties can be created. 

The objective of this MSc thesis project is to establish a numerical model that helps 
scientists and engineers to look into a kind of interesting material: cement paste. 

Portland cement is a fundamental material for civil engineering structures and has 
some unique properties. First of all, the state of cement changes once it is mixed with 
water, this phenomenon is called hydration reaction, and the final product is named 
cement paste. With the increasing of degree of hydration, the properties of cement paste 
are changing all the time, among other things, two of which are the tensile strength and 
stiffness. Furthermore, cracking is another characteristic of cement paste, which is 
primarily due to the limited capacity to sustain tensile stresses (or perhaps better, tensile 
strains) [1]. 

This project studies the fracture process of cement paste, especially the tensile 
strength, stiffness and cracking due to external loads. Moreover, the study is based on the 
micro-structure of cement paste at the level of micro-meter so that the relationship 
between micro-structure of materials and the corresponding properties is revealed. 

1.2 Similar efforts 
Numerical modeling of fracture process of brittle materials, such as cement paste, mortar, 
concrete and rocks, started in the late 1960s with the landmark papers of Ngo and 
Scordelis (1967) [2] and Rashid (1968) [3], in which the discrete and smeared crack 
models were introduced. Especially the latter approach gained much popularity, and in 
the 1970s comprehensive efforts were invested in developing constitutive models in a 
smeared setting which could reproduce the experimentally observed stress-strain 
characteristics of concrete. However, they cannot tell the fracture process in detail. [4] 

In the 1990s, Schlangen and van Mier proposed another model to compensate the 
drawbacks of discrete and smeared crack models, which is called lattice model [5]. The 
concept “Lattice” was borrowed from the filed of theoretical physics and was first 
introduced to material science by Hrennikoff in the 1940s [6]. In the lattice model, the 
continuum is replaced by a lattice of truss or beam elements. Subsequently, the micro-
structure of the material can be mapped onto these truss or beam elements by assigning 
them different properties, depending whether the truss or beam element represents a grain 
or mortar. However, the research was mainly in the 2D domain. 

Up to the year 2007, all these studies were at the meso-level, hence, they could not 
illustrate a direct relationship between the micro-structure of materials and the 
corresponding performance. In 2007, Tan tried to link the existing hydration model 
HYMOSTRUC (Hydration, Morphology and Structure) [7, 8] and the lattice fracture 
model. She lay down several assumptions to generate an irregular lattice mesh on basis of 
the micro-structure information provided by the hydration model HYMOSTRUC. She 
primarily studied the problem in 2D domain and took an attempt for 3D analysis. One of 
her conclusions was “The numerical results from 2D and 3D lattice models differ a lot. It 
is suggested to apply 3D lattice model for further numerical research.” [9] 
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1.3 Objective 
In this project, a complete 3D analysis of cement paste is done, more specifically, two 
modules, namely 3D Lattice Generation and 3D Lattice Analysis, are developed. The first 
module can be regarded as an upgrade of Tan’s work, as some assumptions related to the 
lattice mesh are improved. The latter one, 3D Lattice Analysis, is an extension of 
Schlangen’s program to 3D domain. The differences and improvements of modeling in 
this thesis compared with existing works [5, 9] are briefly described in Chapter 2. 

1.4 Overview 
According to Finite Element Method, the entire analysis can be divided into three stages: 
pre-processing, kernel and post-processing. In this project, pre-processing is the 3D 
Lattice Generation, then is the kernel 3D Lattice Analysis, the last phase is to interpret 
the results from 3D Lattice Analysis, for instance, visualization of load-displacement 
diagram and crack propagation. 

The starting point of this research is the outcome from HYMOSTRUC model, which 
illustrates the micro-structure information of cement paste. The final output of this 
project is the load-displacement diagram and the crack propagation. Figure 1.1 shows the 
complete procedures. 
 

Micro-structure of cement 
paste from Hymostruc model

(Starting Point)

3D Lattice Generation
(Pre-processing)

3D Lattice Analysis
(Kernel)

Interpretation of results
(Post-processing)

End

 
Figure 1.1 Flow chart of the project 
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1.5 Outline of the thesis 
The thesis is divided into seven chapters. 
Chapter 1 introduces the motivation of this research and reviews similar efforts in 

literatures. The objective and overview of this thesis are also presented. 
Chapter 2 illustrates the differences and improvements of modeling in this thesis 

compared with existing works. 
Chapter 3 creates the numerical model of cement paste, including all the stages shown 

in Figure 1.1. 
Chapter 4 determines the basic parameters which are introduced in the numerical 

model in the preceding chapter. 
Chapter 5 presents an example of numerical simulation, which follows the entire 

procedures defined in Chapter 3 and uses the basic parameters determined in Chapter 4. 
Chapter 6 gives and compares the results (e.g. tensile strength and stiffness) of a set of 

numerical simulations, mainly concerning the variation of curing ages and Blaine values. 
Chapter 7 summarizes the main contribution of this thesis, points out the limitations 

of current model and implementation, and proposes suggestions for further investigation. 
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Chapter 2 Modeling Review 
This chapter intends to briefly illustrate the differences and improvements of this thesis 
compared with the methods adopted in [5] and [9]. 

