
Predicting results
of geometrical
nonlinear FE anal-
yses using Artificial
Neural Networks
Applied to stiffened steel plated
structures in sea lock gates
T. Verhoog
Master thesis
ISBN 000-00-0000-000-0

Predicting results of
geometrical nonlinear
FE analyses using
Artificial Neural

Networks
Applied to stiffened steel plated structures in

sea lock gates

by

T. Verhoog
to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday November 22, 2019 at 13:00.

Student number: 4248082
Project duration: March 1, 2019 – November 22, 2019
Thesis committee: Prof. dr. ir. J.G. Rots, TU Delft, chair committee

Dr. ir. P.C.J. Hoogenboom, TU Delft, supervisor
Dr. ir. R. Abspoel, TU Delft
Ir. P.J.C. van Lierop, Iv-Infra B.V.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

In this report I present the work I have carried out for obtaining the MSc degree Civil Engineering at Delft
University of Technology. The past period of working out my MSc project has sometimes been a rough, but
always been a rewarding experience. Diving deep into new topics like machine learning was challenging, yet
very interesting. Apart from gaining experience in finite element modelling and structural mechanics, I also
learned ton of new things about machine learning and programming in general, which I really enjoyed.

So first of all I would like to thank Pieter van Lierop, for having the innovative and open mindset and giving
me the trust and the freedom to explore my own ideas and path. Special thanks for Pierre Hoogenboom, for
being a helpful supervisor who could help me to steer into the right direction. Thank you Jan Rots and Roland
Abspoel for taking part in my graduation committee and thereby showing your curiosity and confidence in
my project.

Also many thanks to Yirui Yao, my personal ANSYS expert to whom I could ask all my technical questions.
Dennis Alsemgeest, thank you for lending your ear and inspiring me when I needed it.

Of course an infinite amount of gratitude to my mother Heleen, who has always supported me in all the de-
cisions I took in life and for giving me the opportunity to go to college. And finally, above all I want to thank
my wonderful girlfriend Freya, for being the best personal mental coach I can imagine.

Oh, and not to forget my friend Dave, who always challenged me to explain my thesis topic to other people in
three sentences.

T. Verhoog
Delft, October 2019

iii

Contents

List of Figures ix
List of Tables xiii
Summary xv
1 Introduction 1

1.1 Background and motivation . 1
1.2 Objectives. 2
1.3 Scope . 2
1.4 Report outline. 2

2 Machine Learning theory 3
2.1 Introduction to Machine Learning . 3
2.2 Artificial Neural Networks. 4

2.2.1 Network architecture: The building blocks of the ANN. 5
2.2.2 Matrix notation . 7
2.2.3 Training process of the network . 9
2.2.4 Hyperparameters . 11

2.3 Genetic algorithms . 14
2.3.1 Why Genetic Algorithms . 14
2.3.2 Main process. 15
2.3.3 Fitness evaluation . 17
2.3.4 Selection . 17
2.3.5 Variation . 17

3 Mechanical model and FE analysis 21
3.1 Introduction main mechanical problem . 21
3.2 Geometry . 23
3.3 Material . 25
3.4 Boundary conditions . 25
3.5 Loading conditions . 27

3.5.1 Out of plane loading . 27
3.5.2 In-plane loading . 28

3.6 Limit state criteria . 29
3.7 Mesh . 30

3.7.1 Element type. 30
3.7.2 Mesh quality . 30
3.7.3 Mesh size . 31

3.8 Non-linear FE analysis . 33
3.8.1 Geometrical nonlinearities. 33
3.8.2 Material non-linearities . 35

3.9 Encountered difficulties. 36
3.9.1 Divergence. 36
3.9.2 Stress singularities . 37

3.10 Summary and example FE analysis . 38

4 Approach 41
4.1 Introduction . 41
4.2 Software . 42

4.2.1 Python . 43
4.2.2 Finite element software . 43

v

vi Contents

4.2.3 Considerations Ansys Workbench or APDL . 44
4.3 Simplified mechanical models . 46
4.4 Generation of data . 48

4.4.1 Create parametric models . 49
4.4.2 Define projects. 49
4.4.3 Create design of experiments . 52
4.4.4 Run FE analyses and collect the results . 55

4.5 Preparation of data . 55
4.5.1 Split data. 55
4.5.2 Scale data . 55
4.5.3 Modify input data . 56

4.6 Predictive modeling using Artificial Neural Networks . 56
4.6.1 Create the ANN model . 56
4.6.2 Choose hyper parameters . 56
4.6.3 Training the ANN on data . 58
4.6.4 Validation . 60

4.7 Hyperparameter optimization using Genetic Algorithms . 61
4.7.1 Hyperparameters to optimize . 61
4.7.2 Settings for genetic algorithm . 62
4.7.3 Custom functions . 63

4.8 Other methods for predictive modeling . 64
4.8.1 Kriging interpolation. 64
4.8.2 Polynomial interpolation . 65

5 Results and discussion 67
5.1 Computational efforts . 67
5.2 Comparison of accuracies predictive models . 68

5.2.1 Comparison accuracies mechanical model 1. 68
5.2.2 Comparison accuracies mechanical model 2. 72
5.2.3 Comparison accuracies mechanical model 3. 77

5.3 Analyses of errors predictions Artificial Neural Networks . 82
5.3.1 Error analysis simplified mechanical models 1 and 2 82
5.3.2 Error analysis main mechanical model 3 . 84

5.4 Influencing parameters on accuracy . 87
5.4.1 Relation accuracy to number of training data samples 87
5.4.2 Relation accuracy to number of design variables. 90

5.5 Additional results . 92
5.5.1 Modifications on Neural Networks training . 92
5.5.2 Simplified models. Non-linear analyses of unstiffened plates 93
5.5.3 Results on existing datasets . 95
5.5.4 Results accuracies unstiffened plates . 96

6 Conclusion 103
7 Recommendations 107

7.1 FE modelling . 107
7.2 Training data . 108
7.3 Other machine learning techniques. 108

Bibliography 109
Appendices 111
A Main Python script 113
B ANN classes 123
C Genetic Algorithm classes 127
D APDL classes 133

Contents vii

E Data classes 141
F Summary classes 145
G APDL template file non-linear buckling analysis stiffened plates 149
H APDL template file non-linear buckling analysis unstiffened plates 159
I APDL template file symmetric geometry 169
J APDL template file imperfection type 2 177
K Complete APDL file nonlinear analysis FEA example 179

List of Figures

2.1 Images of hand written digits from the MNIST dataset [14] . 4
2.2 Schematic representation of a single artificial neuron processing information from its preceding

neurons. The weighted output values of the previous neurons are summed up and a bias term
is added. The sum is finally passed through a (non-linear) activation function. 5

2.3 Example of single-layer network . 6
2.4 Example of multi-layer network . 6
2.5 The indices of the weights corresponding to the connections of input neurons to the first neuron

in the hidden layer. The first index corresponds to the node number in the preceding layer (L−1). 8
2.6 The indices of the weights corresponding to the connections of one input neuron to all neurons

in the hidden layer. The second index corresponds to the node number of the actual layer (L) . 8
2.7 Flowchart describing the general training process of an Artificial Neural Network. 9
2.8 Visual impression of gradient descent in 2 dimensions [3] . 11
2.9 Schematisation figure demonstrating finding either a global or a local minimum [26] 11
2.10 Some examples of many available activation functions . 13
2.11 Four plots showing different scenarios caused by different learning rates. In plot A, the learning

rate is set a little lower than the optimum value. The solution converges. In plot B, the learning
rate is exactly equal to the optimum value. The solution converges in one iteration. In plot C
the learning rate is set larger than the optimum value. It will converge after some oscillations
around the final solution. In plot D the learning rate is set too large. The solution will diverge. . 14

2.12 Antenna created by NASA optimized with genetic algorithms for optimal radiation patterns [22] 15
2.13 Flowchart visualizing the genetic algorithm for hyperparameter optimization for neural net-

works. 16
2.14 Two individuals before crossover . 18
2.15 Both individuals exchange one gene during crossover operation. 18
2.16 Before mutation . 18
2.17 after mutation . 18

3.1 Sea lock gates for the new Panama canal [23]. 22
3.2 Global model of the lock gate [34]. The global model is split up in a number of separate sections

to be modelled separately. See Figure 3.3 for a FEM model of such a section. 23
3.3 Individual section from the global model. Stiffened skin plate is attached to two supporting

columns. 23
3.4 3D representation of sub-model with configuration number 1: Longitudinal stiffeners are fixed

to the column webs. The ranges of the geometry parameter values are listed in Table 4.8 in
Section 4.4.2. 24

