
Moment under a point load
in Thin Shell Structures
Optimization of design equation

Karan Taneja

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

MOMENT UNDER A POINT LOAD IN THIN
SHELL STRUCTURES

OPTIMIZATION OF DESIGN EQUATION

by

Karan Taneja

as an additional graduation work (CIE5050-09) for partial fulfilment of

Master of Science
in Structural Engineering

at the Delft University of Technology.

Student number: 4505468
Supervisors: Dr. ir. P.C.J. Hoogenboom, TU Delft

Dr. ir. drs. C.R. Braam, TU Delft

PREFACE

This report was made as an Additional thesis for the course CIE-5050-09. The inspiration to work on this
topic came through a discussion with Dr. Pierre Hoogenboom, during the course Shell Analysis, Theory and
Application (CIE-4143) which I undertook. I would like to thank him for his unflinching support and guid-
ance throughout the duration of the work.

I would also like to thank my colleagues at TU Delft and my friends and family back in India for their ex-
uberant motivation during the course of the project and report.

Karan Taneja
Delft, November 2016

i

SUMMARY

• The objective of this additional thesis was to estimate and optimize the design equation for moments
in x-direction under a point load in a shell structure. For that, the Finite Element package ANSYS Me-
chanical was used to obtain the moment results and the method of fitting a function to data was used
to estimate a formula that produced results within a tolerable error percentage. Based on a few critical
assumptions about the effect of the material properties, the structural characteristics and parametric
studies, the formula found in [1] was the best estimation that could be obtained.

• To begin with, in chapter 1, the method used to run ANSYS and the implementation of the script used
to create the finite element model has been described. The important parts of the scripts have been
explained.

• An important part of the study was to find out the ideal parameters of the finite element model that
could be used to study the variation of moments due to change in curvature of the shell. Hence para-
metric studies (chapter 3) were done for a reference shape, where the lengths in x and y, the number of
elements along x and y axes, the parameters used for the distribution of the point load and the thickness
of the structure were varied and studied.

• In the final and the most critical part of the project, it was assumed that the formula to calculate the

moment was dependent on three variables, namely kxx ·t ,ky y ·t and the
d

t
ratio (where kxx and ky y are

the curvatures in x and y directions at the origin of the shell structure, t is the thickness of the shell and
d is the diameter of point load distribution area) and that assumption proved to be true as equation 6.1
in chapter 6 of this report validated the claim.

ii

CONTENTS

Summary ii

1 Introduction 1

2 The ANSYS Scripts 2
2.1 Shell1.mac . 2
2.2 Shell24.mac . 3

3 Parametric Studies 7
3.1 Length in x and y directions . 7
3.2 Number of Elements in x and y directions. 8
3.3 Load Patch Size . 8
3.4 Thickness . 9

4 Moment results from Shell24.mac 11

5 Optimization of Constants 14
5.1 Assumptions for derivation of the formula . 14
5.2 Method of Non-Linear Least Squares . 15
5.3 Curve Fitting trial 1 . 15
5.4 Curve Fitting trial 2 . 18

6 The effect of Poisson’s ratio on the formula 21

7 Conclusions and Discussions 23

Bibliography 25

A appendix-a 26
A.1 Shell1.mac . 26

B appendix-b 29
B.1 Shell24.mac . 29

C appendix-c 34
C.1 Code for variation of length in x and y. 34
C.2 Code for variation of no. of elements along x and y axes . 37

C.3 Code for variation of
d

h
and

h

b
ratios . 39

D appendix-d 41
D.1 Code for variation of curvature . 41

E appendix-e 43
E.1 Code for Curve Fitting in Python . 43

iii

1
INTRODUCTION

Shell structures are designed to carry loads via membrane forces but even then moments occur at edge dis-
turbances which can be anything from point loads to change in boundary conditions or anything that leads
to a sudden change in the flow of forces through the structure. Through previous works, we know analytically
that the effects of these edge disturbances are local in nature and they decrease to negligible proportions of
their peak values when measured at and beyond the influence length.

Previously, solutions have been explored analytically and numerically leading to design equations for esti-
mating moments under a point load for a shell structure. The methods to solve this problem included solving
partial differential equations [2] and usage of Bessel functions to simplify the results [3],[4]. Some research
led to equations which could represent the moments as a series that could be numerically evaluated [5] as
well as presenting curves for the same [6], [7]. [8] found a relatively simpler equation for moments but under
quite a few assumptions.

In this report (parts of which have been used in [1]), the data generated via computational analysis was
collected and curve fitting was tried on it. In other words, after observing the pattern formed by moment
results obtained from ANSYS, a formula was estimated and fitting to the moment data obtained as previously
mentioned, was conducted.

1

2
THE ANSYS SCRIPTS

To understand how the moments are calculated in ANSYS for this study, it was crucial to know how the APDL
Scripts used work.

2.1. SHELL1.MAC
The script can be found in Annex A.1. Some important parts of it are discussed below. The purpose of this
script was to understand the basic APDL commands.

1. Insertion of nodes and Formation of Elements.
This had to be in accordance with the shape which was governed by the curvature value provided. In
this script, only the twist curvature kx y was provided and the surface generated would be a hyperbolic
paraboloid, the equation of which is provided below[9]:

z = x · y ·kx y (2.1)

The x and y co-ordinates were obtained using the conditions set in the nested loop and the z-coordinate
was calculated using the above equation.

Next, elements were formed between these nodes and Element type SHELL281 from the ANSYS Ele-
ment Library was used [10].

2. Boundary Conditions.
As only a quarter of the model was created, additional supports were added to account for symmetry
along the x and y axes.

At the edges of the quarter model, Moments in all directions were released and the translations in the
model were fixed in global X, Y and Z directions. This can be seen in figure 2.1.

3. Application of Load.
In this script, a pressure load was converted to Point Loads in positive z-direction which were applied

to the corner nodes of all the elements except node at the origin and the nodes at the edge y = l

2
. This

can be seen in figure 2.2.

4. Moment Results.
As moment results at the middle of the structure are required, only stresses at node 1 were obtained

2

2.2. SHELL24.MAC 3

Figure 2.1: Boundary Conditions for Shell1.mac. The Symmetric boundary conditions can be differentiated
from the Model boundary conditions due to the presence of rotational constraints.

Figure 2.2: Applied load for Shell1.mac.

from the post-processing data of ANSYS[11]. Using Euler’s bending theory, the moment at node 1 was
derived by first calculating the moment caused by stresses in the bottom layer and then subtracting the
moment caused by stresses in the top layer. This was done keeping in mind the sign convention as z
being positive in the downwards direction and the x and y axes being in conjunction with the ‘right
hand thumb rule’. A strip of half a unit width (due to symmetry, the other half was assumed to lie in
the part of the structure which isn’t modelled) and height equal to the ‘thickness’ used in the model was
assumed to calculate the moment at Node 1. While figure 2.5 describes the situation for the second
script, Shell24.mac, the logic used was the same.

2.2. SHELL24.MAC
This script was used to run the ANSYS simulations in batch mode to collect the data on which further anal-
ysis was done. The important functions of the script are discussed below. This script is presented in Annex B.1.

1. Insertion of nodes and formation of elements.
In the script, parameters gx, gy, mx, my, qx and qy were created specifically with the aim to generate the
x and y co-ordinates of the nodes. The z co-ordinate was calculated using the equation of a paraboloid
[9], presented below.

2.2. SHELL24.MAC 4

z = 1

2
kxx · x2 + 1

2
ky y · y2 (2.2)

In this script, the curvatures at the origin, kxx and ky y , were provided and curvature kx y was not con-
sidered. The advantage of using curvatures at the origin was that these can be oriented in the direction
of the principal curvatures and hence kx y could be ignored in the formation of the surface without los-
ing out on anything. Had curvatures been associated with any other point on the surface, the use of kx y

was necessary.

After creation of the nodes, elements of type SHELL281[10] were inserted between them.

2. Boundary Conditions.
As only a quarter of the structure was modelled based on the principle of symmetry, appropriate bound-
ary conditions were assigned to the axes of symmetry (2.3).
The boundary conditions at the edges were assigned to "carry the normal forces and the in-plane shear
forces"[1]. Hence nodal axes of the nodes at the edges were rotated to carry forces in the Global X and
Y directions so as to avoid surplus reactions which would make the schematized boundary conditions
invalid.

Figure 2.3: Boundary Conditions for Shell24.mac. The Symmetric boundary conditions can be
differentiated from the Model boundary conditions due to the presence of rotational constraints.

3. Application of load.
The point load was not simply put at the middle node of the structure because singularities or very
high results under the point load need to be avoided. It was broken down into many nodal loads which
were distributed within circle whose radius was assumed to be a linear function of t. This was the
reason that the mesh was finer at the origin and to be computationally efficient, became coarser away
from the load. Also, because it was known via previous studies [12] that the effect of such loads was
local, it made sense to make a finer mesh near the load and coarser away from it.

The first part of the code calculates the number of elements along x and y which lie within the radius of
influence.
The load was distributed in those elements as follows:

(a) Within the radius of influence, the area was divided into ‘n’ rings where n was calculated based on
a designated load patch size which was successively subtracted from the radius of influence until
it became zero.

(b) The ring width was calculated by dividing the radius by ‘n’.

2.2. SHELL24.MAC 5

Figure 2.4: Applied Load for Shell24.mac. Node 1 can also be distinguished as the node at the origin.

(c) The n rings were then iterated over and for each ring the following steps were under taken:

• Number of sectors within a ring were calculated by subtracting minimum sector size which
is the ring width from the circumference of the ring.

• Load within a sector dP, was calculated based on the proportion of the sector area from the
whole circle and applied on the Center of Gravity.

• This load was then shifted to the nearest node by finding out the node with the least distance
from the Center of Gravity of the sector.

• Moments were also added to the nodes based on the lever arms in x and y directions.