2.1 Lattice generation 
The mesh method proposed in this thesis is similar to the method adopted in [9]. The 
differences lie in two aspects, namely the determination of radius of cross-section of local 
element and the determination of Young’s and shear modulus of local element (see 
Section 3.2 for more information). 

In [9], the radius of cross-section of local element is calculated on basis of the 
volumes of the two contact particles, while in this thesis it is determined by the contact 
volume of the two contact particles. This approach is based on the assumption “The 
strength of two contact particles is determined by the weakest link, not the average 
capacity”. Hence, the resulting radius is always smaller than the one in [9]. 

For the determination of Young’s and shear modulus of element, [9] first classifies 
various contact cases and then calculates the weighted average value directly. In contrast, 
they are calculated via two “averaging” steps in this research. The advantage of this 
improvement is that it can avoid complicated classification of contact cases and analytical 
comparison shows that the result does not differ too much. 

2.2 Lattice analysis 
In [5], the concept “Lattice” was first introduced into the field of fracture mechanics and 
a new cracking model was proposed, namely lattice fracture model. However, it was 
restricted to 2D analysis of concrete at meso-level, although the principles also hold for 
other configurations. This thesis expands the implementation to 3D analysis and at a 
lower level (micro-level) for cement paste (see Section 3.3 for more information). 
Furthermore, the burning algorithm is incorporated to determine when to stop the 
analysis. This change is necessary for random geometric lattice, and the reason is 
illustrated in Section 3.3.12. 
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Chapter 3 Numerical Modeling 
This chapter is the spirit of the thesis project, as it establishes the modeling approach. 

3.1 Starting point 
The starting point of this research is the micro-structure information which comes from 
the hydration model HYMOSTRUC. In this model, it is assumed that only CSH (Calcium 
Silicate Hydrates) and CH (Calcium Hydroxides) are produced during the hydration 
process. From fracture point of view, there is not too much difference between the 
hydration product CSH and CH, hence, CH product is transferred to volume equivalent 
CSH product for simplicity in this research. The outcome object is assumed to be in the 
shape of sphere and consist of three layers in general, namely unhydrated cement, inner 
product and outer product. The location of the object is expressed by sphere center 
coordinates and the size by diameters. This object is named as hydrating cement particle 
for convenient reference. 

The output file from the program HYMOSTRUC has the extension *.hym, the syntax 
of which looks like 
 
Table 3.1 *.hym (HYMOSTRUC) 

x y z D_outer type D_inner D_unhydrated 
… … … … … … … 

 

3.2 3D Lattice Generation 
The reason for defining this step is that the outcome from HYMOSTRUC model is not 
exactly what is required by lattice model. The lattice analysis operates on a frame 
structure while the HYMOSTRUC model only provides the micro-structure information 
in terms of spheres. Hence, additional operation is demanded to generate a frame 
structure consisting of beam elements on basis of the output from HYMOSTRUC. 
Fortunately, it is not difficult to build this bridge, which will be elaborated in the 
following sections. 

3.2.1 Required parameters 
In the lattice analysis module, it is assumed that the frame consists of beam elements with 
circular cross-section. Hence, the task of lattice generation is to determine the location of 
nodes, the geometric parameters (e.g. length, radius of cross-section) and mechanical 
properties (e.g. Young’s and shear modulus, tensile strength) of elements. 
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3.2.2 Determination of nodes and geometric parameters 
 
 

l  

h  

h  

 
Figure 3.1 Contact hydrating cement particles and beam element 

 
It is reasonable to assume that one node represents one hydrating cement particle, hence, 
the node coordinates are exactly equal to the coordinates of hydrating cement particle 
center. Moreover, it is assumed that one element is generated between two hydrating 
cement particles if they have contact volume as shown in Figure 3.1. The length of the 
element is equal to the distance of the two nodes, the radius of cross-section is 
determined by the size of contact volume. 