3.5 Cross sectional drawing through the x y-plane indicating the dimensions of the columns and
the plate . 24

3.6 Cross sectional drawing through the xz-plane indicating the dimensions of the longitudinal T-
stiffeners and the plate . 24

3.7 3D representation of the model. The symmetrical geometry and loading allows for modelling
only half of the structure. Symmetric boundary conditions are applied along the section C-D. . 26

3.8 Bending stresses σy in skin plates in the global model . 27
3.9 Schematic of the out of plane loading acting on the structure . 28
3.10 Schematic view of the in-plane compression loads applied to the model. 29
3.11 Schematric representation of the SHELL181 quadrilateral element from the ANSYS element ref-

erence [11] . 30
3.12 Comparison of mesh quality when using different mesh settings 31
3.13 Mesh convergence plots . 32
3.14 Guidelines for setting the amplitudes of imperfections. Table C.2 in [9] 34

ix

x List of Figures

3.15 Table showing the geometrical characteristics of imperfections. Figure C.1 in [9] 34
3.16 Comparison . 35
3.17 Nonlinear material models. Figure C.2 from EN-1993-1-5 [9] . 36
3.18 Peak stress at the interface between the stiffener flange and the column web. The maximum

equivalent stress equals σeqv = 349.5 MPa at a mesh size of 40 mm. Figure 3.13 shows how this
peak stress increases when refining the mesh. 37

3.19 Plot maximum equivalent stress against the mesh size. The maximum equivalent stress in-
creases upon refining the mesh, indicating a stress peak. 38

3.20 Maximum deformations and stresses during preloading and at the end of nonlinear analysis . . 39
3.21 First buckling mode which is used as initial imperfection shape 40

4.1 Flowchart vizualizing the global process from data generation up to training neural networks
and comparing the accuracies with interpolation techniques . 42

4.2 3D geometry of the simplified models numbers 1 and 2. No columns included. All edges are
supported in x-direction . 47

4.3 Cross sectional drawing through the xz-plane indicating the dimensions of the longitudinal T-
stiffeners and the plate . 47

4.4 Flowchart describing the process of generating datasets that will serve as training data for the
neural networks. All processes within the dashed frame are automatically performed in the
Python scripts. 50

4.5 Comparison of grid sampling method and Latin Hypercube Sampling method 53
4.6 Flowchart visualizing the iterative procedure of sampling data and filtering infeasible designs . 54
4.7 Visualization of filtering infeasible designs and drawing more samples to end up with desired

number of feasible samples. The problem has two variables: x1 and x2. The variables have the
same ranges: 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. A design where the sum of x1 and x2 is higher than 12
can be considered infeasible. The red dots represent the infeasible designs that are filtered out.
In the right figure, the amount of samples is increased to 100 samples after which 63 designs
remain. The iteration is repeated until the number feasible designs is equal to the number of
desired samples. 55

4.8 Training session with 10.000 training epochs without a defined earlystopping callback function.
The validation loss reaches a plateau but the training process is continued until the defined
10.000 epochs are done. This is a waste of computational effort during a hyperparameter opti-
mization algorithm. 59

4.9 In this training process two callbacks are defined. The ModelCheckpoint callback saves the
model at the training epoch with the lowest value of the validation loss. The EarlyStopping
callback is invoked upon reaching this minimum value of the validation loss and waits for 1000
more epochs before terminating the training process. 60

4.10 Vizualization of the splitting of data in train and test set, after which the test set is split again in
5 folds for cross validation [29] . 61

4.11 Flowchart vizualizing the hyperparameter optimization for neural networks using a genetic al-
gorithm and K-fold cross validation . 64

4.12 2D vizualization of a prediction surface created with Kriging interpolation. The bottom plot
shows the error estimate of the interpolation. [4] . 65

5.1 Overview of datasets and their contents belonging to the analyses of mechanical model 1 69
5.2 Comparison of accuracies of prediction on test data for all datasets of model 1. Model 1 is the

simplified mechanical model with maximum plate deflection as output parameter. Each tick
on the horizontal axis represents a single dataset belonging to that model. See Table 5.1. On the
vertical axes are shown two different error metrics. 70

5.3 Comparison of scatterplots for individual predictors on dataset number 8 of model 1. The Arti-
ficial Neural Network performs worse than the other predictive models. 71

5.4 Comparison of scatterplots for individual predictors on dataset number 14 of model 1. The
Artificial Neural Network performs best on the training data. In the right tail of the spectrum
the predictions are slightly underestimated. 72

5.5 Overview of datasets and their contents belonging to the analyses of mechanical model 2 73

List of Figures xi

5.6 Comparison of accuracies of prediction on test data for all datasets of model 1. Model 1 is the
simplified mechanical model with maximum plate deflection as output parameter. Each tick
on the horizontal axis represents a single dataset belonging to that model. See Table 5.5. On the
vertical axes are shown two different error metrics. 74

5.7 Comparison of scatterplots for individual predictors on dataset number 12 of model 2. The
coefficient of determination for the training data R2 =−0,035484122 which is remarkably bad. . 75

5.8 Convergence plot of the training process on dataset number 12. Although it looks stable, we see
that the training loss is bigger than the validation loss during the entire training process. Also in
the end the losses are increasing. 76

5.9 Comparison of scatterplots for individual predictors on dataset number 14 of model 2. Accuracy
of ANN is approximately equal to Kriging and 2nd degree interpolation 77

5.10 Overview of datasets and their contents belonging to the analyses of mechanical model 3 78
5.11 Comparison of accuracies of prediction on test data for all datasets of model 3. Each tick on

the horizontal axis represents a single dataset belonging to that model. See Table 5.10. Only the
coefficient of determination is shown since the units are different among the datasets. 79

5.12 Comparison of scatterplots for individual predictors on dataset number 4 of model 3. Out-
putparameter is maximum deflection ux,max . Although trained on less training samples than
dataset number 5 in Figure 5.13, its performance is a lot better. 80

5.13 Comparison of scatterplots for individual predictors on dataset number 5 of model 3. Neural
network performs worse while trained on more training samples than dataset 4. A very strange
pattern can be observed in the scatter data. 81

5.14 Convergence plot of the training process on dataset number 5. The losses show a very unstable
pattern. 82

5.15 Error distribution histograms on test data corresponding to dataset 2 of mechanical model 1 . . 83
5.16 Error distribution histograms on test data corresponding to dataset 14 of mechanical model 1 . 83
5.17 Error distribution histograms on test data corresponding to dataset 2 of mechanical model 2 . . 84
5.18 Error distribution histograms on test data corresponding to dataset 14 of mechanical model 2 . 84
5.19 Error distribution histograms on test data corresponding to dataset 2 of mechanical model 3 . . 85
5.20 Error distribution histograms on test data corresponding to dataset 8 of mechanical model 3 . . 85
5.21 Error distribution histograms on test data corresponding to dataset 11 of mechanical model 3 . 86
5.22 Error distribution histograms on test data corresponding to dataset 5 of mechanical model 3 . . 86
5.23 Error distribution histograms on test data corresponding to dataset 4 of mechanical model 3 . . 87
5.24 Histogram showing varying accuracy of predictions neural networks on results of model 1 for

varying number of training samples . 88
5.25 Histogram showing varying accuracy of predictions neural networks on results of model 2 for

varying number of training samples . 89
5.26 Histogram showing varying accuracy of predictions neural networks on results of model 3 for

varying number of training samples . 90
5.27 Histogram showing varying accuracy of predictions neural networks on results of model 1 for

varying number of design variables . 91
5.28 Histogram showing varying accuracy of predictions neural networks on results of model 2 for

varying number of design variables . 92
5.29 Error distribution histograms on test data of mechanical model 3 after applying improvements

on the hyperparameter optimization of the neural networks. The predictions are on the maxi-
mum equivalent stresses in the plate, with the regions neglected that are close to the columns. . 95

5.30 Error distribution histograms on test data of mechanical model 3 after applying improvements
on the hyperparameter optimization of the neural networks. The predictions are on the maxi-
mum equivalent stresses in the stiffeners, with the regions neglected that are close to the columns. 96

5.31 Comparison of scatterplots on dataset for project 4-1-1-1. Predicted output parameter isσmax,pl ate

in MPa. The predictions of both the ANN and Kriging interpolation lie exactly on the line. The
two methods perform equally well on this dataset. 97

5.32 Comparison of scatterplots on dataset for project 4-1-1-2. The predicted output parameter is
the total reaction force Fy in MN along the loaded edge. The predictions of both the ANN and
Kriging interpolation lie exactly on the line. The two methods perform equally well on this
dataset. 98

xii List of Figures

5.33 Comparison of scatterplots on dataset for project 4-2-1-1. Predicted output parameter isσmax,pl ate

in MPa. The predictions of both the ANN and Kriging interpolation are close to the line. The two
methods perform approximately equally well on this dataset. 98