(d) This process was then repeated until all the sectors in all the rings had been iterated through.

4. Moment Results.
They are obtained the same way as in the previous script,Shell1.mac. Figure 2.5 offers the analytical
model used in calculating the results.

Figure 2.5: Analytical model used for calculation of moment. Here, the view from the xz plane is given. The
’strip’ of half a unit width should be imagined to be along the y-axis.

5. Influence Length.
The influence length mathematically may be defined as the distance from one root of the function of
an edge disturbance to another or simply the distance from a disturbance at which the influence of the
disturbance can be neglected. Based on this logic, the influence length in a direction was calculated as
follows:

2.2. SHELL24.MAC 6

(a) The moment in the respective direction was chosen from node 1.

(b) The moments in the consecutive edge nodes of the elements were calculated the same way as the
moment from node 1.

(c) The consecutive nodes were then iterated over. If the sign remained the same as the moment from
node 1, the lengths were added and where the signs changed the last calculated length with all the
additions from the previous iterations was chosen and a final increment was added to account for
the length required for the moment to go to zero.

The calculated influence length turned out to be 63.2 mm and can be seen in the script in the appendix
B.1.

3
PARAMETRIC STUDIES

It was assumed based on the initial conditions that the formula would depend on the thickness of the shell
(uniform globally in the model) and the curvatures in x and y directions at the origin. Hence, the second
task was to do a study of the other parameters apart from curvatures and thickness, which were namely the
element size, length of the shell in both directions and the patch size used in the distribution of the load on a
hypar shell, which was the reference shape.

The batch mode of ANSYS was used to run multiple analyses one after the other. Python was decided as
the medium to generate the .bat files required to run the Batch Mode of ANSYS Mechanical. A Python script
would be used to gather the parameters from the requisite excel files, calculate the parameter if need be or
else store the variable parameter and write the required code in a .bat file which can then directly run ANSYS
without the need to call the program again and again.

The mxx and my y output results of the initial script (Shell24.mac) were compared to the moment results
produced by the variation of different parameters. If the moments reached a difference of around 1% with a
lower value of the parameter being checked, it would be modified and then used in the final version of the
script after deliberation.

3.1. LENGTH IN X AND Y DIRECTIONS
The first parameter to be checked was the length in x and y which was calculated by calculating the root of
thickness over the curvature of the direction perpendicular to the respective length and multiplying it with
a numerical constant which was to be decided via the study. The quantities multiplied by the constants are
known as L0i in this study with ’i’ standing for the direction. These lengths can be visualised in figure 4.1. In
the model used in ANSYS, the lengths are divided by 2 because only a quarter of the actual model is created
because of the symmetry.

The reference result was chosen to be the one obtained from the earlier ANSYS script, Shell24.mac. The
numerical constants were varied from 1 to 20 (whole numbers only) in both x and y directions and the mo-
ment results were compared.

It was found that from 9 onwards in both directions, the percentage difference was less than 1% and was
acceptable. It was decided to use 9 as the numerical constant in both directions and not higher numbers as
it would reduce computational time and the error was acceptable.

This conclusion can be viewed in figure 3.1. In the figure, L0x is defined as

√
t

abs(ky y)
and L0y as√

t

abs(kxx)
.

Most of the higher percentage differences can be viewed for lengths shorter than the influence length.
As the length increases, the error reduces and goes to zero. It was interesting to note that for mxx , having a

7

3.2. NUMBER OF ELEMENTS IN X AND Y DIRECTIONS 8

0

0

00

−1
0

−
10

−2
0

−
20

5 10 15 20

5

10

15

20

Lx

L0x

L
y

L
0

y

−20

−10

0

Figure 3.1: Contour plot of % difference in Moment results due to variation of lengths in x and y directions.

higher length in x did give an error of close to 0% but it led to high errors when the moments were checked in
y-direction as it meant having a length lower than the influence length in y. To have both mxx and my y within
a tolerable % difference, equal lengths in x and y were used.

Different coefficients could have been used in both directions but they wouldn’t have made a difference
as the effect of the point load is local and as along as the total length was higher than the influence length
(found to be around 63.2 mm from the output of Shell24.mac), the results would be okay. The chosen length
is around 9 times the estimated influence length.

3.2. NUMBER OF ELEMENTS IN X AND Y DIRECTIONS
The second parameter was the number of elements in x and y. The reference number was 80 in both direc-
tions and the variation was from 10 to 80 in multiples of 10. For lower element numbers like 10 in x and 10 in
y, the results varied highly. That could be due to lesser elements to account for the disturbance due to load.
Otherwise, the desired results didn’t diverge much.

This becomes evident on viewing figure 3.2. It can be seen that any number of elements beyond 20 in x
direction irrespective of the number of elements in y would have satisfied our criteria. However, even though
the number of elements could be lowered, it wasn’t changed to take into account future incorporation of
complicated shapes.

3.3. LOAD PATCH SIZE
The third parameter to be checked was the patch size. The point load applied on the hypar in the finite ele-
ment model was distributed over all nodes inside a certain diameter and the load was applied based on the
proximity of the node to the center of the circle in which the load was distributed. This was done to avoid
numerical inaccuracies that occur by checking stresses directly under a point load.

The initial ratio between the diameter and the element size (
d

h
) in the middle was 20 and taken as the

reference and the ratio between the element size and the size of the load patch (
h

b
) which would be used in

the application of loads at the nodes was 4.

It can be seen in figure 3.3 where after
d

h
equal to 4 onwards the percentage difference decreases and at

10 hits less than 1%. It also became quite clear that a coarser mesh with the mesh element size being equal

3.4. THICKNESS 9

0
0

−10−20−30−40
10 20 30 40 50 60 70 80

20

40

60

80

nx

n
y

−40

−30

−20

−10

0

Figure 3.2: Contour plot of % difference in Moment results due to variation of number of elements in x and
y directions.

to the load patch size would also work (h=b). The results of the study showed that we could go with a coarser
mesh with the respective ratios to be 10 and 1 as the percentage change in mxx and my y was about 0.34%.

15
15

14
14

13
13

12

12

11

11

10

10

9

9

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1
1

2 4 6 8 10 12 14

2

4

6

8

ratios of
d

h

ra
ti

o
s

o
f

h b

5

10

15

Figure 3.3: Contour plot of % difference in Moment results due to variation of element size in the middle (h)
and load patch size (b).

3.4. THICKNESS

The assumption to verify was that moments depended on the
d

t
(diameter of distribution of point load to

Thickness) ratio and not on the thickness itself.
This was verified by checking the results in x and y directions while the following conditions were in place:

1. The kxx · t would remain 1
3000 and ky y · t would remain

1

30
.

2. The
d

t
ratio would remain the same.

3.4. THICKNESS 10

Keeping these in mind, 3 analyses were conducted with the following parameters:

Table 3.1: Parameters in Shell24.mac for checking effect of thickness.

t (mm) d (mm) kxx (
1

mm
) ky y (

1

mm
)

1 5
1

3000

1

30

2 10
1

6000

1

60

3 15
1

9000

1

60

This assumption turned out to be true and no change was observed in the mxx and my y results from ANSYS.

Based on this study, the following changes were made in the script:

1. Lx and Ly were changed to 9 times L0x and L0y respectively from 14 times originally.

2.
d

h
was changed from 20 to 10 and

h

b
was changed from 4 to 1.

The number of elements was not altered.

4
MOMENT RESULTS FROM SHELL24.MAC

The third task was to perform simulations of varying 10 values of curvatures in x and in y for each ratio of
d

t
from 1 to 8 and collect the moment results directly at node 1 which for our theoretical model is directly

beneath the point load (refer figure 4.1). Again, Python was used to generate the batch files. The initial
parameters were as follows:

Table 4.1: Initial parameters for ANSYS simulations.

Thickness (mm) Young’s Modulus (
N

mm2) Poisson’s Ratio Point Load in the middle (N)

1 105 0 100

The curves obtained were symmetrical around the origin, rose smoothly and peaked at the curvature
close to zero and then decreased the same way. This was expected because as the structure became flatter,
more and more load would be carried by bending moments instead of normal forces as is in the case of shells.
There was an empty space observed as curvature equal to zero wasn’t analyzed. It was interesting to note that

as
d

t
became higher, the maximum value of the moments became lower. This could be attributed to the fact

that as the diameter of influence increased, the area under influence also increased and hence the value of
the load applied near the center decreased, leading to a lower moment value.

Figure 4.1: Simulations of shells with a point load at the origin and different curvatures. The coordinate
system used is also shown (figure 2 from [1]). It is important to note that only a quarter of the model was

analysed due to symmetry of loading.

11

12

−0.02
0

0.02 −0.02

0
0.0220

30

40

kxx · t
k y y

· t

20 25 30 35

(a) mxx for
d

t
= 1

−0.02
0

0.02 −0.02

0
0.02

20

30

kxx · t
k y y

· t

15 20 25 30

(b) mxx for
d

t
= 2

−0.02
0

0.02 −0.02

0
0.0210

20

30

kxx · t
k y y

· t

15 20 25 30

(c) mxx for
d

t
= 3

−0.02
0

0.02 −0.02

0
0.02

10

20

30

kxx · t
k y y

· t

10 15 20 25

(d) mxx for
d

t
= 4

Figure 4.2: Plots of Mxx due to variation of curvatures in x and y for
d

t
= 1 to 4.

13

−0.02
0

0.02 −0.02

0
0.02

10

20

kxx · t
k y y

· t

10 15 20 25

(a) mxx for
d

t
= 5

−0.02
0

0.02 −0.02

0
0.02

10

20

kxx · t
k y y

· t

10 15 20

(b) mxx for
d

t
= 6

−0.02
0

0.02 −0.02

0
0.02

10

20

kxx · t
k y y

· t

5 10 15 20

(c) mxx for
d

t
= 7

−0.02
0

0.02 −0.02

0
0.02

10

20

kxx · t
k y y

· t

5 10 15 20

(d) mxx for
d

t
= 8

Figure 4.3: Plots of Mxx due to variation of curvatures in x and y for
d

t
= 5 to 8.