3.2.3 Determination of Young’s and shear modulus of element 
 
 

uR  
iR  

oR  
u i u o i

p u i o
o o o

R R R R RE E E E
R R R

− −
= + +  

where, 
pE  = modulus of particle 

uE  = modulus of unhydrated cement 

iE  = modulus of inner product 

oE  = modulus of outer product 

uR  = radius of unhydrated cement 

iR  = radius of inner product 

oR  = radius of outer product 
 

 
Figure 3.2(a) Determination of particle modulus 
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1R  
2R  

1 22 1 2 1
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p p
p p

E El R R R l l RE E E
l l l
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where, 
E  = modulus of beam element 

1pE  = modulus of particle 1 

2pE  = modulus of particle 2 

1R  = radius of particle 1 

2R  = radius of particle 2 
l  = length of beam element 
 

 
Figure 3.2(b) Determination of beam element modulus 

 
For the determination of Young’s and shear modulus of element ( ,E G ), it is not so 
straightforward. In this research, they are calculated via two “averaging” steps as shown 
in Figure 3.2(a) and (b). First of all, the modulus of hydrating cement particle ( ,p pE G ) is 
defined as average value of modulus of unhydrated cement, inner product and outer 
product by weight. Then modulus of element can be calculated by averaging particle 
modulus by weight. 

3.2.4 Determination of tensile strength of element 
The last parameter to be determined is the tensile strength of element. Actually this is the 
trickiest one in the lattice model. For simplicity, it is assumed that the tensile strength is 
proportional to the Young’s modulus of the element. The coefficient is determined in 
Section 4.3. 

3.3 3D Lattice Analysis 
The role of lattice analysis in this research is to simulate the fracture process of cement 
paste system. The basic idea of lattice analysis is that imposing a prescribed displacement 
on a frame structure, finding the critical element that has highest stress/strength ratio, 
removing it from the system. This procedure is repeated until the system fails. 

Roughly speaking, lattice analysis is a set of linear analysis on frame structures using 
Finite Element Method. This implies that the fundamental of lattice analysis is nothing 
else but the conventional structural analysis. As a result, the steps required for lattice 
analysis are quite similar to the standard finite element analysis for space frame structure, 
except that the critical element is removed and the analysis is repeated until the system 
fails. It is illustrated by Figure 3.3. 
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Impose boundary 
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End

No
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Figure 3.3 Lattice analysis flow chart 
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3.3.1 Element stiffness matrix in local domain 
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z  

y  
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iu  ixθ  

iw  
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iv  
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jyθ  

jv  

 
Figure 3.4 Local domain 

 
In this research, the two-noded beam element in 3D configuration is adopted as shown in 
Figure 3.4. Shear effect is taken into account because both slender and non-slender 
elements are presented for the mesh generated in Section 3.2. 
 
The complete form of element stiffness matrix is in the dimension of 12 12× , which 
consists of the following contributions, 
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(3) For bending and shear deformation in the plane xoz , 
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(4) For torsion, 
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The element stiffness matrix can be assembled on basis of the above four components, 
which is 
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where, 

1Φ  = 2
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E  = Young’s modulus 
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G  = shear modulus 
zI  = moment of inertial about z -axis 

yI  = moment of inertial about y -axis 
J  = polar moment of inertial about x -axis 
A  = cross-sectional area 

sA  = shear cross-sectional area 
κ  = shear correction factor 
 
In particular, for circular cross-section, 

zI  = 4

4
rπ  

yI  = 4

4
rπ  

J  = 4

2
rπ  

A  = 2rπ  

κ  = 10
9

 

3.3.2 Transformation matrix 
 
 

z  

*x  

x  

y  

i  

j  
*y  

*z  

*O  

O  

 
Figure 3.5 Local and global coordinate systems 

 
The configuration of 3D beam element is shown in Figure 3.5. The transformation matrix 
is of the following form, 
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Direction cosines are 

),cos( *
1 xxl =  

),cos( *
2 yxl =  

),cos( *
3 zxl =  

),cos( *
1 xym =  

),cos( *
2 yym =  

),cos( *
3 zym =  

),cos( *
1 xzn =  

),cos( *
2 yzn =  

),cos( *
3 zzn =  

 
These nine direction cosines can be determined on basis of the coordinates of the two 
nodes ),,( iii zyxi  and ),,( jjj zyxj  in global domain. The procedure is 

(1) ij xxa −=1  

ij yya −=2  

ij zza −=3  

(2) choose an arbitrary reference point ),,( bbb zyxB  on the principal plane *** yOx  or 
*** zOx , provided that the point B  is not located on the *x -axis 

ib xxb −=1  

ib yyb −=2  

ib zzb −=3  
(3) 23321 babac −=  

31132 babac −=  

12213 babac −=  
(4) 23321 acacd −=  

31132 acacd −=  

12213 acacd −=  
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(5) 2
3

2
2

2
1 aaal ++=  (length of element) 

l
al 1

1 =  

l
am 2

1 =  

l
an 3

1 =  

(6) 2
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d
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d
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n 3
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(7) 12213 nmnml −=  
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12213 mlmln −=  

3.3.3 Element stiffness matrix in global domain 
The element stiffness matrix in global domain e

global
K  can be calculated on basis of 

element stiffness matrix in local domain e
local

K  and transformation matrix T  using the 
formula 

e e T
global local

K T K T=  

 
The resulting matrix is in the dimension of 12 12× . 