5.34 Comparison of scatterplots on dataset for project 4-2-1-2. The predicted output parameter is
the total reaction force Fy in MN along the loaded edge. The predictions of the ANN are slightly
closer to the line compared to Kriging interpolation, implying a better prediction accuracy. . . . 99

5.35 Comparison of scatterplots on dataset for project 5-1-1-1. The predicted output parameter is
the maximum equivalent mechanical strain εmax,pl ate . The predictions of both the ANN and
Kriging interpolation lie exactly on the line. The two methods perform equally well on this
dataset. 99

5.36 Comparison of scatterplots on dataset for project 5-1-1-2. The predicted output parameter is
the total reaction force Fy in MN along the loaded edge. The predictions of the ANN lie exactly
on the line, implying (near) exact predictions, while the predictions of the Kriging interpolation
show very strong deviations. The accuracy of the ANN outperforms that of Kriging on this dataset.100

5.37 Comparison of scatterplots on dataset for project 5-2-1-1. The predicted output parameter is
the maximum equivalent mechanical strain εmax,pl ate . The predictions of the ANN lie close
to the line, while the predictions of the Kriging interpolation show very strong deviations. The
accuracy of the ANN outperforms that of Kriging on this dataset. 100

5.38 Comparison of scatterplots on dataset for project 5-2-1-2. The predicted output parameter is
the reaction force Fy in MN. The predictions of the ANN lie close to the line, while the pre-
dictions of the Kriging interpolation show very strong deviations. The accuracy of the ANN
outperforms that of Kriging on this dataset. 101

5.39 Plots showing the predictions of both a trained neural network and a fitted Kriging interpola-
tion. The scatters show the true data points. The neural network is able to fit through all data
points, including the first data point. Kriging interpolation overestimates the reaction force in
these early load steps. 102

List of Tables

3.1 Overview of geometric parameters of the sub-model. The symbols are indicated in the cross
sectional drawings in figures 3.5 and 4.3 . 25

3.2 Overview of material properties as used throughout the project 25
3.3 Directions of the axes in the global coordinate system . 25
3.4 Boundary conditions applied to the nodes of the FE model. 26
3.5 Out of plane loading parameters . 28
3.6 Summary of loading parameters for the parametric model. In plane stresses are still defined as

actual stresses. The transformation to displacements is done within the actual parametric FE
model. 29

3.7 Overview of geometric and loading parameters of the model example FE analsysis 39

4.1 Overview of material properties as used throughout the project 46
4.2 Overview of geometry parameters of the simplified models. Geometry parameters of the columns

are not included. 48
4.3 Boundary conditions applied to the nodes of simplified model 1. Only the plate edges are sup-

ported in x-direction. 48
4.4 Boundary conditions applied to the nodes of simplified model 2. 48
4.5 General shape of a dataset. Each row represents a single FE analysis summarizing its input

parameters and the resulting output parameters produced by the analysis. 49
4.6 Definition of projects, each belonging to a mechanical model, a number of free variables and

parameters ranges. For each project, multiple datasets are created with a varying number of
data samples. 51

4.7 Overview of project numbers including the input parameters and output parameters 51
4.8 Overview of geometry parameter value ranges for all projects. A single value in a cell implies

a fixed value for that parameter. Two values in a cell represent the minimum and maximum
possible values respectively. 52

4.9 Overview of loading parameter value ranges for all projects. A single value in a cell implies a
fixed value for that parameter. Two values in a cell represent the minimum and maximum pos-
sible values respectively. AMP is the scaling factor with which the buckling shape is multiplied
in order to include geometric imperfections . 52

4.10 An overview of the hyperparameters to be optimized and the possible options 57
4.11 An overview of the hyperparameters to be optimized and the possible options 62

5.1 Overview of project numbers, the corresponding input variables and the produced output vari-
ables . 94

5.2 Overview of project numbers and the ranges of the parameter values. Cells containing a single
value imply a fixed value for that parameter. Two values in a cell, separated by a comma, are the
minimum and maximum values for that parameter. Note that these value ranges are chosen
purely for experimental use. It is not considered whether the resulting designs are sensible in
terms of expected efficiency or resistance. 94

5.3 Comparison of ranges of prediction errors on test data of projects 3-1-2-3 and 3-1-2-4 (320 sam-
ples, of which 66 test samples) before and after improvements of the hyperparameter optimiza-
tion. The numbers listed is the number of predictions on test data that falls within the error
range specified in the column header. ’Old’ or ’New’ settings refers to predictions before or
after improvements of the hyperparameter optimization. 95

xiii

xiv List of Tables

5.4 Comparison of performance measures on all simplified datasets. For each dataset and perfor-
mance measure, the best value is in bold. The artificial neural network performs best on all
datasets. The difference is most significant in dataset 5-1-1-2 and beyond. MSE is the Mean
Squared Error value of all predictions on test data. No unit is given since the units vary among
the datasets. R2 is the coefficient of determination. 97

Summary

In this research project, an attempt is made to fuse the fields of structural mechanics and machine learning.
The goal is to find out if models can be created that are capable of predicting the outcomes of (nonlinear)
finite element analyses. These models are created by means of Artificial Neural Networks, which is a powerful
method in the domain of machine learning. The focus will be on stiffened steel plated structures that are part
of a sea lock gate.

The power of a trained neural network is that it is able to compute the output for a given set of input param-
eters within a fraction of a second. Running a complete finite element analysis on the other hand can take
a significant amount of time, especially in case of geometrically and/or physically nonlinear analyses. When
relying on nonlinear finite element analyses for performing a structural design optimization, a trained net-
work can therefore save a huge amount of time. It also allows to evaluate many more design options, possibly
finding a more optimal design than what would be possible with a manual design optimization.

An automated procedure has been created to generate datasets by running FE analyses in batch mode. Para-
metric models are set up in ANSYS FE software, for which random sets of input parameters are generated.
After running the analyses, the output is collected and organised in datasets that can be used for training.
The sizes of the datasets and the dimensionality of the design spaces are varied in order to study the influ-
ence of these quantities on the accuracies of the predictions produced by the neural networks.

Genetic algorithms, which is another machine learning technique, are deployed for the optimization of the
hyperparameters of the neural networks, which are basically the settings of the network which determine the
learning behaviour. Three standard interpolation techniques (Kriging and polynomial interpolation) are also
fitted to the same datasets in order to compare the performance of the neural networks to these interpolation
techniques.

The final result is an overview of the accuracies of the predictions made with the neural networks on vali-
dation datasets. It was found that the neural networks produced accurate predictions on the maximum de-
flection of a simply supported, stiffened steel plate loaded by a uniform pressure. Most of the relative errors
were within a range of 5% error for design problems with 4 dimensions. Predictions of the linear buckling
load of stiffened steel plates were found to be mostly within the range of 10% error for design problems with
4 dimensions. When increasing the number of free design variables from 4 to 8, the errors were found to be
mostly within the range of 20% error.

The predictions of maximum equivalent stresses in stiffened steel plated sections obtained by geometrically
nonlinear FE analyses were found to be in the range of ± 20%. These models had 13 free design variables.
Improvements were made on the available options of hyperparameters for neural networks. With these im-
provements, new predictions were made on the maximum equivalent stresses and the accuracies were found
to be slightly better, with errors ranging between ± 15%. For implementation of the predictive model in a
design optimization algorithm, these errors are considered to be too high. It is expected that the dimension-
ality of this problem (13 design parameters) combined with very irregular results due to the presence of peak
stresses and different buckling shapes, resulted in these deviations.

Additional datasets are generated with results of FE analyses of simplified, unstiffened steel plates. Both geo-
metrically and physically nonlinear analyses are performed, with uni-directional compression applied to the
plate edge directly as a displacement. The number of free design variables was set equal to either 1 or 4 free
variables. It was found that even with small datasets (with 32 training samples), the neural networks produced
very accurate results on predicting maximum equivalent stresses, maximum equivalent mechanical strains
(in case of physically nonlinear analyses) and total reaction force. A neural network was found to be capa-
ble of producing a nonlinear load-displacement curve of a compressed rectangular plate with elastic-plastic
material model.

xv

1
Introduction

1.1. Background and motivation
In recent years, Iv-Infra B.V. has been responsible for the structural design of several new sea lock gates like
the ones used for the new Panama Canal. One important design aspect for this type of steel structures is the
buckling stability of the stiffened skin plates under the combined action of out of plane water pressure and in
plane compressive stress. The buckling stability of these stiffened skin plates is usually assessed by means of
geometrically non-linear finite element analyses (GNLA).