5
OPTIMIZATION OF CONSTANTS

The next step was to use the data obtained and do the curve fitting to obtain the constants in the formula
proposed in [1].

5.1. ASSUMPTIONS FOR DERIVATION OF THE FORMULA
Following are the assumptions made for the derived formula:

1. In the parametric study, it was found that the length stopped playing a role as soon as we keep the
model length higher than the influence length. Hence it is assumed that the lengths in x and y will
always be higher than the influence length of the edge disturbance cause by the point load.

2. As there were no prescribed displacements or thermal strains, the Young’s Modulus ‘E’ will not play a
role.

3. Poisson’s Ratio was assumed to not have a major influence on the results hence it was assumed to be
zero for the initial curve fitting. Its influence will be discussed in the next chapter.

4. Since the moment shares a linear relation with a Point Load in almost all applications of structural
mechanics, it was assumed to be constant for all the simulations.

The search for this formula has been on since the last century ([2],[6], [13], [4], [7], [8], [5], [3]). Previous
solutions to calculate the Moments under a point load included solving Bessel Functions, partial differential
equations among other tools.

In [1], a different approach was tried. It was decided to use the method of curve fitting to the numerical
data produced by ANSYS. The curves produced by plotting the curvature in x, kxx on the x axis, curvature in
y, ky y on the y axis and the obtained moment in x direction directly beneath the theoretical point load, mxx

along the z axis were of the nature ln(
1

|x|+ |y |). It was also assumed that the moments were a function of the

ratio of the load distribution diameter (d) and the thickness (t). The formula initially suggested was:

mxx = aP (ln(
t

d 2(|bkxx +cky y |+ |ekxx + fky y |)
))(1−ν2) (5.1)

where a, b, c, e, f were constants to be optimized by curve fitting.

The curve fit function from the SciPy library of Python was used [14]. This function uses the method of
least squares for fitting the data.

14

5.2. METHOD OF NON-LINEAR LEAST SQUARES 15

5.2. METHOD OF NON-LINEAR LEAST SQUARES
Fitting data in the least-squares formulation minimizes the sum of the squared residuals where a residual is
"the difference between an observed value and the fitted value provided by a model" [15].

Least squares problems can broadly be defined as ordinary least squares OR non-linear least squares,
depending on whether or not the parameters that need to be optimized can have a linear relation. The non-
linear problem is usually solved by running an iterative analysis where "algorithms are used to find the value
of the parameters that minimizes the objective" [15].

SciPy uses the Levenberg-Marquardt algorithm [14] for unbounded problems (i.e no bounds given for the
parameters to be in) which needs initial values for the parameters. Then, the parameters are refined itera-
tively, that is, the values are obtained by successive approximation.

For our case, optimization can be regarded as follows: There are two sets of variables, one being the varied
data and the other being the data dependent on the variation of the first set. We decide what parameters were
to be varied in the equation 5.1 and those parameters were members of the set called the varied data. The re-
sults of that variation, the data obtained from ANSYS, became members of the set called the dependent data.
They were then put through the aforementioned algorithm after giving initial values to the constants and
then based on least square minimization of the residuals, the constants were found and then the % difference
between the values calculated by the formula and the ANSYS results was compared.

5.3. CURVE FITTING TRIAL 1
Initially, only two parameters in the equation 5.1 were selected namely, kxx · t and ky y · t . Based on the au-
thors definition of the optimization problem, they were members of the varied data set. This was done to see

whether the variation of
d

t
led to quantifiable variation in the value of the optimized constants that would be

obtained via Python. In other words, to see whether the constants were dependent on the
d

t
ratio or not.

The difference in ANSYS vs the formula was quite a lot suggesting better optimization was possible(refer

figures 5.1 and 5.2). However, the relation between the constants for each
d

t
ratio looked quite linear but did

not lead to any fruitful conclusions except that they were quite close to each other. It was then decided to try
another variation which is described in the next section.

Table 5.1: Values of optimized variables for trial 1.

0.03977 0.039706 0.039526 0.039267 0.038927 0.038361 0.037736 0.036932 a
0.034141 0.034129 0.033212 0.032137 0.030988 0.02946 0.027992 0.019781 b
0.062153 0.060493 0.058967 0.057283 0.055118 0.051106 0.047276 0.04071 c
-0.13606 -0.13522 -0.13152 -0.12689 -0.12172 -0.11486 -0.10827 -0.10603 e
-0.00843 -0.00808 -0.00788 -0.00765 -0.00734 -0.00686 -0.00645 -0.01212 f

d

t
= 1

d

t
= 2

d

t
= 3

d

t
= 4

d

t
= 5

d

t
= 6

d

t
= 7

d

t
= 8

5.3. CURVE FITTING TRIAL 1 16

45
454040
4040

35

35
35

30

30

30

25

25

25

25

25

25

25

25

20

20

35
30

25

25

25
25

25

20

20

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

First Optimization
ANSYS

(a) Contours of mxx for
d

t
= 1

40
403535
3535

30

30
30

25

25

25

20

20

20

20

20

20

20

15

15

15

15

30
25

20

20
20

20

20

15

15

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

First Optimization
ANSYS

(b) Contours of mxx for
d

t
= 2

35
353030
3030

25

25
25

20

20

20

20

15

15

15

15

15

15

15

15
10

10

30
3025

20
20

15

15

15

15 15

15

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

First Optimization
ANSYS

(c) Contours of mxx for
d

t
= 3

35353030
3030

25

25
25

25

20

20

20

15

15

1515

15

15

15

10

10

10

10

25
20

15

15

15
15

10

10

10

10

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

First Optimization
ANSYS

(d) Contours of mxx for
d

t
= 4

Figure 5.1: Comparison of Mxx values of Ansys and first optimization of the formula for
d

t
= 1 to 4.

5.3. CURVE FITTING TRIAL 1 17

30
302525
2525

20

20
20

15

15

15
15

15

15

15

15

10 10

10

10

10

10

10

10

10

252520
15

15

15

10

10
10

10
10

10

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

First Optimization
ANSYS

(a) Contours of mxx for
d

t
= 5

30
302525
2525

20

20
20

15

15

15

15

10

10

10

10

10

10

10

10 5

5

20
15

15

10

10

10

10 10

10

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

First Optimization
ANSYS

(b) Contours of mxx for
d

t
= 6

30
302525
2525

20

20
20

15

15

15

10

10

10

10

10

10

10

10

5

5

20
15

10

10

10
10

10

5

5

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

First Optimization
ANSYS

(c) Contours of mxx for
d

t
= 7

25
2520

20
2020

15

15

15

15

15

10

10

1010

10

10

10

5

5

5

5

20
15

10

10

10
10

5

5

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

First Optimization
ANSYS

(d) Contours of mxx for
d

t
= 8

Figure 5.2: Comparison of Mxx values of Ansys and first optimization of the formula for
d

t
= 5 to 8.

5.4. CURVE FITTING TRIAL 2 18

5.4. CURVE FITTING TRIAL 2

It was found that the constants were always very close by to each other when
d

t
was varied and hence it was

decided to add
d

t
to the parameters in the varied data set. The advantage was that instead of 5 constants for

each ratio that would make a total of 40 values of constants as found in the previous trial, there would be just
5 constants applicable for all the ratios.

This time, most of the results were within a percentage difference of ±20%. Figures 5.3 and 5.4 clearly
show an improvement from figures 5.1 and 5.2 respectively.

Table 5.2: Variation of optimized variables for trial 2.

0.038808 a
0.007246 b
0.119327 c
-0.05291 e
-0.0298 f

5.4. CURVE FITTING TRIAL 2 19

35
30

25

25

25
25

25

20

20

35
30

25

25

25
25

25

20

20

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

Second Optimization
ANSYS

(a) Contours of mxx for
d

t
= 1

30
25

20

20

20

20

20

15

15

30
25

20

20
20

20

20

15

15

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

Second Optimization
ANSYS

(b) Contours of mxx for
d

t
= 2

30

3025

20

20
15

15
15

15

15

15

30

3025
20

20

15

15

15

15 15

15

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.02

−0.01

0

0.01

0.02

kxx · t

k
y

y
·t

Second Optimization
ANSYS

(c) Contours of mxx for
d

t
= 3

25
20

15

15

15

15

15

10

10

10

10

25
20

15

15

15
15

10

10

10

10

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

Second Optimization
ANSYS

(d) Contours of mxx for
d

t
= 4

Figure 5.3: Comparison of Mxx values of Ansys and second optimization of the formula for
d

t
= 1 to 4.

5.4. CURVE FITTING TRIAL 2 20

25
2520

15

15
15

10

10 10

10

10

10

25
2520

15

15

15

10

10

10

10
10

10

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

−0.01

0

0.01

0.02

kxx · t

k
y

y
·t

Second Optimization
ANSYS

(a) Contours of mxx for
d

t
= 5

25
2520 15

15

10

10
10

10
10

10

5

5

20
15

15

10

10

10

10 10

10

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

Second Optimization
ANSYS

(b) Contours of mxx for
d

t
= 6

20

15

10

10

10
10

10

5

5

20
15

10

10

10
10

10

5

5

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.02

0

0.02

kxx · t

k
y

y
·t

Second Optimization
ANSYS

(c) Contours of mxx for
d

t
= 7

20
15

10

1010

10

5

5

5

5

20
15

10

10

10
10

5

5

−0.02

0

0.02

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
kxx · t

k
y

y
·t

Second Optimization
ANSYS

(d) Contours of mxx for
d

t
= 8

Figure 5.4: Comparison of Mxx values of Ansys and second optimization of the formula for
d

t
= 5 to 8.

6
THE EFFECT OF POISSON’S RATIO ON THE

FORMULA

It was then decided to check whether the dependence on Poisson’s ratio in the formula could be linear instead
of quadratic.