3.3.4 Link local degrees of freedom to global degrees of freedom 
The connectivity array is defined to describe the relationship between elements. Local 
degrees of freedom for an element start from 1 and end at 12, while global degrees of 
freedom are dependent on the number of nodes in the system and how many degrees of 
freedom each node has. For beam element in 3D configuration, each node always has six 
degrees of freedom in global domain, hence the total number of degrees of freedom of the 
system is 6N , where N  is the number of nodes in the system. 
 
The connectivity array for an element has 12 entries, which can be calculated by 

[1] 6 ( 1) 1ConnectivityArray i= × − +  
[2] 6 ( 1) 2ConnectivityArray i= × − +  
[3] 6 ( 1) 3ConnectivityArray i= × − +  
[4] 6 ( 1) 4ConnectivityArray i= × − +  
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[5] 6 ( 1) 5ConnectivityArray i= × − +  
[6] 6 ( 1) 6ConnectivityArray i= × − +  
[7] 6 ( 1) 1ConnectivityArray j= × − +  
[8] 6 ( 1) 2ConnectivityArray j= × − +  
[9] 6 ( 1) 3ConnectivityArray j= × − +  
[10] 6 ( 1) 4ConnectivityArray j= × − +  
[11] 6 ( 1) 5ConnectivityArray j= × − +  
[12] 6 ( 1) 6ConnectivityArray j= × − +  

where, 
,i j  are the node number of the first node and second node of an element, respectively 

3.3.5 Assemble load vector 
The load vector represents all the loads on the system. Please be aware that prescribed 
displacements are regarded as a kind of displacement boundary conditions (Dirichlet 
boundaries), not active external loads. As only prescribed displacements are imposed on 
the system in this research, the resulting load vector is zero-vector. 

3.3.6 Impose boundary conditions 
In conventional structural analysis, it is time to assemble global stiffness matrix based on 
the element stiffness matrix in global domain and connectivity array. However, in lattice 
analysis, the problem size is usually quite huge (for instance, the system consists of 1 
million nodes), hence, it is impossible to store such a huge global stiffness matrix in 
computer memory in practice. The solution is to make use of global stiffness matrix in 
unassembled form. The corresponding method is usually called element-by-element 
scheme. 

The global stiffness matrix is not assembled, but the information on how it would be 
assembled can be gathered from element stiffness matrix in global domain and 
connectivity array. For convenient reference, the phrase “global stiffness matrix” 
mentioned in this thesis means element stiffness matrix in global domain plus 
connectivity array. 
 
The prescribed displacement boundary conditions can be imposed element-by-element 
according to the following procedures, 

yieldsK d f→  
where, 
K  is the global stiffness matrix before boundary conditions imposed, which is singular; 
d  is the displacement vector, in which only the constraint entries are known; 
f  is the external load vector, in our particular case it is zero vector as there is no active 

external loads. 
 
(Remark: Please note that the following procedures also hold even if active external loads 
exist.) 
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(1) Fill the unknown entries in the displacement vector d  with artificial “0”; 
(2) Calculate the multiplication of global stiffness matrix K  with the displacement 

vector d , the result vector is denoted as f∆ ; 
(3) Update the load vector f  using the formula f f f⇐ − ∆  (Be aware that here is 

“minus” sign NOT “plus”); 
(4) Update the constraint entries in the load vector f  with the product of prescribed 

displacement multiplied by the corresponding diagonal entry in the global 
stiffness matrix K ; 

(5) Set all the entries in the constraint rows and columns in the global stiffness matrix 
K  to “0”, except that the diagonal entry remains. 

 
When the above steps are complete, the prescribed boundary conditions have already 
been imposed, and the global stiffness matrix K  is not singular any longer. 
 
In order to present the above procedures more straightforward, an example is given as 
following. 