In the early design stages, quick decisions on the dimensioning of the structure have to be made. Choices
made in this initial phase have a significant influence on the following design phases. The flexibility of making
major changes in the design decreases with time. In order to come to an optimal design in terms of e.g.
material use, it is very important to find optimal dimensions early in the design process.

An approach to finding an optimal design would require evaluation of many design options from which the
best design can be selected. As mentioned, these designs are normally evaluated using GNLA. While such
analyses are accurate, it is also a time consuming process, which is preferably avoided in early design stages.
Repeating this process for multiple design options therefore obviously is not very efficient.

Predictive modelling using Machine Learning The time needed for a design optimization would be dra-
matically decreased if there would exist an explicit formula for obtaining the buckling resistance of the steel
structure, given a set of input parameters. Unfortunately, the complex behaviour of such a specific structure
cannot be captured in an simple analytical formula.

This is where Machine Learning can come into play. The main idea of Machine Learning (ML) is to create a
predictive model that maps a set of output parameters to a provided set of input parameters without explicitly
programming how the model must manipulate these data. Instead, the ML model learns the relation between
input and output by experience. The theory of ML is extensively discussed in Chapter 2.

The main advantage of a predictive model, trained by means of a Machine Learning algorithm, is that it is able
to compute the desired output in a fraction of a second, rather than running a computationally expensive FE
analysis. In the case of the computation of the buckling resistance of the stiffened skin plate, the user would
not need to set up and run a complete FE analysis. Instead, the desired output can be directly obtained by
providing the input values to the trained model.

This reduction in computational cost could provide great benefits for use in a design optimization algorithm.
Since the required amount of computational time of the trained predictive model is very low, many design op-
tions can be evaluated in a relatively short period of time compared to the full FEA. In this way the predictive
model can play a key role in finding an optimal design quickly.

The drawback is that the generation of the training data still requires running a number of FE analyses. One
should aim to generate a dataset large enough to ensure accurate predictions of the predictive model, but
also as small as possible to limit the computational cost.

1

2 1. Introduction

1.2. Objectives
The main goal of this research is to find out to what extend it is possible to create a model that is able to
accurately predict the output results of FE analyses. The focus will be on stiffened steel plated structures as a
submodel of a steel lock gate. These predictive models will be created by means of Artificial Neural Networks
(ANN’s). The performance of these ANN’s are evaluated and compared with several well-known interpolation
techniques, in order to draw conclusions about whether ANN’s can properly predict the outcomes of the FE
analyses. This predictive model can serve as a building block for use in a design optimization algorithm.

Research questions

1. Can the results of linear and/or nonlinear finite element analyses be accurately predicted by means of
Artificial Neural Networks?

2. How does the performance of these neural networks compare to the performance of several well known
interpolation techniques

3. Is it worth the investment of time and computational resources to create such a predictive model?

4. How does the accuracy of the predictions relate to the number of training samples and the complexity
of the model?

1.3. Scope
In this section the most important limitations of the research are listed. Notes about further limitations of the
research are added in the relevant sections in this paper where necessary.

Machine learning methods There are many different Machine Learning techniques available. Each tech-
nique has its strengths and weaknesses. In this research, only Artificial Neural Networks will be used for
creating a predictive model. Artificial Neural Networks are capable of capturing highly non-linear behaviour
of a system, when provided sufficient training data (see theory section in Chapter 2).

In order to find the optimal ’settings’ for these neural networks, Genetic Algorithms are deployed for ’hyper-
parameter optimization’. A Genetic Algorithm (GA) is also a machine learning algorithm. However, this algo-
rithm is not used as a predictive model, instead it will only be used for finding the optimal hyperparameters
for an ANN.

Design optimization As mentioned in Section 1.1, the predictive model can be used for quick design opti-
mizations. In this context, the predictive model serves as the ’explicit’ formula for finding the resistance of
the structure. The creation of such a design optimization algorithm however is not included within the scope
of this research. Recommendations considering this point are added to the recommendations in Chapter 7.

1.4. Report outline
The report starts with a general introduction to machine learning theory in Chapter 2. In this chapter, the
theories of Artificial Neural Networks and Genetic Algorithms are explained. Chapter 3 discusses the proper-
ties of the main mechanical model which is analysed. All steps and considerations for creating the FE model
are included in this chapter. In Chapter 4, the complete process from start to finish for the creation and val-
idation of predictive models will be treated. It starts with the creation of parametric FE models which are
used to generate training data. Designs with random sets of input parameters are generated and analyzed
in the FE program. The results are used to train the ANN’s. The process of the optimization of these ANN’s
with Genetic Algorithms is also discussed. Chapter 5 summarizes the results of the predictions made with
the neural networks on the data. The accuracies of these predictions are compared with some well known,
standard interpolation techniques. The conclusions of the project can be found in Chapter 6, after which in
Chapter 7, an overview is given of the recommendations by the author for future work.

2
Machine Learning theory

This chapter will cover the basic theory behind the machine learning methods that are used in this project.

Section 2.1 will give a very brief introduction to the general concept of machine learning. In Section 2.2
the theory behind Artificial Neural Networks will be discussed. The theory behind Genetic Algorithms is
discussed in Section 2.3.

This chapter only discusses the theoretical backgrounds of these algorithms. The actual application of the
algorithms in this project are described in the relevant sections of Chapter 4.

2.1. Introduction to Machine Learning
Machine learning (ML) is a subdomain of the broader field of Artificial Intelligence. ML is concerned with the
creation of algorithms that allow a computer to learn certain tasks from experience. Rather than explicitly
programming those tasks in a set of ‘concrete’ rules, the computer learns to perform the tasks by itself. This is
incredibly useful in cases where the underlying relations of a (physical) process are unknown, or too complex
to capture in a mathematical model.

Hand-written digit recognition A well-known example of a machine learning application is hand written
digit recognition. See Figure 2.1 for some examples of hand written digits that were scanned and saved to a
computer. Each digit is represented by a 28 x 28 pixel image, each pixel having a grayscale value between 0
and 1.

Now imagine that a programmer would have to write a program that takes an image of a hand-written digit
as shown in Figure 2.1 as input, and the program must tell which digit it truly is. The input is represented
by 28× 28 = 784 grayscale values between 0 and 1. A set of rules would have to be written that takes these
input values and tell whether the provided number is e.g. a 6. This would be an impossible task, especially
considering that each hand-written digit is unique. Imagine writing a rule based program if the scale of
complexity would be increased even further to e.g. object recognition in coloured pictures. This would not
be feasible.

That is where machine learning comes into play. This is a classic example of a classification task. Two major
types of tasks are generally performed by trained ML models

• Classification is the task of assigning a discrete label or category to the input.

• Regression is the task of mapping one or more continuous value(s) to the given input.

Classification Computer programs can be trained to perform classification tasks in numerous fields of
practice. One famous example is the recognition of handwritten digits. Given a sufficient number of train-
ing examples with handwritten digits, labelled with the correct integer value corresponding to that digit, the
computer can be trained to recognize hand written digits. The goal is to enable the program to recognize
hand written digits it has never seen before during the training process. The accuracy of such a program will

3

4 2. Machine Learning theory

never be 100%. It is up to the ML practitioner to decide on the acceptable accuracy and to set up the ML
algorithm such that this accuracy can be achieved.

Regression Regression tasks aim at approximating a continuous output value, given a set of input values.
One well known educational example for regression tasks is the prediction of house prices in Boston. Based
on the dataset containing several features (input variables) like e.g. crime rate, number of rooms and nitric
oxide concentration, combined with the actual house price of that property, the ML algorithm must be able
to predict house prices as accurately as possible.

Figure 2.1: Images of hand written digits from the MNIST dataset [14]

2.2. Artificial Neural Networks
Artificial Neural Networks (ANN’s) are a powerful tool within the domain of Machine Learning. The Artificial
Neural Network is inspired by the (human) brain. The brain as found in nature consists of billions intercon-
nected neurons which are capable of learning and performing very complex tasks. A human being is able to
recognize a face of another person within a fraction of a second. Tasks like these feel very natural and easy to
perform.

In this section, the theory of these artificial neural networks are breifly discussed. Many varieties of neural
networks exist, but only the classical feedforward neural network model will be treated here.

The content in this section is mostly a synthesis from [19], combined with various internet sources.

Introduction The main goal of an ANN is to predict output values for a set of given input values. The power
lies in the fact that the neural network is capable to predict on data which it has never seen during the training
process. To verify this capability, the performance of the network must be evaluated on a set of test samples
of the dataset that were not used for training. The dataset must be split in a set with training samples and

2.2. Artificial Neural Networks 5

a set with testing samples. The training samples are used for training the network as described in Section
2.2.3. The testing set is used for evaluating the performance on unseen data. A network performs well if it
generalizes well to unseen data. A longer training process does not necessarily mean that the network predicts
better. Overfitting to data is a common problem in all machine learning algorithms, and must be avoided.
Overfitting is the phenomenon where the artificial neural predicts very accurately on the training data, but at
the cost of predicting very poorly on the testing data. In this way the trained network is useless since it is not
able to generalize on unseen data.