For this purpose, the following scenario was set:

1.
d

t
was set at 5.

2. 3 sets of curvatures were checked:

Table 6.1: Set of curvatures for checking the effect of Poisson’s Ratio.

Shape 1 (kxx , ky y) Shape 2 (kxx , ky y) Shape 3 (kxx , ky y)

0.033333,0.03333 0.0333,0.000333 0.0333,−0.0333

3. For each shape, 3 analyses were done with the Poisson’s ratio set at 0, 0.35 and 0.49 respectively.

The reason why these three shapes were chosen lies in the fact that these three shapes are at the extreme ends
of the spectrum of choices available to us in terms of curvatures in x and y measured at the origin. Shape 1
signified a sphere, Shape 2 a Cylinder and Shape 3 a Hypar shell. It was found that the relation was more
linear than previously observed (refer fig 6.1). A change in the formula was made and the effect of Poisson’s
ratio was made into a linear function.

mxx = aP (ln(
t

d 2(|bkxx +cky y |+ |ekxx + fky y |)
))(1+ν) (6.1)

21

22

0 0.1 0.2 0.3 0.4 0.5
6

8

10

12

14

16

ν

m
x

x
(N

·m
m

m
m

)

Sphere-Shape 1
Cylinder-Shape 2

Hypar-Shape 3

Figure 6.1: Variation of mxx with change in Poisson’s Ratio

7
CONCLUSIONS AND DISCUSSIONS

• A formula was developed for estimating the moments under a point load on a shell structure when
the curvatures in x and y directions along with the diameter of distribution of the point load and the
thickness are known. Only one kind of boundary condition was used throughout.

• The number of elements along x and y directions could be reduced to 20 in each direction for the pur-
pose of this exercise. However, keeping in mind that shells can have complicated shapes, it was decided
to keep the number of elements as 80 in both directions.

• The lengths of the finite element model of the shell structure in x and y directions were chosen to be
such that they were sufficiently larger than the influence length of the structure. The current parameter
for length keeps it at around 9 times the influence length.

• Varying the thickness does not change the value of the moments in x obtained from ANSYS provided

that the kxx · t , ky y · t and the
d

t
ratio remains the same for the model.

• Every shell structure has curvatures in x and y directions. In the study conducted for obtaining the
moment results, every simulation was a different shell structure with different curvatures. The range of
curvatures considered in the current study limited us to only a 100 different combinations of curvatures

per
d

t
ratio. For further studies, more types of curvatures could be checked to improve the accuracy of

the equation derived.

• Poisson’s ratio ν, which was initially assumed to have a quadratic influence in the form of the term 1−ν2

was found to have a linear influence in the form of 1+ν.

• ANSYS Parametric Design Language or APDL [16] offered flexibility in terms of creation of the finite ele-
ment model as algorithms were defined for creation of nodes and elements and placement of boundary
conditions and loads which manually would take immense amount of time. APDL Scripts also allowed
usage of batch mode which was crucial in obtaining the results from the program for the hundreds of
simulations conducted throughout this additional thesis.

• Python [17] [18] was the programming language of choice in this project because of the multitude of
options to manipulate text files and excel sheets as well as scientific computing through the usage of
package SciPy [14] which was used to conduct the optimization trials of equation 5.1 to find out the
values of the constants. This was advantageous as the author did not need to call other programs or
software for different functions. Python could handle everything itself.

• The method of non-linear least squares optimization [15] was used to fit the data obtained from ANSYS,
reason being that it was the method available in SciPy. Other methods of data fitting which were not
explored due to restrictions of time could maybe give better estimations of the constants.

23

24

• The plotting capabilities of MS Excel were not sufficient for some of the plots that were needed to
observe the fitting of data. For this purpose, other programs such as MATLAB [19], gnuplot [20] and
LATEX[21] offer more options after the data is put in the format desired by the respective programs. It
should be noted however that gnuplot is used by LATEXto make contour plots. The author used Python
to generate input files for usage of these programs for plotting. For this report, LATEXwas used to plot all
the figures.

BIBLIOGRAPHY

[1] P. Hoogenboom, Y. Chenjie, and K. Taneja, Moments due to concentrated loads on shell structures, Heron
Vol. 61 (2016) No. 3. under review.

[2] G. Chernyshev, On the action of Concentrated Forces and Moments on an Elastic Thin Shell of Arbitrary
Shape, Prikl. Mat. Mekh. 27, 126 (1963).

[3] S. S. Łukasiewicz, The solution for concentrated loads on shells by means of Thompson functions, ZAMM -
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
(1968), 10.1002/zamm.19680480405.

[4] S. A. Lukasiewicz, Introduction of Concentrated Loads in Plates and Shells, Progress in Aerospace Science
17, 109 (1976).

[5] J. Simmonds and C. Tropf, The Fundamental (Normal Point Load) Solution for a Shallow Hyperbolic
Paraboloidal Shell, SIAM J. APPL. MATH 27, 102 (1974).

[6] W. Flügge and R. E. Elling, Singular solutions for shallow shells, International Journal of Solids and Struc-
tures 8, 227 (1972).

[7] T. Matsui and O. Matsuoka, The fundamental solution in the theory of shallow shells, International Jour-
nal of Solids and Structures 14, 971 (1978).

[8] M. Samuchin and J. Dundurs, Transmission of Concentrated Forces into Prismatic Shells-I , International
Journal of Solids and Structures 7, 1627 (1971).

[9] J. Blaauwendraad and J. H. Hoefakker, Structural Shell Analysis- Understanding and Application,
(Springer Netherlands, 2014) Chap. 1, p. 8.

[10] ANSYS Inc., ANSYS Mechanical APDL Element Reference, release 17.0 ed. ().

[11] ANSYS Inc., ANSYS Mechanical APDL Command Reference, release 17.0 ed. ().

[12] S. Lukasiewicz, Local loads in plates and shells, (Springer Netherlands, 1979) Chap. 9.

[13] K. Forsberg and W. Flugge, Point Load on a Shallow Elliptic Paraboloid, Journal of Applied Mechanics 3,
575 (1966).

[14] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python, (2001–).

[15] Wikipedia, Least squares — wikipedia, the free encyclopedia, (2016).

[16] ANSYS Inc., ANSYS Parametric Design Language Guide, release 17.0 ed. ().

[17] A. Sweigart, Automate the boring stuff-python, .

[18] Python Software Foundation, Python 2.7.12 documentation, .

[19] MATLAB, version 9.1.0.441655 (R2016b) (The MathWorks Inc., Natick, Massachusetts, 2016).

[20] T. Williams, C. Kelley, and many others, Gnuplot 4.4: an interactive plotting program, (2016).

[21] Wikibooks, Latex — wikibooks, the free textbook project, (2016).

25

http://dx.doi.org/10.1002/zamm.19680480405
http://dx.doi.org/10.1002/zamm.19680480405
http://dx.doi.org/10.1002/zamm.19680480405
http://dx.doi.org/ 10.1016/0020-7683(72)90060-1
http://dx.doi.org/ 10.1016/0020-7683(72)90060-1
http://dx.doi.org/ 10.1016/0020-7683(78)90079-3
http://dx.doi.org/ 10.1016/0020-7683(78)90079-3
http://dx.doi.org/ 10.1016/0020-7683(71)90003-5
http://dx.doi.org/ 10.1016/0020-7683(71)90003-5
http://www.scipy.org/
https://en.wikipedia.org/w/index.php?title=Least_squares&oldid=744893432
https://automatetheboringstuff.com
https://docs.python.org/2.7/
http://gnuplot.sourceforge.net/
https://en.wikibooks.org/w/index.php?title=LaTeX&oldid=3126115

A
APPENDIX-A

A.1. SHELL1.MAC
Following is the ANSYS APDL script Shell1.mac.

! Rectangular shell, paraboloid, 8 node elements
! version 30 april 2015, Pierre Hoogenboom
!
t = 1 ! mm thickness
kxy = 1/3000 ! 1/mm twist curvature
E = 1.0e5 ! N/mm2 Young’s modulus
nu = 0.0 ! - Poisson’s ratio
p = 0.001 ! N/mm2 distributed load
lx = 2000 ! mm span in the x direction (half the span is modelled.)
ly = 2000 ! mm span in the y direction (half the span is modelled.)
nx = 20 ! -number of elements in the x direction
ny = 20 ! -number of elements in the y direction

/PREP7
MPTEMP,,,,,,,, ! material: isotropic
MPTEMP,1,0
MPDATA,EX,1,,E
MPDATA,PRXY,1,,nu
ET,1,SHELL281 ! element type: 8 node quadrilateral
R,1,t,t,t,t, , , ! element thickness

ty=1 ! insert nodes
*DO,j,0,2*ny
ty=-ty
tx=1
*DO,i,0,2*nx
tx=-tx
*IF,tx+ty,LT,1,THEN
x=i*lx/nx/4
y=j*ly/ny/4
z=x*y*kxy
N,,x,y,z,,,

*ENDIF
*ENDDO

*ENDDO

26

A.1. SHELL1.MAC 27

SHPP,OFF ! no warning aspect ratio
*DO,j,1,ny ! insert elements
*DO,i,1,nx
k1=1+(i-1)*2+(j-1)*(3*nx+2)
k2=1+i+(2+(j-1)*3)*nx+(j-1)*2
k3=1+(i-1)*2+j*(3*nx+2)
E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2