11 13 14 1 12 2 15

22 1 221

31 33 34 1 32 2 35

41 43 44 1 42 2 45

55 2 552

0 0 0 ( )0
0 0 0 0

0 0 0 ( )0
0 0 0 ( )0

0 0 0 0

k k k c k c k
k c kc

k k k c k c k
k k k c k c k

k c kc

− +    
    
         → − +   
     − +     
         

 

where, 
1c  and 2c  are prescribed displacements at the second and fifth degrees of freedom 

3.3.7 Solve linear algebraic equations 
The global stiffness matrix K  and the load vector f  turn into the coefficient matrix and 
constant vector in linear algebraic equations after imposing boundary conditions. 
 
Actually, solving the system of linear algebraic equations is the most time consuming 
part in the entire analysis. Hence, it is important to choose an appropriate solver and 
optimize it to satisfy with the specific problem. 

After reading some literatures [10], it is decided to apply conjugate gradient iterative 
method to solve this system of equations because it is suitable for large-scale sparse 
linear system. Moreover, preconditioning technique is incorporated primarily due to the 
following two reasons, 

(1) The global stiffness matrix K  is probably ill-conditioned due to the irregular 
mesh constructed in Section 3.2 and preconditioning technique might make the 
convergence faster even if the coefficient matrix is not well-conditioned; 

(2) “It is generally accepted that for large-scale applications, CG (conjugate gradient) 
should nearly always be used with a preconditioner” [10]. 
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In this project, Jacobi preconditioner is adopted as it is suitable for element-by-element 
scheme [11]. 
 
The basic algorithm for Jacobi-preconditioned conjugate gradient method is presented as 
following, 
 
Suppose that a system of linear equations is represented by 
Ax b=  
where, 
A  is the coefficient matrix, 
b  is the constant vector, 
x  is the solution vector 
 
Given the inputs A , b , an initial guess x , absolute error tolerance 1absoluteε < , relative 
error tolerance 1relativeε < , and a maximum number of iterations maxi . [10] 

( )m diag A⇐  
1m m−⇐  

r b Ax⇐ −  
*d m r⇐  

T
new r dδ ⇐  

0 newδ δ⇐  
if 2

0 absoluteδ ε< , then terminate; 
for(unsigned long int 1i = ; maxi i<= ; i + + ) 
{ 

q Ad⇐  
new
Td q

δ
α ⇐  

x x dα⇐ +  
r r qα⇐ −  

*s m r⇐  
old newδ δ⇐  

T
new r sδ ⇐  

if 2
new absoluteδ ε<  or 2

0new relativeδ ε δ< , then terminate; 

new

old

δ
β

δ
⇐  

d s dβ⇐ +  
} 

3.3.8 Calculate reaction force 
The reaction force is the summation of node forces of the constraint nodes which are in 
the same group. Node forces can be calculated using the following formula, 
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f K d=  
where, 
f  is the node force vector, 
K  is the global stiffness matrix before boundary conditions imposed, which is singular, 
d  is the displacement vector, which is the solution from Section 3.3.7 

3.3.9 Calculate element stress 
The element internal forces can be calculated via two steps, using the formulas 

e T e
local globald T d=  
e e e

locallocallocal
f K d=  

where, 
T  is the transformation matrix of an element, 

e
local

K  is the element stiffness matrix in local domain, 
e
globald  is the element displacement vector in global domain, 
e
locald  is the element displacement vector in local domain, 
e

local
f  is the element internal force vector in local domain 

 
Various element stresses can be calculated based on the element internal forces. In this 
research, the comparative element stress is defined as 

comparative
N
A

σ =  

where, 
N  is the element normal force, “+ ” represents tension while “− ” compression, 
A  is the area of an element 

3.3.10 Determine broken element and scaling factor 
At this step, the stress/strength ratio is calculated for every element and the element 
which has highest stress/strength ratio is defined as critical element. The critical element 
will be removed from the system and never comes back again. Furthermore, this removed 
element represents a void in the material, thus an alternative name for critical element is 
“broken element”. 

The inverse of the highest stress/strength ratio is defined as scaling factor. As the 
imposed prescribed displacement does not change during the entire analysis, this factor is 
used to derive the actual deformation of the system to reach the critical state. 

3.3.11 Update stiffness matrix 
The method to remove an element from the system is to update the corresponding 
stiffness matrices. The element stiffness matrices in local and global domain are cleared 
by setting all entries to zero and its contribution to the global stiffness matrix is 
eliminated. In such a way, the system is weakened. 
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3.3.12 Check failure of the system 
In principle, the reaction force is going to zero when the system fails. However, this case 
seldom takes place due to numerical errors in practice. Generally speaking, setting an 
error tolerance would be a solution, but unfortunately it is not reasonable for the lattice 
analysis because it is difficult to predict the lower bound of reaction forces which can be 
very small or extremely large. 