2.2.1. Network architecture: The building blocks of the ANN
The Artificial Neural Network is a network constructed from a set of interconnected artificial neurons. The
neurons are grouped in so-called layers of neurons.

The artificial neuron The artificial neuron, also called a ’node’, is a so-called processing unit. See Figure
2.2 for a schematic representation of an artificial neuron. The neuron receives information from each neuron
in the preceding layer of i neurons. Then, the neuron processes the data coming in and produces an output
value. which is sent to all neurons in the next layer.

The output value ai out of each preceding neuron is multiplied with a corresponding weight factor wi . Inside
the neuron, all values are summed up and a bias term bi is added to this sum. Finally, the value of the sum
z =∑n

i=1 ai wi +b is passed through an activation function f (z). The output value f (z) is sent to the next layer
of neurons, following the same procedure again.

a1 b j

a2
∑

y = f (z)

...

a j

w1

w2

w j

Figure 2.2: Schematic representation of a single artificial neuron processing information from its preceding neurons. The weighted
output values of the previous neurons are summed up and a bias term is added. The sum is finally passed through a (non-linear)
activation function.

Layers of neurons The Artificial Neural Network is composed of so-called layers of neurons. The basic
structure of a feedforward artificial neural network consists of three types of layers: The input layer, a set of
hidden layers and an output layer. See Figure 2.3 for an example of a single-layer neural network. The word
single in the term single-layer network refers to the fact that the network consists of only one single hidden
layer. This can be confusing since the network actually contains three layers. The input layer and output
layer are always included in a neural network. Figure 2.4 shows an example of a multi-layer neural network
containing two hidden layers.

Input values are entered into the neurons in the input layer. The number of neurons in the input layer is
equal to the number of input variables, or features of the problem. In the input layer, the input values are not
modified by an activation function. Therefore the output value of an input neuron is equal to the value of the
actual data input value ai = xi . The values ai are sent from the input layer to the first hidden layer.

The neurons in the hidden layers do modify the incoming data by means of an activation function. This
activation function is usually a certain non-linear function which enables the network to predict the non-
linear behaviour of the system.

6 2. Machine Learning theory

The output layer finally produces the values to be predicted by the network. The number of neurons in the
output layer is equal to the amount of output parameters to be predicted. The values passed through the out-
put neurons can be modified by an activation function, but the motivation for this depends on the situation.
In general, for regression tasks, the output values are passed through a linear activation function while for
classification tasks, non-linear activation functions like the sigmoid function may be a good option.

x1

x2

x3

a(0)
1

a(0)
2

a(0)
3

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

a(2)
1

a(2)
2

y1

y2

Figure 2.3: Example of single-layer network

x1

x2

x3

a(0)
1

a(0)
2

a(0)
3

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

a(2)
1

a(2)
2

a(2)
3

a(2)
4

a(3)
1

a(3)
2

y1

y2

Figure 2.4: Example of multi-layer network

Weights and biases See Figure 2.4. Each individual arrow that forms a connection between two neurons,
has a so-called weight associated with it. This weight is a continuous number, usually ranging between the
values 0 and 1. The set of weights between each layer is represented as a weight matrix. The exact formulation
of such a matrix is presented in Section 2.2.2. The neural network shown in Figure 2.4 thus has three weight
matrices in total. Next to that, each neuron (except neurons in the input layer) has a bias term associated

2.2. Artificial Neural Networks 7

with it. The bias term b is a scalar value that is added to the sum of the weighted input. The bias term enables
the output of the activation function to be shifted horizontally, and thereby includes a certain threshold value
influencing the strength of the output signal.

Upon construction of the neural network, the values of the weights and biases are initialized at random. At
this point, the network is untrained and therefore the prediction accuracy of the network with these initial
weights and biases will be very poor. The aim of the training process is to update all these weights and biases
until the prediction accuracy is satisfactory. This iterative procedure is called the training process of the neural
network and will be described in section Section 2.2.3.

2.2.2. Matrix notation
This section will provide the mathematical formulation of the process of mapping output values to a set of
input parameters by a neural network.

Vector notation single neuron Refer to Figure 2.2 for the schematic representation of a single neuron. The
vector notation corresponding to a single neuron is as follows. The input values a j coming from a previous
layer are represented in a row vector

a j =
[
a1 a2 · · · a j

]
(2.1)

The weight vector describing the weights between the actual layer and the previous layer are represented as
a column vector.

w j =


w1

w2
...

w j

 (2.2)

The z value of the neuron is the sum of the weighted input values and the added bias term b.

z = [
a1 a2 · · · a j

]×


w1

w2
...

w j

+b = x1w1 +x2w2 +·· ·+x j w j +b (2.3)

Weight matrix When the layer does not consist of a single neuron like in the example above, but multiple
neurons, the weights are represented in a 2-dimensional matrix W j ,k where j is the number of neurons in the
previous layer (L −1) and k is the number of neurons in the actual layer (L). See Figure 2.5 and Figure 2.6 for
the visualization of the weights w j ,k in the actual network. Not all connections are displayed for demonstra-
tion purposes. The resulting weight matrix between two layers has the shape as shown in (2.4).

W j ,k =


w1,1 w1,2 · · · w1,k

w2,1 w2,2 · · · w2,k
...

...
. . .

...
w j ,1 w j ,2 · · · w j ,k

 (2.4)

8 2. Machine Learning theory

x1

x2

a(0)
1

a(0)
2

a(1)
1

a(1)
2

a(1)
3

w1,1

w2,1

Figure 2.5: The indices of the weights corresponding to the connections of input neurons to the first neuron in the hidden layer. The first
index corresponds to the node number in the preceding layer (L−1).

x1

x2

a(0)
1

a(0)
2

a(1)
1

a(1)
2

a(1)
3

w1,1

w1,2

w1,3

Figure 2.6: The indices of the weights corresponding to the connections of one input neuron to all neurons in the hidden layer. The
second index corresponds to the node number of the actual layer (L)

Input data Until now, the input data was represented as a vector only, corresponding to a single data sam-
ple. In reality, the neural network is trained by a dataset consisting of many data samples. The actual dataset
is an i × j matrix where i is the number of data samples and j is the number of features, or input variables, of
a sample. The dataset is denoted as Xi , j

Xi , j =


x1,1 x1,2 · · · x1, j

x2,1 x2,2 · · · x2, j
...

...
. . .

...
xi ,1 xi ,2 · · · xi , j

 (2.5)

Matrix multiplication The intermediate output matrix at layer (L) is computed defined as follows

A(L)
i ,k = f

(
A(L−1)

i , j W (L)
j ,k +B (L)

i ,k

)
(2.6)

The resulting activation matrix A(L)
i ,k will serve as input again for the next layer (L+1). This process is repeated

for each layer until finally the output from the output layer is produced. The output matrix is a matrix Yi ,k

where i is the number of data samples and k is the number of neurons in the output layer, which is equal to
the number of output parameters.

The notation for the different elements is summarized below

A(L)
i ,k : Activation matrix of layer (L)

A(L)
i , j : Activation matrix of preceding layer (L−1)

2.2. Artificial Neural Networks 9

W (L)
j ,k : Weight matrix for connections between layer (L−1) and layer (L)

b(L)
i : Bias vector for layer (L)

f (z): Activation function

2.2.3. Training process of the network
The training process of a neural network is an iterative procedure with the aim of minimizing the error of the
produced output values. This error of the prediction is described as the loss function or the cost function.
The loss can be defined in different ways. Training process of a neural network is the minimization of this
loss function in an iterative manner. The complete process is presented visually in Figure 2.7.

Select hyperparameters

Construct neural network

Initialize random weights
and biases

Predict output of training
data

Compute loss Modify weights and biases

Converged? Compute gradient of loss
function

Done

No

Yes

Training process

Figure 2.7: Flowchart describing the general training process of an Artificial Neural Network.

10 2. Machine Learning theory

Initialize weights and biases Initially, the values of the weights and biases are chosen randomly from a
particular probability distribution. This initial set of weights and biases make for a poor performance of
the neural network. The neural network is untrained and therefore its error will be very high. By means of
gradient descent, this error will be decreased in each iteration.

The probability distribution from which the initial weights and biases are drawn is an important parameter
of the network. More information on initializers is provided in Section 2.2.4.