*ENDDO
*ENDDO

*DO,i,1,2*nx+1 ! insert symmetry boundary conditions
D,i,,0,,,,UY,ROTX,ROTZ,,,

*ENDDO
*DO,j,1,ny+1
D,(j-1)*(3*nx+2)+1,,0,,,,UX,ROTY,ROTZ,,,

*ENDDO
*DO,j,1,ny
D,2*nx+2+(j-1)*(3*nx+2),,0,,,,UX,ROTY,ROTZ,,,

*ENDDO

*DO,j,1,2*nx+1 ! insert roller edges
i=(3*nx+2)*ny+j
D,i,,0,,,,UX,UY,UZ,,,

*ENDDO
*DO,j,0,ny
i=2*nx+1+j*(3*nx+2)
D,i,,0,,,,UX,UY,UZ,,,

*ENDDO
*DO,j,1,ny
i=j*(3*nx+2)
D,i,,0,,,,UX,UY,UZ,,,

*ENDDO

*DO,j,1,ny ! add load
*DO,i,1,nx

F,(j-1)*(3*nx+2)+i*2+1,FZ,p*lx/nx*ly/ny
*ENDDO

*ENDDO

FINISH

/SOLU ! compute
SOLVE
FINISH

/POST1
*GET,w,NODE,1,U,Z ! deflection w in the middle
SHELL,TOP
*GET,sxxt,NODE,1,S,X ! stress sxx in the top surface (z>0)
*GET,syyt,NODE,1,S,Y ! stress syy
*GET,sxyt,NODE,1,S,XY ! stress sxy
SHELL,BOT
*GET,sxxb,NODE,1,S,X ! stress sxx in the bottom surface (z<0)
*GET,syyb,NODE,1,S,Y ! stress syy
*GET,sxyb,NODE,1,S,XY ! stress sxy
nxx=(sxxb+sxxt)*t/2 ! membrane forces

A.1. SHELL1.MAC 28

nyy=(syyb+syyt)*t/2
nxy=(sxyb+sxyt)*t/2
mxx=(sxxb-sxxt)*t*t/12 ! moments
myy=(syyb-syyt)*t*t/12
mxy=(sxyb-sxyt)*t*t/12

*CFOPEN,out,txt,,APPEND ! open file out.txt
*VWRITE,kxx,kyy,t,E,nu,p,lx,ly,nx,ny,h,w,mxx,myy,nxx,nyy,
(F13.9,F13.9,F7.2,F10.0,F7.2,F10.0,F10.0,F10.0,F5.0,F5.0,F6.2,F13.5,F13.5,F13.5,F13.5,F13.5)
*CFCLOS ! close out.txt
*UILIST,out.txt ! pop up out.txt

FINISH

B
APPENDIX-B

B.1. SHELL24.MAC
Following is the ANSYS APDL script Shell24.mac.

!Hypar shell, paraboloid, 8 node elements
! version 19 October 2016, Pierre Hoogenboom
!
tk = 1 ! mm thickness
kyy = 1/3000/tk ! 1/mm curvature in the y direction
kxx = -kyy !Reference shape is a Hypar.
Ek = 1.0e5 ! N/mm^2 Young’s modulus
nu = 0.0 ! - Poisson’s ratio
Pk = 100 ! N point load
dk = 4*tk ! mm diameter of the point load distribution area
!MODIFIED LENGTH. Changed from 14 to 9 after parametric study.
*IF,kyy,EQ,0,THEN !
lx = 9*((tk/ABS(kxx))**0.5)

*ELSE
lx = 9*((tk/ABS(kyy))**0.5)

*ENDIF
*IF,kxx,EQ,0,THEN
ly = 9*((tk/ABS(kyy))**0.5)

*ELSE
ly = 9*((tk/ABS(kxx))**0.5)

*ENDIF
nx = 80 ! -number of elements in the x direction
ny = 80 ! -number of elements in the y direction
hk = dk/10 ! mm element size in the middle_MODIFIED from 20 to 10.
bk = hk ! mm load patch size (load is applied in small patches)_MODIFIED from
bk/hk =4 to 1.

/PREP7
MPTEMP,,,,,,,, ! material: isotropic
MPTEMP,1,0
MPDATA,EX,1,,Ek
MPDATA,PRXY,1,,nu
ET,1,SHELL281 ! element type: 8 node quadrilateral
R,1,tk,tk,tk,tk, , , ! element thickness

gx=lx/2-nx*hk ! insert nodes
gy=ly/2-ny*hk

29

B.1. SHELL24.MAC 30

mx=lx-(8*nx-6)*nx**2*hk
my=ly-(8*ny-6)*ny**2*hk
qx=4*nx*(1+3*nx-4*nx**2)
qy=4*ny*(1+3*ny-4*ny**2)
ty=1
*DO,j,0,2*ny
ty=-ty
tx=1
*DO,i,0,2*nx
tx=-tx
*IF,tx+ty,LT,1,THEN
x=i*(i*(3-2*i)*gx+mx)/qx
y=j*(j*(3-2*j)*gy+my)/qy
z=(x*x*kxx+y*y*kyy)/2
N,,x,y,z,,,

*ENDIF
*ENDDO

*ENDDO

SHPP,OFF ! no warning aspect ratio
*DO,j,1,ny ! insert elements
*DO,i,1,nx
k1=1+(i-1)*2+(j-1)*(3*nx+2)
k2=1+i+(2+(j-1)*3)*nx+(j-1)*2
k3=1+(i-1)*2+j*(3*nx+2)
E,k3,k3+2,k1+2,k1,k3+1,k2+1,k1+1,k2

*ENDDO
*ENDDO

*DO,i,1,2*nx+1 ! insert symmetry boundary conditions
D,i,,0,,,,UY,ROTX,ROTZ,,,

*ENDDO
*DO,j,1,ny+1
D,1+(j-1)*(3*nx+2),,0,,,,UX,ROTY,ROTZ,,,

*ENDDO
*DO,j,1,ny
D,2*nx+2+(j-1)*(3*nx+2),,0,,,,UX,ROTY,ROTZ,,,

*ENDDO

*DO,j,1,2*nx+1 ! insert roller edges
i=(3*nx+2)*ny+j
NANG,i,1,0,NX(i)*kxx,,,,-NX(i)*kxx,-NY(i)*kyy,1
D,i,,0,,,,UX,UY,,,,

*ENDDO
*DO,j,1,ny
i=2*nx+1+(j-1)*(3*nx+2)
NANG,i,,,,0,1,NY(i)*kyy,-NX(i)*kxx,-NY(i)*kyy,1
D,i,,0,,,,UX,UY,,,,
i=j*(3*nx+2)
NANG,i,,,,0,1,NY(i)*kyy,-NX(i)*kxx,-NY(i)*kyy,1
D,i,,0,,,,UX,UY,,,,

*ENDDO

sx=1 ! insert point load
a=dk/2-NX(2*sx+1) ! determine the range sx and sy of loaded elements
*DOWHILE,a

B.1. SHELL24.MAC 31

sx=sx+1
a=dk/2-NX(2*sx+1)

*ENDDO
sy=1
a=dk/2-NY((3*nx+2)*sy+1)
*DOWHILE,a
sy=sy+1
a=dk/2-NY((3*nx+2)*sy+1)

*ENDDO

FCUM,ADD
n=0 ! n = number of rings
a=dk/2
*DOWHILE,a
n=n+1
a=a-bk

*ENDDO
dr=dk/2/n ! dr = ring width
*DO,k,1,n ! k = ring number
m=0 ! m = number of sectors
a=3.1415/2*k*dr
*DOWHILE,a
m=m+1
a=a-dr

*ENDDO
df=3.1415/2/m ! df = sector angle
dP=Pk/(1/4*3.1415*dk*dk)*(2*k-1)/2*dr*dr*df ! dP = load on the sector
ro=(12*k*k-12*k+4)/(6*k-3)*dr*SIN(df/2)/df ! ro = sector centre of gravity
*DO,g,1,m ! g = sector number
x=ro*cos((g-0.5)*df)
y=ro*sin((g-0.5)*df)

r=dk*dk ! find the closest node
q1=1 ! (look no further than sx or sy elements from the origin)
*DO,j,1,sy
*DO,i,1,sx
q=(j-1)*(3*nx+2)+2*i-1
a=(NX(q)-x)**2+(NY(q)-y)**2
*IF,a,LT,r,THEN
r=a
q1=q

*ENDIF
q=(j-1)*(3*nx+2)+2*i
a=(NX(q)-x)**2+(NY(q)-y)**2
*IF,a,LT,r,THEN
r=a
q1=q

*ENDIF
q=(j-1)*(3*nx+2)+(2*nx+1)+i
a=(NX(q)-x)**2+(NY(q)-y)**2
*IF,a,LT,r,THEN
r=a
q1=q

*ENDIF
*ENDDO

*ENDDO

B.1. SHELL24.MAC 32

F,q1,FZ,dP ! move force to node and add
F,q1,MX,dP*(y-NY(q1))
F,q1,MY,dP*(NX(q1)-x)

*ENDDO
*ENDDO
FINISH

/SOLU ! compute
SOLVE
FINISH

/POST1
*GET,w,NODE,1,U,Z ! deflection w under the point load
SHELL,TOP
*GET,sxxt,NODE,1,S,X ! stress sxx under point load in the top surface (z>0)
*GET,syyt,NODE,1,S,Y ! stress syy
*GET,sxyt,NODE,1,S,XY ! stress sxy
SHELL,BOT
*GET,sxxb,NODE,1,S,X ! stress sxx under point load in the bottom surface (z<0)
*GET,syyb,NODE,1,S,Y ! stress syy
*GET,sxyb,NODE,1,S,XY ! stress sxy
nxx=(sxxb+sxxt)*tk/2 ! membrane forces
nyy=(syyb+syyt)*tk/2
nxy=(sxyb+sxyt)*tk/2
mxx=(sxxb-sxxt)*tk*tk/12 ! moments
myy=(syyb-syyt)*tk*tk/12
mxy=(sxyb-sxyt)*tk*tk/12

l=0 ! influence length in the x direction
v=1
i=1
mi=mxx
*DOWHILE,v
j=i+2
a=SQRT((NX(j)-NX(i))**2+(NZ(j)-NZ(i))**2)
SHELL,TOP
*GET,sxxt,NODE,j,S,X
SHELL,BOT
*GET,sxxb,NODE,j,S,X
mj=(sxxb-sxxt)*tk*tk/12
*IF,mi*mj,GT,0,THEN
l=l+a