In this study, the problem is solved by checking the connectivity of remaining lattice 
structure. From physical point of view, if there is no path which links the top layer of the 
specimen to the bottom layer in the case of tension test in vertical direction, then the 
system fails. Hence, checking the connectivity of the lattice system is a straightforward 
way to determine whether the analysis should be stopped. In this research, burning 
algorithm is adopted to check the connectivity of the lattice system. More specifically, 
the boundary nodes are chosen as starting nodes, and then looking for and burning their 
neighbors. The burned neighbor nodes are chosen as new starting nodes. The above 
procedures are carried out recursively until no more nodes can be burned. 

3.4 Interpretation of results 
During the lattice analysis, the reaction force, broken element number and scaling factor 
are recorded. The derived results can be sorted into two catalogues for different usage, 
one is for simulation of mechanical properties and the other is for prediction of crack 
propagation. 

The mechanical properties is given in terms of load-displacement diagram, while the 
crack propagation is described by two different methods, namely element based method 
and voxel based method. 

In element based method, one broken element represents one micro-crack in the 
material. The elongation of broken element is defined as micro-crack width in 2D 
configuration. In 3D configuration, the micro-crack is assumed to be in the shape of 
cylinder, the length of which is the elongation of broken element and the cross-section of 
which is equal to the cross-section of broken element. This approach can show the 
location of micro-cracks and the amount of cracks approximately. However, it cannot 
provide accurate information for further analysis, for instance, the permeability of the 
cement paste. Furthermore, it is not flexible because it is not allowed to remove part of 
the entire broken element. 

An alternative is to transfer the broken element to a set of voxels. When an element is 
removed from the system, the corresponding voxels are removed entirely or partly, the 
manner of which is specified by the user. As the cracks are described on basis of voxels, 
it is even possible to add the mico-cracks induced by initial imperfection. 
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Chapter 4 Determination of Basic Parameters in Model 
In Chapter 3, a numerical model is created to analyze the fracture process of cement paste. 
This chapter will illustrate the involved basic parameters and determine them in detail. 

4.1 Basic parameters in the numerical model 
In summary, the following parameters must be prepared for the numerical simulation in 
advance, 

(1) Young’s modulus and shear modulus of the compounds: unhydrated cement, 
inner product (high density CSH) and outer product (low density CSH); 

(2) The coefficient γ  which determines the relationship between tensile strength and 
Young’s modulus of local element. 

4.2 Young’s modulus and shear modulus of the compounds 
In this research, the Young’s modulus and shear modulus of the compounds which 
include unhydrated cement, inner product and outer product are taken from [12], which 
were measured by nano-indentation or mechanical tests as shown in Table 4.1. 
 
Table 4.1 Young’s modulus and shear modulus of the compounds in GPa [12] 

 Unhydrated cement Inner product Outer product 
Young’s modulus 130 30 22 

Shear modulus 50 12.1 8.87 
 

4.3 The coefficient γ 
Actually, the tensile strength of element is the trickiest parameter in the lattice model. For 
simplicity, it is assumed that the tensile strength is proportional to the Young’s modulus 
of the element. Then the problem turns to the determination of this proportional 
coefficient which is denoted by γ . In [13], this coefficient is assumed to be 0.0001. In 
this research, a possible experiment plan is made to get the coefficient γ , but it has not 
been carried out due to lack of appropriate clamp (Currently the Microlab is developing 
the desired clamp). Hence, the value 0.0001 is used in all the numerical simulations in 
this thesis. 

4.3.1 Experiment plan to determine the coefficient γ 
The coefficient to be determined shows the relationship between tensile strength and 
Young’s modulus of local element. However, it is difficult to measure it directly because 
the size of local element is too small (around several micro-meters in this research). The 
solution is to apply an indirect measurement and derive it based on some assumptions. 

The basic idea of the experiment is to measure the tensile strength and Young’s 
modulus of the cubes with different sizes which are large enough to be casted in the lab. 
For instance, the sizes are varied at 37.5 7.5 7.5mm× × , 315 15 15mm× ×  and 

322.5 22.5 22.5mm× × . The experiment can be carried out on the micro tension-
compression testing device shown in Figure 4.1 with appropriate clamp. 
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Figure 4.1 Photograph of the micro tension-compression testing device 

 
The experimental results can be summarized in Table 4.2. 
 