Define the loss function The loss function is a function that gives a certain error metric of the predicted val-
ues compared to the true data values. A common loss function for regression problems is the Mean Squared
Error (MSE) which is defined in (2.7). As presented in Section 2.2.2, upon presentation of a dataset Xi , j , the
network produces a matrix with output values Yi ,k . Let ŷi be a single column vector with predicted values for
all training samples for one particular ouput variable and yi be the true output values which are known from
the dataset. The MSE over all training samples is defined as

MSE = 1

n

n∑
i=1

(ŷi − yi)2 (2.7)

This function returns a scalar value which is always positive, regardless of whether the individual errors are
positive or negative. The unit of the MSE is equal to the unit squared of the output parameter to be predicted.
In order to get a more intuitive feeling for the magnitude of the error, one can take the square root of the MSE,
resulting in the Root Mean Squared Error.

Miniziming the loss by gradient descent The loss function is a function of the predicted values ŷi which,
in turn, is a function of all the weights and biases in the neural network. The goal is to modify all the weights
and biases in such a way that the loss becomes as small as possible. The weights and biases of the network
are updated in an iterative manner. This minimization takes place by a method called gradient descent

In each iteration, the gradient of the loss function is computed. Let C be the loss as a function of all weights
and biases. Let vi be a vector containing all weights and biases. Then the loss vector is a function of the

weight vector Ci = f (vi). The gradient of the loss function is a vector containing all partial derivatives δCi
δvi

.

The gradient vector of the loss function is defined as

∇C =
[
δC
δv1

δC
δv2

· · · δC
δvn

]T
(2.8)

The gradient vector represents the direction in n-dimensional space in which the slope of the loss function
is maximal. See Figure 2.8 for a visualization in two dimensions. It describes the change of C relative to the
changes in vi . This gives information about the required changes∆vi in order to decrease the loss. The values
of all weights and biases are updated by an amount ∆vi = −η∇Ci . The minus sign ensures a decrease of the
loss. The factor η represents the learning rate, which is an important parameter determining the step size of
each update. The effects of the learning rate are described in Section 2.2.4.

It is not guaranteed that the gradient descent algorithm ends up in the global minimum. See Figure 2.9 for a
visualization of this problem. Whether the optimization yields a global or a local minimum not only depends
on the optimizer, but also the initialized values of the weights and biases play an important role.

2.2. Artificial Neural Networks 11

Figure 2.8: Visual impression of gradient descent in 2 dimensions [3]

Figure 2.9: Schematisation figure demonstrating finding either a global or a local minimum [26]

2.2.4. Hyperparameters
The predicting performance of the ANN is highly dependent on the chosen set of hyperparameters. These
hyperparameters are to be distinguished from the model parameters, i.e. the values of the weights and biases.
Hyperparameters can be described as the global settings of the ANN, like the number of hidden layers.

In practice it is not possible to tell [33] which set of hyperparameters will give a well performing neural net-
work. The optimal set of hyperparameters depends on the type of problem and the nature of the dataset.
Although some rules of thumb exist, the optimal hyperparameters can only be found by trial and error. Dif-
ferent sets of hyperparameters will yield different values of accuracy after training, which are to be compared.

A non exhaustive list of some hyperparameters for Artificial Neural Networks is presented below. In the fol-
lowing paragraphs, the meaning of some of these hyperparameters and their influence on the model are
briefly explained.

12 2. Machine Learning theory

• Number of hidden layers

• Number of neurons per layer

• Activation function

• Optimizer

• Learning rate

• Kernel initializer and bias initializer

• Batch size

• Number of training epochs

Number of hidden layers The number of hidden layers is the number of layers between the input and the
output layer. According to the Universal Approximation Theorem, any function can be approximated by a
single-layer network with a finite number of neurons in the hidden layer. However, this may mean that the
number of neurons in the hidden layer is so large that it is infeasible to train the neural network. In order
to capture complex behaviour of the system while limiting the number of neurons needed, multiple hidden
layers must used in the network. A neural network consisting if many hidden layers is what is referred to as
a deep neural network, hence the term deep learning which is often used to indicate machine learning using
ANN’s.

Number of neurons per layer Increasing the number of neurons in a layer may improve the capability of the
model to capture more complex behaviour of the system, but this is not necessarily the case. Note that it can
be beneficial to keep the amount of neurons as small as possible. When increasing the number of neurons, the
number of connections drastically increases with it. This means that the weight matrices become larger, thus
increasing the computational resources needed to compute the gradient of the loss function and optimizing
the values of the weights.

Activation function The z value is passed through an activation function. The activation function can have
multiple purposes, depending on the type of activation function and the problem at hand. A simple step
function like the Heaviside function can determine whether a neuron should ‘fire’ and send information to
the following layer of neurons or not.

H(x) =
{

0, x < 0

1, x ≥ 0
(2.9)

2.2. Artificial Neural Networks 13

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Activation functions

ReLu
Sigmoid

Hyperbolic tangent

Figure 2.10: Some examples of many available activation functions

Non-linear activation functions enable the neural network to capture complex non-linear behavior of the
predicted system. If only linear activation functions would be used in the ANN, the final result would just
be a linear combination of the input values. Adding more hidden layers does not improve the ANN since all
hidden layers can be replaced by a single hidden layer [1].

Learning Rate As described in Section 2.2.3, the learning rate η represents a proportion of the gradient
vector to be used for updating the weights and biases of the neural network. The higher the learning rate,
the greater the step size of the update. While a higher learning rate may result in quicker convergence, one
may also risk divergence, resulting in increasing values of the training loss. The goal is to find an optimal
learning rate which allows for quick convergence. Figure 2.11 shows different examples of learning rates and
the behaviour of the training process.

14 2. Machine Learning theory

Figure 2.11: Four plots showing different scenarios caused by different learning rates. In plot A, the learning rate is set a little lower than
the optimum value. The solution converges. In plot B, the learning rate is exactly equal to the optimum value. The solution converges
in one iteration. In plot C the learning rate is set larger than the optimum value. It will converge after some oscillations around the final
solution. In plot D the learning rate is set too large. The solution will diverge.

Kernel initializer and bias initializer The kernel initializer and bias initializer determine from which statis-
tical distribution the initial weights and biases are drawn from. These can be e.g. random uniform, standard
normal, but it is also possible to initialize all weights and/or biases with zero values.

2.3. Genetic algorithms
This section will treat the theory on genetic algorithms. In Section 2.3.2, the main process will be explained
step by step, along with some terminology. In the subsequent sections, some steps from the main process
will be elaborated further.

2.3.1. Why Genetic Algorithms
A genetic algorithm (also called evolutionary algorithm) is a heuristic method based on the theory of evolu-
tion by Charles Darwin. The aim of the algorithm is to find an optimum for problems for which no explicit
formula or relation is known.

In basic mathematics it can be easy to find a minimum or maximum of a given function by setting the deriva-
tive of the function equal to 0. If the relation of the problem at hand is not differentiable, or there is no
explicit mathematical relation known in the first place, this approach will not work. One could try to evaluate
the response of the system just by trying out many different sets of input variables, after which the lowest or
highest response values can be selected as the optimum. Although this may work to some extend, it is not a
very efficient approach and the probability to truly find a global optimum is very small.

A Genetic Algorithm is a very powerful method to find optima of a certain system. Instead of trying to eval-
uate the response of a system at many points with brute force only, it is an iterative procedure in which the
algorithm zooms in to promising regions where the system tends to be optimal. In a next iteration, the system
will be evaluated mostly in this promising region after which the probability of finding an optimum is higher.

2.3. Genetic algorithms 15

This procedure is repeated until an optimum is found, or until the maximum number of iterations is reached.

It may be clear that the genetic algorithm does not have a Regression or classification task. Its sole purpose is
optimization. But this optimization algorithm can be very useful for optimizing machine learning regressors
or classifiers. The performance of an artificial neural network highly depends on the selected hyperparame-
ters. According to the ’no-free-lunch theorem [33], it is not possible to tell in advance which hyperparameters
will work out well. This must be found out by trial and error. One could manually try different sets of hyper-
parameters to see how the ANN will perform after training on the data, but this is a very inefficient process.
This is where genetic algorithms can be very useful. Since there is no known (mathematical) relation be-
tween the selected hyperparameters and the final performance of the ANN, we can try to find the optimal set
of hyperparameters for the ANN by using a genetic algorithm.

Figure 2.12: Antenna created by NASA optimized with genetic algorithms for optimal radiation patterns [22]

Example NASA antenna

2.3.2. Main process
The process of a genetic algorithm is similar to the evolutionary process in the natural world. The properties
of an individual determine the fitness of the individual and thereby its chance of survival. Fit individuals will
survive and pass on their genes to the next generation. After each successive generation, the overall fitness of
the individuals will improve. These same principles hold for a genetic algorithm.

The general process is as follows. Some terminology used in these steps are explained in more detail in the
subsequent sections.