*ELSE
l=l+a*mi/(mi-mj)
v=-1

*ENDIF
*IF,j,EQ,2*nx+1,THEN
v=-1

*ENDIF
i=j
mi=mj

*ENDDO
lix=2*l

l=0 ! influence length in the y direction

B.1. SHELL24.MAC 33

v=1
i=1
mi=myy
*DOWHILE,v
j=i+3*nx+2
a=SQRT((NY(j)-NY(i))**2+(NZ(j)-NZ(i))**2)
SHELL,TOP
*GET,syyt,NODE,j,S,Y
SHELL,BOT
*GET,syyb,NODE,j,S,Y
mj=(syyb-syyt)*tk*tk/12
*IF,mi*mj,GT,0,THEN
l=l+a

*ELSE
l=l+a*mi/(mi-mj)
v=-1

*ENDIF
IF,j,EQ,ny(3*nx+2)+1,THEN
v=-1

*ENDIF
i=j
mi=mj

*ENDDO
liy=2*l

*CFOPEN,out,txt,,APPEND ! open file out.txt
*VWRITE,kxx,kyy,tk,Ek,nu,Pk,dk,lx,ly,nx,ny,hk,bk,mxx,myy
(F13.9,F13.9,F7.2,F10.0,F7.2,F10.0,F7.2,F10.0,F10.0,F5.0,F5.0,F6.2,F13.5,F13.5,F13.5)
*CFCLOS ! close out.txt
*UILIST,out.txt ! pop up out.txt

FINISH

C
APPENDIX-C

The following codes were used to conduct the Parametric Studies.

C.1. CODE FOR VARIATION OF LENGTH IN X AND Y

1 ’’’
2 Python Modules used.
3 ’’’
4 import math
5 import csv
6 ’’’
7 Load all rows as strings from the input parameter file (.csv file) which are then saved as a list of lists IP which contains as many lists

as there are rows.
8 The data in the file is as follows:
9 tk/ Em / nu / Pk / dk / kxx / kyy

10 1 / 1.00E+05 / 0 / 100 / 4 / 0.000333333 / −0.000333333
11

12 where :
13 tk − thickness of shell (mm)
14 Em − Young’s Modulus (N/mm2)
15 nu − Poisson’s Ratio
16 Pk − Point Load applied in Mechanical Model (N)
17 dk − Diameter of Influence of Point Load in FE Model (mm)
18 kxx − Curvature in x (1/mm)
19 kyy − Curvature in y (1/mm)
20

21 ’’’
22 # Load all rows as strings from the input parameter file into a variable called IP
23 with open("D:\\Additional Thesis\\Batch mode scripts\\Input_Parameters.csv", "r") as f_input:
24 csv_reader = csv.reader(f_input)
25 IP = list (csv_reader)
26 print IP
27 ’’’
28 Load all rows as strings from the file containing values of the coefficients in the formula for lengths in x and y (.csv file) which are

then saved as a list of lists VL which contains as many lists as there are rows.
29 The values are :
30 lx ly
31 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
32 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
33 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
34 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
35 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
36 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
37 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
38 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
39 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
40 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
41 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
42 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
43 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

34

C.1. CODE FOR VARIATION OF LENGTH IN X AND Y 35

44 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
45 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
46 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
47 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
48 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
49 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
50 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
51

52

53 The Data is to be read as follows:
54 Coefficients of Length in x values are in the column beneath ’lx’ AND Coefficients of Length in y values are in the rows following a

value of ’lx’.
55 The set of formulae governing the magnitude of length can be found in the ANSYS Script.
56 ’’’
57 # Load all rows as strings from the parameter varying file into a variable called VL
58 with open("D:\\Additional Thesis\\Batch mode scripts\\Length\\Varying_Length.csv", "r") as Chameleon:
59 csv_reader = csv.reader(Chameleon)
60 VL = list (csv_reader)
61 print VL
62 KV=[] #empty list to store IPs as floats
63 SFS=[]#empty list to store VLs as floats
64

65 ’’’
66 Load all numerical values in IP and VL into seperate lists. KV will contain only the numerical values of the input parameters.
67 SFS will contain lists within a list which have the lx and ly values. A list within SFS is interpreted as follows:
68 The first value is the ’ lx ’ value to be used in a batch of analyses with the rest of the values being the ’ly’ values for that batch of

analyses.
69

70 ’’’
71 for i in range(1,len(IP)):
72 KV.append([float(x) for x in IP[i]]) #New Input Paramter list
73

74 for i in range(1,len(VL)):
75 SFS.append([float(y) for y in VL[i]])#New Varying Paramter list
76 ’’’
77 Next code block creates the batch file (.bat) neede to run ANSYS in Batch mode.
78 It creates seperate lists LX and LY from which the values are then picked up
79 as inputs for each individual analysis in ANSYS. Each line represents one analysis.
80 An example line will look like:
81 "C:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\ansys160.exe" −b −i Shell24_191016.txt −tk 1.0 −kyy 0.0333 −kxx

0.0333333333333 −Ek 100000.0 −nu 0.0 −Pk 100.0 −dk 5.0 −o out0.txt
82 ’’’
83

84 # creates the first line for the batch file .
85 hans_zimmer = open("D:\\Additional Thesis\\Batch mode scripts\\Length\\Parameter_Length.txt","w")
86 hans_zimmer.write(’REM This code will run multiple times on a single script but will change the length in x and y each time. \n’)
87 hans_zimmer.close()
88

89 # appends the commands for analysis and replacement of parameter for each run.
90 batch_file = open("D:\\Additional Thesis\\Batch mode scripts\\Length\\Parameter_Length.txt","a")
91

92 for i in range(len(KV)): #loops through each set of input parameters
93 for j in range(len(SFS)): #loop for coefficient of lx based on input parameter. Loops through column index 1 in each row of SFS.
94 for k in range(1,len(SFS[j])):#loop for coefficient of ly based on input parameter. Loops through each row of SFS.
95 if KV[i][1]==0: #check parameter index
96 LX = SFS[j][0]*(KV[i][0]/abs(KV[i][2])**0.5)
97 else:
98 LX = SFS[j][0]*(KV[i][0]/abs(KV[i][1])**0.5)
99 if KV[i][2]==0:

100 LY = SFS[j][k]*(KV[i][0]/abs(KV[i][1])**0.5)
101 else:
102 LY = SFS[j][k]*(KV[i][0]/abs(KV[i][2])**0.5)
103 batch_file.write(’"C:\\Program Files\\ANSYS Inc\\v160\\ANSYS\\bin\\winx64\\ansys160.exe" −b −i Shell24.txt −’+IP

[0][0]+’ ’+IP[1][0]+’ −’+IP[0][1]+’ ’+IP[1][1]+’ −’+IP[0][2]+’ ’+IP[1][2]+’ −’+IP[0][3]+’ ’+IP[1][3]+’ −’+IP[0][4]+’ ’+IP[1][4]+’ −’+IP
[0][5]+’ ’+IP[1][5]+’ −’+IP[0][6]+’ ’+IP[1][6]+’ −lx ’+str(LX)+’ −ly ’+str(LY)+’ −o out’+str(j+1)+str(k)+’.txt \n’)#output file is stored as
out(abcd), ab−LX,cd−LY loop.

104 batch_file.close()
105 ’’’ This part changes the extension of the file to .bat ’’’
106 txt2bat = os.path.join("D:\\Additional Master Thesis\\Batch mode scripts\\Length",’Parameter_Length’ + ’.txt’)#changes .txt to .bat
107 base = os.path.splitext(txt2bat)[0]

C.1. CODE FOR VARIATION OF LENGTH IN X AND Y 36

108 os.rename(txt2bat,base + ".bat")

Listing C.1: Variation of Length

C.2. CODE FOR VARIATION OF NO. OF ELEMENTS ALONG X AND Y AXES 37

C.2. CODE FOR VARIATION OF NO. OF ELEMENTS ALONG X AND Y AXES

1 ’’’
2 Python Modules used.
3 ’’’
4 import math
5 import csv
6 ’’’
7 Load all rows as strings from the input parameter file (.csv file) which are then saved as a list of lists IP which contains as many lists

as there are rows.
8 The data in the file is as follows:
9 tk/ Em / nu / Pk / dk / kxx / kyy

10 1 / 1.00E+05 / 0 / 100 / 4 / 0.000333333 / −0.000333333
11

12 where :
13 tk − thickness of shell (mm)
14 Em − Young’s Modulus (N/mm2)
15 nu − Poisson’s Ratio
16 Pk − Point Load applied in Mechanical Model (N)
17 dk − Diameter of Influence of Point Load in FE Model (mm)
18 kxx − Curvature in x (1/mm)
19 kyy − Curvature in y (1/mm)
20

21 ’’’
22

23 # Load all rows as strings from the input parameter file into a variable called IP
24 with open("D:\\Additional Thesis\\Batch mode scripts\\Input_Parameters.csv", "r") as f_input:
25 csv_reader = csv.reader(f_input)
26 IP = list (csv_reader)
27 print IP
28 ’’’
29 Load all rows as strings from the file containing values of the number of elements in x and y directions (.csv file) which are then saved

as a list of lists VL which contains as many lists as there are rows.
30 The values are :
31 nx ny
32 10 10 20 30 40 50 60 70 80
33 20 10 20 30 40 50 60 70 80
34 30 10 20 30 40 50 60 70 80
35 40 10 20 30 40 50 60 70 80
36 50 10 20 30 40 50 60 70 80
37 60 10 20 30 40 50 60 70 80
38 70 10 20 30 40 50 60 70 80
39 80 10 20 30 40 50 60 70 80
40

41 The Data is to be read as follows:
42 nx values are in the column next to ’nx’ AND ny values are in the rows following a value of ’nx’.
43

44 ’’’
45 # Load all rows as strings from the parameter varying file into a variable called VL
46 with open("D:\\Additional Thesis\\Batch mode scripts\\ElementSize\\Parameter_ElementSize.csv", "r") as Chameleon:
47 csv_reader = csv.reader(Chameleon)
48 VL = list (csv_reader)
49 print VL
50

51 ’’’
52 Load all numerical values in IP and VL into seperate lists. KV will contain only the numerical values of the input parameters.
53 SFS will contain lists within a list which have the nx and ny values. A list within SFS is interpreted as follows:
54 The first value is the ’nx’ value to be used in a batch of analyses with the rest of the values being the ’ny’values for that batch of

analyses.
55

56 ’’’
57 KV=[] #empty list to store IPs as floats
58 SFS=[]#empty list to store VLs as floats
59 for i in range(1,len(IP)):
60 KV.append([float(x) for x in IP[i]]) #New Input Paramter list
61

62 for i in range(1,len(VL)):
63 SFS.append([float(y) for y in VL[i]])#New Varying Paramter list
64

65 ’’’
66 Next code block creates the batch file (.bat) neede to run ANSYS in Batch mode.