Table 4.2 Experimental results 

Size 37.5 7.5 7.5mm× ×  315 15 15mm× ×  322.5 22.5 22.5mm× ×  
Tensile strength ( tf ) 1tf  2tf  3tf  

Young’s modulus ( E ) 1E  2E  3E  

Coefficient ( tf
E

γ = ) 1γ  2γ  3γ  

 
The relationship between the coefficient γ  and the size of cube can be assumed to be 
linear, then the coefficient γ  for the size 1 mµ  can be determined on basis of the 
coefficients 1γ , 2γ  and 3γ . 

4.3.2 Influence of the coefficient γ 
The coefficient γ  determines the relationship between tensile strength and Young’s 
modulus of local element by tf Eγ= , while the scaling factor in the lattice model is 
equal to the inverse of highest stress/strength ratio, which is 

1
comparative comparative

t

E

f

γ
β

σ σ
= =  

where, 
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β  is the scaling factor, 

comparativeσ  is the comparative stress, which is calculated on basis of element stresses, 

tf  is the tensile strength of element, 
E  is the Young’s modulus of element 
 
From the above expression, it is obvious that the coefficient γ  has linear influence on the 
lattice model, which means it can be used as a fit factor for the final load-displacement 
diagram. 
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Chapter 5 An Example of Numerical Simulation 
This chapter intends to illustrate an example of numerical simulation using the model 
created in Chapter 3 and the parameters determined in Chapter 4. 

5.1 Simulation of hydration process using HYMOSTRUC 
The micro-structure of cement paste can be obtained by the cement hydration and 
microstructure formation model HYMOSTRUC. In this example, the cement paste is in 
the shape of cube with the dimension of 3100 100 100 mµ× × . The Blaine value of cement 
is 2420 /m kg  and the water/cement ratio is 0.4. The mineralogical composition of the 
Portland cement used in this study is given in percentage of weight content in Table 5.1. 
 
Table 5.1 Mineralogical composition of the cement CEM I 32.5R [8] 

C3S C2S C3A C4AF 
63% 13% 8% 9% 

 
Figure 5.1 illustrates the relationship between the degree of hydration and curing age, 
which is one of the outcomes from HYMOSTRUC model. 
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Figure 5.1 Relationship between the degree of hydration and curing age 

 
Figure 5.2 shows an image of the micro-structure of the cement paste at the curing age 
794 hours, and the corresponding degree of hydration is 85%. 
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Figure 5.2 Image of cement paste micro-structure (water/cement = 0.4, degree of hydration = 85%) 

 

5.2 3D lattice mesh of the system 
Using the method proposed in Section 3.2, a space frame system can be generated on 
basis of the particle system, which is shown in Figure 5.3. The 3D lattice analysis will 
operate on this frame system rather than the particle system shown in Figure 5.2. 
 

 
Figure 5.3 3D lattice mesh 
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5.3 Configuration and results of 3D lattice analysis 
In this example, a tension test is carried out on the specimen. The force applied is a 
uniform surface load in the z -direction, all the other surfaces are free to expand and/or 
shrink, as shown in Figure 5.4. 
 

 
Figure 5.4 Applied load and boundary conditions 

 
In total, 1755 analysis steps are performed until the system fails. The final load-
displacement diagram is presented in Figure 5.5. The tensile strength of the cement paste 
can be obtained, which is 2.14MPa  and the stiffness (represented by Young’s modulus) 
in the elastic stage can be calculated, which is equal to 41.66 10 MPa×  (see Section 6.1 
and Section 6.2 for more information). 
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Figure 5.5 Load-displacement diagram 

 
The crack propagation is shown in Figure 5.6(a)~(e) using the element based method 
proposed in Section 3.4. 
 

Step 170 

Step 1012 

Step 1137 

Step 1623 Step 1745 
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Figure 5.6(a) 3D crack propagation at Step 170 

 

 
Figure 5.6(b) 3D crack propagation at Step 1012 
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Figure 5.6(c) 3D crack propagation at Step 1137 

 

 
Figure 5.6(d) 3D crack propagation at Step 1623 
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Figure 5.6(e) 3D crack propagation at Step 1745 

 
It is observed that the micro-cracks appear everywhere within the cube other than only lie 
in some specific regions. The reason for this phenomenon is obvious, because the 
external force applied is a uniform tensile surface load in the vertical direction ( z -
direction) and no notch is made on the specimen, which results in a uniform tensile stress 
state at every point in the cube. Similar results can be found in [14] while using another 
approach. In [14], the micro-structure of cement paste is simulated by the NIST’s 3D 
model (CEMHYD3D) [15] and solid element is adopted in the fracture analysis. 
 
Furthermore, most of the micro-cracks concentrate at a certain region, because stress 
concentration occurs when the first micro-cracks have formed. These micro-cracks make 
up the main crack which might be observed in experiment. 
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Chapter 6 Results of Numerical Simulations 
A set of numerical experiments are carried out to evaluate the numerical model 
developed in Chapter 3. All the examples in this chapter use the cube of cement paste in 
the dimension of 3100 100 100 mµ× × . 