First, an initial population is created. This first population consists of a number of randomly generated indi-
viduals. After creating the initial population, the following set of steps are repeated for each new generation.

1. Fitness evaluation: The fitness of each individual is evaluated and assigned to the individual.

2. Selection: Individuals are selected to survive for the next generation.

3. Variation: The gene pool is varied to explore new possible solutions.

4. Repeat: Repeat until stopping criterium is met.

The genetic algorithm can be stopped when one of the following conditions is met.

• The maximum number of generations is reached.

• The desired level of fitness is reached.

• The fitness of individuals in new generations stops improving (convergence).

16 2. Machine Learning theory

Initialize population

Evaluate fitness individuals

One of stopping criteria
met?

Stop algorithm

Selection of individuals for
next generation Best individual

Crossover

Mutation

Yes

No

Figure 2.13: Flowchart visualizing the genetic algorithm for hyperparameter optimization for neural networks.

Some terminology

• Population: A population is a collection of individuals. The number of individuals in a population is
called the population size.

• Individual: An individual is analogous to an individual in the biological sense. It represents one unique
entity, like an individual animal in the natural world. Its properties are defined by a ’genotype’, also
called its ’chromosome’, which is basically a set of genes.

• Gene: The gene is one element in the genotype of the individual. In Figure 2.14, each gene is rep-
resented by a binary value. In general, a gene can contain any type of information like continuous
numbers, letters, mathematical operators etc. The type of genes depends on the problem to be solved.

• Fitness: A fitness value is assigned to each individual. This fitness value will determine its chance of
survival during the evolution. The better the fitness of an individual, the higher the chance of survival
and passing (some of) its genes to the next generation. The fitness of the individual is determined by
a fitness function. The fitness function also depends on the problem and must be determined by the

2.3. Genetic algorithms 17

programmer of the genetic algorithm.

Global or local optimum The evolution of the algorithm will finally lead to an optimum. There is however
no guarantee that this is a global optimum. The genetic algorithm is a highly stochastic process. One very
important fact is that the initial population is randomly generated. There will be individuals in the neighbour-
hood of some local optimum. But it is not guaranteed that there exist individuals close to the global optimum.
If the parameter space is not properly covered, the algorithm will tend to converge to a local optimum. It is
therefore important to ensure enough variation in the initial population such that the total parameter space
is properly covered.

The behaviour of a genetic algorithm depends on the settings of its hyperparameters. Some features and
hyperparameters will be discussed in the next section.

2.3.3. Fitness evaluation
The goal of the genetic algorithm is optimization. In order to find the best performing individual, its fitness
value must be evaluated. Therefore a specific fitness function must be formulated in order to evaluate the
fitness and make fair comparisons.

In the case of the OneMax problem, the goal is to find a set of genes which make up an individual of which the
sum of the binary values are highest. In this case, the fitness function can simply be defined as the sum of the
binary values. An individual with many genes being equal to one will have a higher fitness than an individual
with many zeros in its genotype.

In case of hyperparameter optimization of machine learning models, the fitness of an individual could be
represented by e.g. the accuracy of its predictions. The fitness function would involve multiple steps: First,
the machine learning model must be compiled with its hyperparameters (the genotype of the individual).
Then the model is trained on a training dataset and tested on a validation dataset. The performance of the
predictive model on the validation dataset will be the fitness value of the model.

2.3.4. Selection
After the fitness of the entire population is evaluated, strong individuals will be selected to survive for the next
generation. Different selection methods exist, of which two will be explained in this section

Tournament selection A common selection algorithm is tournament selection. This procedure is based
on competition between several individuals. A fixed number of individuals are randomly drawn from the
population. The individual with the best fitness score wins and is selected for the next generation. This
process is repeated until a desired number of individuals is selected for the next generation.

Elitism Elitism is the concept of selecting a number of the very best performing individuals in a population.
With tournament selection, there is a probability (although small) that the fittest individual in a population
is never chosen for a competition. In this way it cannot compete for passing to the next generation. In order
to avoid this, elitism can be implemented to ensure that the very best individuals are always selected for the
next generation.

The performed selection procedures make up a new generation, called the offspring. After selection, this new
generation will undergo variation of the gene pool in order to explore new possible solutions.

2.3.5. Variation
Evolution cannot take place without sufficient variation in the gene pool. Two main methods exist for varia-
tion. Crossover and mutation

Crossover Crossover operations are performed on two individuals in the offspring. This means that some
genes are interchanged between two ’parents’, creating two new individuals. This process is also called ’mat-
ing’.

Random pairs of individuals are created from the offspring, resulting in a list of pairs. The algorithm iterates
over this list. For each pair of ’parents’, some genes may be interchanged, making up new children. The

18 2. Machine Learning theory

chance of two parents interchanging their genes is determined by the crossover rate. This is a number between
0 and 1 determining the probability of two parents sharing their genes.

1 1 1 1 1 1

0 0 0 0 0 0

Individual 1

Individual 2

Figure 2.14: Two individuals before crossover

1 1 1 1 1

0 0 0 0 0

0

1

Individual 1

Individual 2

Figure 2.15: Both individuals exchange one gene during crossover operation.

Mutation Some individuals will undergo a mutation operation. When mutated, the individual will have one
or more of its genes altered. The chance of an individual being mutated depends on the mutation rate. This
is also a number between 0 and 1 setting the probability of a mutation taking place.

How an individual is being mutated depends on the way its genotype is constructed. In the case of the One-
Max problem, an individual consists of a set of binary values. A logical mutation on such a genotype would be
to switch the binary value of one or more genes from 0 to 1 or vice versa. If case an individual would consist
of genes representing continuous numbers, it could be mutated by modifying the value of one or more con-
tinuous numbers. The value of the change can have a specified statistical distributions like e.g. a Gaussian
distribution.

1 1 1 1 1 1

Figure 2.16: Before mutation

1 1 1 100

Figure 2.17: after mutation

Setting the crossover rate and mutation rate The crossover rate and the mutation rate are important hy-
perparameters that determine the behaviour of the genetic algorithm. The crossover rate is the probability of
two parents interchanging their genes and thereby creating new offspring. The mutation rate is the probabil-
ity of an individual being mutated. The ratio between these two values must be balanced in order to control
the convergence behaviour of the algorithm. The goal is to find a good balance between exploration and
exploitation.

Exploration is the concept of searching for possible fit individuals over the available solution space. The
higher the mutation rate the more variation of genotypes is created and therefore the more exploration takes
place. On the one hand this increases the chance of finding new regions where good solutions may exist. On
the other hand, a high mutation rate can stagnate the convergence of the algorithm.

2.3. Genetic algorithms 19

Exploitation is the concept of ’zooming in’ to promising regions of the solution space. This means that the
algorithm is focusing on good individuals, and searches for possibly better solutions in the vicinity of these
promising individuals. In general this is accomplished by setting a higher crossover rate. The higher the
crossover rate, the more the algorithm is focusing on exploitation. While a high exploitation may lead to
quick convergence, there is a good chance that the algorithm converges to a local optimum instead of the
global optimum.

3
Mechanical model and FE analysis

In this chapter, the main mechanical model and the procedures for solving the model using finite element
analyses are described. All choices and considerations regarding the FE model can be found in this chapter.

Since the analyses will be done in an automated manner, critical engineering judgement is not always possi-
ble during running of the analyses. Some complications were encountered for which a simplified approach
had to be chosen. Section 3.9 discusses these complications in detail. At the end of the chapter, in Section
3.10, an example of a FE analysis is given.

Important note: It is important to note that the predictive model will produce its output values with a
certain (in)accuracy. Therefore it cannot be used as a verification tool, as this would be too unsafe. The aim
of the predictive model is only to be used in a design optimization algorithm, or to get insight in the response
of the output parameters as a function of certain input parameters. A complete FE analysis is needed to verify
the resistance of the structure to be designed.

3.1. Introduction main mechanical problem
In recent years, Iv-Infra has been responsible for the design of a number of new sea lock gates. In the year
2015, the last of 16 steel lock gates for the new Panama canal was installed. More recently, new lock gates
have been designed for the new sea locks at IJmuiden in the Netherlands, which are to be the largest sea locks
in the world. These giant steel structures are so-called rolling gates, moving horizontally over a rail system
at the bottom of the lock during operation. Figure 3.1 shows a picture of 4 of the sea lock gates for the new
Panama canal.

The FE analyses performed in this thesis are based on the buckling analyses for the new lock gates of the
harbour of IJmuiden. Project OpenIJ will be used as a reference project [34] in this thesis.

21

22 3. Mechanical model and FE analysis

Figure 3.1: Sea lock gates for the new Panama canal [23].