C.2. CODE FOR VARIATION OF NO. OF ELEMENTS ALONG X AND Y AXES 38

67 It creates seperate lists NX and NY from which the values are then picked up
68 as inputs for each individual analysis in ANSYS. Each line represents one analysis.
69 An example line will look like:
70 "C:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\ansys160.exe" −b −i Shell24_191016.txt −tk 1.0 −kyy 0.0333 −kxx

0.0333333333333 −Ek 100000.0 −nu 0.0 −Pk 100.0 −dk 5.0 −o out0.txt
71 ’’’
72

73 # creates the first line for the batch file .
74 hans_zimmer = open("D:\\Additional Thesis\\Batch mode scripts\\ElementSize\\Parameter_ElementSize.txt","w")
75 hans_zimmer.write(’REM This code will run multiple times on a single script but will change the element size in x and y each time. \n’)
76 hans_zimmer.close()
77

78 # appends the commands for analysis and replacement of parameter for each run.
79 batch_file = open("D:\\Additional Thesis\\Batch mode scripts\\ElementSize\\Parameter_ElementSize.txt","a")
80

81 for i in range(len(KV)): #loops through each set of input parameters
82 for j in range(len(SFS)): #loop for coefficient of nx based on input parameter. Loops through column index 1 in each row of SFS.
83 for k in range(1,len(SFS[j])):#loop for coefficient of ny based on input parameter. Loops through each row of SFS.
84 NX = SFS[j][0]
85 NY = SFS[j][k]
86 batch_file.write(’"C:\\Program Files\\ANSYS Inc\\v160\\ANSYS\\bin\\winx64\\ansys160.exe" −b −i Shell24.txt −’+IP

[0][0]+’ ’+IP[1][0]+’ −’+IP[0][1]+’ ’+IP[1][1]+’ −’+IP[0][2]+’ ’+IP[1][2]+’ −’+IP[0][3]+’ ’+IP[1][3]+’ −’+IP[0][4]+’ ’+IP[1][4]+’ −’+IP
[0][5]+’ ’+IP[1][5]+’ −’+IP[0][6]+’ ’+IP[1][6]+’ −nx ’+str(NX)+’ −ny ’+str(NY)+’ −o out’+str(j+1)+str(k)+’.txt \n’)#output file is stored
as out(abcd), ab−NX,cd−NY loop.

87 batch_file.close()
88 ’’’ This part changes the extension of the file to .bat ’’’
89 txt2bat = os.path.join("D:\\Additional Master Thesis\\Batch mode scripts\\ElementSize",’Parameter_ElementSize’ + ’.txt’)#changes .

txt to .bat
90 base = os.path.splitext(txt2bat)[0]
91 os.rename(txt2bat,base + ".bat")

Listing C.2: Variation of Number of Elements along x and y axes

C.3. CODE FOR VARIATION OF
d

h
AND

h

b
RATIOS 39

C.3. CODE FOR VARIATION OF
d

h
AND

h

b
RATIOS

1 ’’’
2 Python Modules used.
3 ’’’
4 import math
5 import csv
6 ’’’
7 Load all rows as strings from the input parameter file (.csv file) which are then saved as a list of lists IP which contains as many lists

as there are rows.
8 The data in the file is as follows:
9 tk/ Em / nu / Pk / dk / kxx / kyy

10 1 / 1.00E+05 / 0 / 100 / 4 / 0.000333333 / −0.000333333
11

12 where :
13 tk − thickness of shell (mm)
14 Em − Young’s Modulus (N/mm2)
15 nu − Poisson’s Ratio
16 Pk − Point Load applied in Mechanical Model (N)
17 dk − Diameter of Influence of Point Load in FE Model (mm)
18 kxx − Curvature in x (1/mm)
19 kyy − Curvature in y (1/mm)
20

21 ’’’
22 # Load all rows as strings from the input parameter file into a variable called IP
23 with open("D:\\Additional Thesis\\Batch mode scripts\\Input_Parameters.csv", "r") as f_input:
24 csv_reader = csv.reader(f_input)
25 IP = list (csv_reader)
26 print IP
27 ’’’
28 Load all rows as strings from the file containing values of the coefficients in the formula for lengths in x and y (.csv file) which are

then saved as a list of lists VL which contains as many lists as there are rows.
29 The values are :
30 hk bk
31 dk/1 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
32 dk/2 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
33 dk/5 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
34 dk/10 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
35 dk/15 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
36 dk/20 hk/1 hk/2 hk/3 hk/4 hk/5 hk/6 hk/7 hk/8
37

38 The Data is to be read as follows:
39 hk is the element size in the middle and it’s variation along the length can be seen in the formulae in the ANSYS script.
40 bk is the load patch size. They are related to dk via the ratio dk/hk and hk/bk.
41 The values of ’hk’ are given as a function of dk and dk is picked from the list ’IP ’.
42 Values of ’hk’ are in the column next to hk while the corresponding values of ’bk’, which are given as a function of hk, are in the rows

following a value of hk.
43

44 ’’’
45 # Load all rows as strings from the parameter varying file into a variable called VL
46 with open("D:\\Additional Thesis\\Batch mode scripts\\HandB\\Varying_HandB.csv", "r") as Chameleon:
47 csv_reader = csv.reader(Chameleon)
48 VL = list (csv_reader)
49 print VL
50 KV=[] #empty list to store IPs as floats
51 SFS=[]#empty list to store VLs as floats
52 ’’’
53 Load all numerical values in IP and VL into seperate lists. KV will contain only the numerical values of the input parameters.
54 SFS will contain lists within a list which have the hk and bk values. A list within SFS is interpreted as follows:
55 The first value is the ’hk’ value to be used in a batch of analyses with the rest of the values being the ’bk’ values for that batch of

analyses.
56

57 ’’’
58 for i in range(1,len(IP)):
59 KV.append([float(x) for x in IP[i]]) #New Input Paramter list
60

61 for i in range(1,len(VL)):
62 SFS.append([float(y) for y in VL[i]])#New Varying Paramter list
63 ’’’

C.3. CODE FOR VARIATION OF
d

h
AND

h

b
RATIOS 40

64 Next code block creates the batch file (.bat) neede to run ANSYS in Batch mode.
65 It creates seperate lists HK and BK from which the values are then picked up
66 as inputs for each individual analysis in ANSYS. Each line represents one analysis.
67 An example line will look like:
68 "C:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\ansys160.exe" −b −i Shell24_191016.txt −tk 1.0 −kyy 0.0333 −kxx

0.0333333333333 −Ek 100000.0 −nu 0.0 −Pk 100.0 −dk 5.0 −o out0.txt
69

70 ’’’
71

72 # creates the first line for the batch file .
73 hans_zimmer = open("D:\\Additional Thesis\\Batch mode scripts\\HandB\\Parameter_HandB.txt","w")
74 hans_zimmer.write(’REM This code will run multiple times on a single script but will change the element size in x and y each time. \n’)
75 hans_zimmer.close()
76

77 # appends the commands for analysis and replacement of parameter for each run.
78 batch_file = open("D:\\Additional Thesis\\Batch mode scripts\\HandB\\Parameter_HandB.txt","a")
79

80 for i in range(len(KV)): #loops through each set of input parameters
81 for j in range(len(SFS)): #loop for coefficient of hk based on input parameter. Loops through column index 1 in each row of SFS.
82 for k in range(1,len(SFS[j])):#loop for coefficient of bk based on input parameter. Loops through each row of SFS.
83 HK = SFS[j][0]*KV[i−1][6]
84 BK = SFS[j][k]*HK
85 batch_file.write(’"C:\\Program Files\\ANSYS Inc\\v160\\ANSYS\\bin\\winx64\\ansys160.exe" −b −i Shell24.txt −’+IP

[0][0]+’ ’+IP[1][0]+’ −’+IP[0][1]+’ ’+IP[1][1]+’ −’+IP[0][2]+’ ’+IP[1][2]+’ −’+IP[0][3]+’ ’+IP[1][3]+’ −’+IP[0][4]+’ ’+IP[1][4]+’ −’+IP
[0][5]+’ ’+IP[1][5]+’ −’+IP[0][6]+’ ’+IP[1][6]+’ −hk ’+str(HK)+’ −bk ’+str(BK)+’ −o out’+str(j+1)+str(k)+’.txt \n’)#output file is stored
as out(abcd), ab−HK,cd−BK loop.

86 batch_file.close()
87

88 ’’’ This part changes the extension of the file to .bat ’’’
89 txt2bat = os.path.join("D:\\Additional Master Thesis\\Batch mode scripts\\LoadPatchSize",’Parameter_HandB’ + ’.txt’)#changes .txt to

.bat
90 base = os.path.splitext(txt2bat)[0]
91 os.rename(txt2bat,base + ".bat")

Listing C.3: Variation of
d

h
and

h

b
ratios

D
APPENDIX-D

The following code was used to conduct the variation of curvature and obtain the moment results to be used
in curve fitting.