6.1 Tensile strength 
The tensile strength of the specimen can be calculated on basis of the peak load in the 
load-displacement diagram. 

6.1.1 Influence of curing age 
Figure 6.1(a) and (b) show the tensile strength development against curing age and 
degree of hydration respectively. These results reflect the commonly known fact that 
tensile strength increases while the curing age and/or degree of hydration is increasing. 
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Figure 6.1(a) Tensile strength development against curing age 
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Figure 6.1(b) Tensile strength development against degree of hydration 

 

6.1.2 Influence of Blaine value 
Figure 6.2 demonstrates the tensile strength developments against curing age for different 
cements, the Blaine values of which are 2420 /m kg  and 2210 /m kg  respectively. Two 
general conclusions can be addressed from this figure, 

(1) Finer cement can always has higher tensile strength compared with the one at the 
same curing age; 

(2) The tensile strength of finer cement increases faster. 
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Figure 6.2 Tensile strength developments for different cements 

 

6.2 Stiffness 
The stiffness of the specimen can be calculated using the information in the load-
displacement diagram. The slope of the curve in the linear stage illustrates the stiffness of 
the specimen. 

6.2.1 Influence of curing age 
Figure 6.3(a) and (b) show the stiffness development against curing age and degree of 
hydration respectively. These results reflect the commonly known fact that stiffness 
increases while the curing age and/or degree of hydration is increasing. 
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Figure 6.3(a) Stiffness development against curing age 
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Figure 6.3(b) Stiffness development against degree of hydration 
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6.2.2 Influence of Blaine value 
Figure 6.4 demonstrates the stiffness developments against curing age for different 
cements, the Blaine values of which are 2420 /m kg  and 2210 /m kg  respectively. Two 
general conclusions can be addressed from this figure, 

(1) Finer cement can always has higher stiffness compared with the one at the same 
curing age; 

(2) The stiffness of finer cement increases faster. 
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Figure 6.4 Stiffness developments for different cements 

 

6.3 Relationship between tensile strength and stiffness 
Figure 6.5 shows the relationship between tensile strength and stiffness for cement pastes 
with different curing ages. The Blaine value is fixed at 2420 /m kg . This figure illustrates 
that the tensile strength of the system is almost proportional to its stiffness, and the 
coefficient is about 0.0001 which is equal to the one for local single element. This 
equality demonstrates that the proportional coefficient is independent of specimen size 
within the range 1 ~ 100m mµ µ . 
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Figure 6.5 Relationship between tensile strength and stiffness for cement pastes 
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Chapter 7 Summary and Further Investigation 

7.1 Summary of the MSc thesis project 
In this MSc thesis project, an effort is made to predict the mechanical properties and 
crack propagation of cement paste using 3D lattice fracture model at the micro-level. 
 
This project consists of three modules, namely 3D Lattice Generation, 3D Lattice 
Analysis and Interpretation of results, the role of which are pre-processing, kernel and 
post-processing according to Finite Element Method. 

In the module “3D Lattice Generation”, a lattice of beams is generated from micro-
structure of cement paste which is one of the outcomes of hydration model 
HYMOSTRUC. 

The following module “3D Lattice Analysis” simulates the fracture process of the 
cement paste due to uni-axial tensile load. 

The last module “Interpretation of results” visualizes the results from 3D Lattice 
Analysis, the output of which is given in terms of load-displacement diagram and crack 
propagation images. 
 
During the current investigation, only the influences of curing age and Blaine value are 
studied, while the influences of water/cement ratio and size effect are left for further 
research. 

7.2 Known limitations and possible solutions 
The proposed method for predicting mechanical properties and crack propagation of 
cement paste can be improved further in several aspects. 

First of all, it is found that the simulation results for compression test are not in 
accordance with experiment observation so well [16]. It is suggested in [17] to remove 
the critical element by two steps instead of one step, where momentary resistance is 
removed first then the axial resistance. 

Another drawback of the current implementation is that the demand for computational 
time is so huge that makes it impossible to get sufficient comparative results within a 
reasonable period. Parallel computing would be a good solution to this problem. A 
parallel implementation of 3D frame analysis is developed in [18], which is the 
fundamental of 3D lattice analysis. 

7.3 Further investigation 
In this research project, only cement paste is taken into account. However, the addressed 
principles must also hold for mortar and concrete. Moreover, the effect of hydration heat 
and shrinkage can also be incorporated by multi-scale approach. 
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