D.1. CODE FOR VARIATION OF CURVATURE

1 ’’’
2 Python Modules used.
3 ’’’
4 import math
5 import csv
6 import os
7

8 ’’’
9 Load all rows as strings from the input parameter file (.csv file) which are then saved as a list of lists IP which contains as many lists

as there are rows.
10 The data in the file is as follows:
11 tk/ Em / nu / Pk / dk
12 1 / 1.00E+05 / 0 / 100 / 4
13 where :
14 tk − thickness of shell (mm)
15 Em − Young’s Modulus (N/mm2)
16 nu − Poisson’s Ratio
17 Pk − Point Load applied in Mechanical Model (N)
18 dk − Diameter of Influence of Point Load in FE Model (mm)
19 ’’’
20

21

22 with open("H:\\Desktop\\Additional Master Thesis\\Batch mode scripts\\Curvature\\Input_Parameters_2.csv", "r") as f_input:
23 csv_reader = csv.reader(f_input)
24 IP = list (csv_reader)
25 print IP
26

27 ’’’
28 Load all rows as strings from the file containing values of the curvature (.csv file) which are then saved as a list of lists VL which

contains as many lists as there are rows.
29 The values are :
30 kxx kyy
31 0.033333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
32 0.01 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
33 0.003333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
34 0.001 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
35 0.000333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
36 −0.000333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
37 −0.001 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
38 −0.003333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
39 −0.01 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
40 −0.033333333 0.033333333 0.01 0.003333333 0.001 0.000333333 −0.000333333 −0.001 −0.003333333 −0.01 −0.033333333
41

42 The Data is to be read as follows:

41

D.1. CODE FOR VARIATION OF CURVATURE 42

43 Kxx values are in the column next to ’kxx’ AND Kyy values are in the rows following a value of ’kxx’.
44

45 ’’’
46

47 with open("H:\\Desktop\\Additional Master Thesis\\Batch mode scripts\\Curvature\\Varying_Curvature.csv", "r") as Chameleon:
48 csv_reader = csv.reader(Chameleon)
49 VL = list (csv_reader)
50 print VL
51

52 KV=[] #empty list to store IPs as floats
53 SFS=[]#empty list to store VLs as floats
54

55 ’’’
56 Load all numerical values in IP and VL into seperate lists. KV will contain only the numerical values of the input parameters.
57 SFS will contain lists within a list which have the kxx and kyy values. A list within SFS is interpreted as follows:
58 The first value is the ’kxx’ value to be used in a batch of analyses with the rest of the values being the ’kyy’ values for that batch of

analyses.
59

60 ’’’
61 for i in range(1,len(IP)):
62 KV.append([float(x) for x in IP[i]])
63

64 for i in range(1,len(VL)):
65 SFS.append([float(y) for y in VL[i]])
66

67

68 ’’’
69 Next code block creates the batch file (.bat) neede to run ANSYS in Batch mode.
70 It creates seperate lists KXX and KYY from which the values are then picked up
71 as inputs for each individual analysis in ANSYS. Each line represents one analysis.
72 An example line will look like:
73 "C:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\ansys160.exe" −b −i Shell24_191016.txt −tk 1.0 −kyy 0.0333 −kxx

0.0333333333333 −Ek 100000.0 −nu 0.0 −Pk 100.0 −dk 5.0 −o out0.txt
74 ’’’
75

76 l=1
77 for folderName, subfolders, filenames in os.walk(’D:\\Additional Thesis\\Batch mode scripts\\Curvature’):
78 for subfolder in subfolders:#loops over each d/t folder i.e ratio from 1 to 8. The rest of the code follows the curvature variation
79 hans_zimmer = open(os.path.join(folderName,subfolder,’Parameter_Curvature_’ + str(l) + ’.txt’),"w")
80 hans_zimmer.write(’REM This code will run multiple times on a single script but will change the curvature in x and y each time.

\n’)#REM signifies beginning of a comment.
81 hans_zimmer.close()
82 batch_file = open(os.path.join(folderName,subfolder,’Parameter_Curvature_’ + str(l) + ’.txt’),"a")
83 for i in range(len(KV)): #loops through each set of input parameters
84 for j in range(len(SFS)): #loop for coefficient of kxx based on input parameter. Loops through column index 1 in each row

of SFS.
85 for k in range(1,len(SFS[j])):#loop for coefficient of kyy based on input parameter. Loops through each row of SFS.
86 KXX = SFS[j][0]
87 KYY = SFS[j][k]
88 batch_file.write(’"C:\\Program Files\\ANSYS Inc\\v160\\ANSYS\\bin\\winx64\\ansys160.exe" −b −i

Shell24_180716.txt −’+IP[0][0]+’ ’+IP[1][0]+’ −’+IP[0][1]+’ ’+IP[1][1]+’ −’+IP[0][2]+’ ’+IP[1][2]+’ −’+IP[0][3]+’ ’+IP[1][3]+’ −kxx ’+str
(KXX)+’ −kyy ’+str(KYY)+’ −dk ’ + str(l*int(IP[0][1]))+’ −o out’+str(j+1)+str(k)+’.txt \n’)#output file is stored as out(abcd), ab−NX,
cd−NY loop.

89 batch_file.close()
90 txt2bat = os.path.join(folderName,subfolder,’Parameter_Curvature_’ + str(l) + ’.txt’)#changes .txt to .bat
91 base = os.path.splitext(txt2bat)[0]
92 os.rename(txt2bat,base + ".bat")
93 l=l+1

Listing D.1: Variation of curvature

E
APPENDIX-E

The following code was used to conduct the curve fitting in python. [14]

E.1. CODE FOR CURVE FITTING IN PYTHON

1

2 ’’’
3 Python Modules Used
4 ’’’
5 from scipy import optimize
6 import numpy as np
7 import openpyxl
8 import os
9 ’’’

10 This code block opens required excel file to obtain the moment results from ANSYS and the respective curvature values in x and y.
11 ’’’
12 os.chdir(’H:\\Desktop\\Additional Master Thesis\\Batch mode scripts\\Optimization’)
13 jb = openpyxl.load_workbook(’Results_Curvature_Contours.xlsx’) #open desired excel file.
14 nm = jb.get_sheet_names()
15 sg = []
16 for x in range(len(nm)):
17 sg.append(str(nm[x]))
18 ’’’
19 The following code block creates empty lists for all the variables required.
20

21 ’’’
22 kxx = [] #empty lists to store values of curvature in x.
23 kyy = [] #empty lists to store values of curvature in y.
24 mxx=[]#empty list for mxx values.
25 p=[] #empty list to store optimized constants in the formula.
26 pcov=[] #empty list to store covariance values obtained during the optimization process.
27 dk =[] #empty list to store the values of the diameter of influence which is treated as a parameter.
28 for m in range(1,9):
29 dk.extend([m]*100) #Creates an 800x1 list to consider dk as a variable.
30 for i in range(len(nm)):
31 jz = jb.get_sheet_by_name(sg[i])
32 for j in range(1,int(jz.get_highest_row())):
33 kxx.append(jz.cell(row=j,column=0).value)
34 kyy.append(jz.cell(row=j,column=1).value)
35 mxx.append(jz.cell(row=j,column=13).value)
36 ’’’
37 Data will be optimized by reading the values as follows:
38 mxx = f(kxx, kyy, dk/tk) where
39 kxx: curvature in x.
40 kyy: curvatrue in y.
41 dk: diameter of influence of point load.
42 tk: thickness of shell = 1 for all calcualtions.
43 ’’’
44

45 def f(X,a,b,c,d,e):#g,h,m,n,o):

43

E.1. CODE FOR CURVE FITTING IN PYTHON 44

46 kxx,kyy,dk = X
47 return a*100*np.log(1/(((dk)**2)*(np.abs(b*kxx+c*kyy)+np.abs(d*kxx+e*kyy))))#+g+h*(kxx/kyy)+m*((kxx/kyy)**0.5)+n*(kxx/kyy)**o
48 #a=0.039599475;b=0.016995719;c=0.141017581;d=−0.055995379;e=−0.022969291;# old initial guesses
49 a=0.04;b=0.044;c=0.084;d=0.202;e=0.028;
50

51 p,pcov = optimize.curve_fit(f,(kxx,kyy,dk),mxx,p0=[a,b,c,d,e])#g,h,m,n,o])#optimized paramters are stored as lists.
52 ’’’
53 This code block stores the data of the optimized constants in an excel file.
54 ’’’
55

56 wb = openpyxl.Workbook()
57 sheet = wb.active
58 sheet. title = ’Parameter Values’
59 for l in range(len(p)):
60 sheet.cell(row=l,column=0).value=p[l] #writes row−wise value of abcde in respective order in 1 column respectively.
61

62 wb.save(’Parameter Value_new_formula_2.xlsx’)

Listing E.1: Curve Fitting in Python

	Summary
	Introduction
	The ANSYS Scripts
	Shell1.mac
	Shell24.mac

	Parametric Studies
	Length in x and y directions
	Number of Elements in x and y directions
	Load Patch Size
	Thickness

	Moment results from Shell24.mac
	Optimization of Constants
	Assumptions for derivation of the formula
	Method of Non-Linear Least Squares
	Curve Fitting trial 1
	Curve Fitting trial 2

	The effect of Poisson's ratio on the formula
	Conclusions and Discussions
	Bibliography
	appendix-a
	Shell1.mac

	appendix-b
	Shell24.mac

	appendix-c
	Code for variation of length in x and y
	Code for variation of no. of elements along x and y axes
	Code for variation of defaultdh and defaulthb ratios

	appendix-d
	Code for variation of curvature

	appendix-e
	Code for Curve Fitting in Python