The global model of the lock gate consists of a steel frame that is covered with steel skin plates. See Figure
3.2. These skin plates are stiffened with longitudinal stiffeners. The lock gate is loaded horizontally by water
pressure, caused by retaining the water. This loading results in a global deformation of the lock gate, com-
parable to the bending of an Euler-Bernouilli beam, resulting in in-plane compressional stresses in the skin
plates and the longitudinal stiffeners. See Figure 3.8 in Section 3.5. These in-plane compressional stresses,
combined with the out of plane water pressure, can cause instability of the skin plates and the longitudinal
stiffeners.

The global model can be split up in a number of individual sections. Such a section is shown in Figure 3.3.
The aim of each FE analysis is to find the maximum occurring stresses and deflections of the skin plate and
stiffeners in such a particular section.

The analyses will be performed by means of non-linear buckling analyses in ANSYS. The adopted limit state
criteria for the resistance are described in Section 3.6. The rules and guidelines provided by EN 1993-1-5
annex C [9] for ultimate limit state verifications are applied in this project and will be referred to regularly.

3.2. Geometry 23

Figure 3.2: Global model of the lock gate [34]. The global model is split up in a number of separate sections to be modelled separately.
See Figure 3.3 for a FEM model of such a section.

Figure 3.3: Individual section from the global model. Stiffened skin plate is attached to two supporting columns.

3.2. Geometry
The geometry of the sub-model consists of three main elements: The skin plate, the longitudinal T-stiffeners
and the columns, each element having its own set of dimensions. See Figure 3.4 for the 3D representation of
the sub-model. The geometry of the sub-model can be completely described by the set of geometrical input
parameters as shown in Table 3.1. The longitudinal stiffeners are equally distributed lanong the plate height
hpl ate .

Note that buckling of the columns is not considered in the FE analyses. However, the columns are included in
the model since these will have an influence on the rotational stiffness along the line of attachment between
the skin plate and the column web.

The ranges of the geometry parameter values are listed in Table 4.8 in Section 4.4.2.

24 3. Mechanical model and FE analysis

A

B

C

D

Column
Skin plate

T-stiffener

x

y

z

Figure 3.4: 3D representation of sub-model with configuration number 1: Longitudinal stiffeners are fixed to the column webs. The
ranges of the geometry parameter values are listed in Table 4.8 in Section 4.4.2.

A D
wpl ate

tpl ate

bc f

hcw

tc f

tcw

Figure 3.5: Cross sectional drawing through the x y-plane indicating the dimensions of the columns and the plate

B A
hpl ate

tpl ate

ts f

tswhsw

Column

csbs f

Figure 3.6: Cross sectional drawing through the xz-plane indicating the dimensions of the longitudinal T-stiffeners and the plate

3.3. Material 25

Structural Element Symbol Dimension description

Skin plate tpl ate Skin plate thickness
hpl ate Skin plate height
wpl ate Skin plate width (= c.t.c. distance columns)

T-stiffeners ns Number of T-stiffeners
cs Center-to-center distance
hsw T-stiffener web height
tsw T-stiffener web thickness
bs f T-stiffener flange width
ts f T-stiffener flange thickness

Columns hcw Column web height
tcw Column web thickness
bc f Column flange width
tc f Column flange thickness

Table 3.1: Overview of geometric parameters of the sub-model. The symbols are indicated in the cross sectional drawings in figures 3.5
and 4.3

3.3. Material
The material properties are adopted from the reference project [34]. Structural steel S355 is used of which the
material properties are as follows.

Material property Symbol Value

Yield stress σy 355 MPa
Elastic modulus E 2.1 ·105 MPa
Poisson ratio ρ 0.3 [-]

Table 3.2: Overview of material properties as used throughout the project

These parameters are fixed parameters for all FE samples for the training data. The material properties could
be included as free variables, expanding the possible design space, but this is outside the scope of this project.

The limit state criteria in this project are based on the material properties. These criteria are defined in Sec-
tion 3.6.

For the final evaluation of the structure, a non-linear material model can be defined. These material models
are explained in Section 3.8.2.

3.4. Boundary conditions
This section provides an overview of the boundary conditions applied in the model. The boundary conditions
are expressed as displacements and rotations in the global coordinate system. See Table 3.3 and Figure 3.4
for the indications of the coordinate system.

Axis Direction

x-axis Normal to the skin plate
y-axis Parallel to longitudinal stiffeners
z-axis Perpendicular to longitudinal stiffener

Table 3.3: Directions of the axes in the global coordinate system

26 3. Mechanical model and FE analysis

A

B

C

D
x

y

z

Figure 3.7: 3D representation of the model. The symmetrical geometry and loading allows for modelling only half of the structure.
Symmetric boundary conditions are applied along the section C-D.

Table 3.4 gives an overview of the applied boundary conditions. Note that all boundary conditions defined in
the table represent the boundary conditions as applied directly to the nodes. A dash means that no constraint
is applied explicitly to the corresponding degree of freedom.

BC Edge Location [mm] ux uy uz θx θy θz

1 B-C: Plate edge z = hpl ate , x = 0 0 - -uzz - - -
2 B-C: Column sections z = hpl ate , x > 0 0 uy y -uzz - - -
3 A-D: Plate edge z = 0, x = 0 0 - uzz - - -
4 A-D: Column sections z = 0, x > 0 0 uy y uzz - - -
5 A-B: Plate edge + stiffener sections y = 0 - uy y - - - -
6 C-D: Plate edge + stiffener sections y = 0.5 ·wpl ate - 0 - 0 - 0

Table 3.4: Boundary conditions applied to the nodes of the FE model.

Some remarks about the boundary conditions

• BC1, BC3: The plate edges are free to rotate around the y-axis, while in the real, complete model, a
steel plate might be attached perpendicular to the skin plate. In order to simplify the model by avoiding
extra design parameters for these steel plates, these plate elements are not included in the model. An
unconstrained rotation around the y-axis is a conservative approach for this simplification.

3.5. Loading conditions 27

• BC2, BC4: The cross sections of the columns have a displacement equal to the displacements along
the right plate imposed by the in-plane loading. This is in correspondence with the complete model
where both these elements exhibit the same displacements. These fixed displacements of the column
webs and flanges in y-direction reduces lateral instability of the column, which is not considered in this
analysis.

• BC1-5: The in-plane compression stresses σy y and σzz are both applied as displacements uy y and uzz .
The motivations for this choice is explained in Section 3.5.2

• BC 6: Symmetric boundary conditions are applied along the center line between two columns. Con-
strained uy , θx and θz are derived automatically by ANSYS upon application of this symmetric bound-
ary condition.

3.5. Loading conditions
The loading components applied to the sub-model are derived directly from the global model. The global
model, i.e. the complete lock gate, is loaded horizontally by a combination of hydrostatic pressure and wave
impact forces. These horizontal pressures make the lock gate deform in horizontal x-direction, analogous
to a simply supported bending beam, loaded by a uniform pressure. These deformations result in in-plane
stresses in the skin plate and the longitudinal stiffeners. Figure 3.8 shows the y-component of the bending
stresses in the skin plate from the reference project [34].

Figure 3.8: Bending stresses σy in skin plates in the global model

3.5.1. Out of plane loading
The out of plane loading on the sub-model is defined as a surface pressure in x-direction. It is defined as a
linearly varying pressure, varying along the height of the model (z-axis) and is defined by two parameters.
See Figure 3.9 for a schematic view. For simplification of the parameter space of the predictive model, only
one load combination per analysis is possible.

28 3. Mechanical model and FE analysis

hpl ate

x

z

z0 [mm]
q0 [MPa]

Out of plane loading

q1 [MPa]
z1 [mm]

Figure 3.9: Schematic of the out of plane loading acting on the structure

Location Symbol Unit

z = 0 q0 MPa
z = hpl ate q1 MPa

Table 3.5: Out of plane loading parameters

3.5.2. In-plane loading
See Figure 3.10. In the actual FE model, the in-plane loading σy y will be applied as displacements, even
though the results of the global analysis are expressed as stresses. The in plane loadings are applied as dis-
placements because the thickness of the elements (skin plate, webs and flanges of the longitudinal stiffeners)
will most likely not be constant along the entire length of the lock gate. Therefore, at the interfaces between
adjacent sub-models, stress discontinuities will be present. Displacements, on the other hand, are continu-
ous along the entire length of the model. Therefore, the displacements are derived from the stress and the
stiffness of the sub-model as shown in equations (3.1) and (3.2).

Also the vertical stress σzz is applied as a displacement uzz . While it is not strictly necessary since the plate
thickness is usually constant along the total height of the lock gate, this is chosen in order to avoid diver-
gence of the non-linear analysis. It does have some drawbacks regarding the Poisson effect. These points are
discussed in more detail in Section 3.9.1

uy y =
σy y

E
· 1

2
wpl ate (3.1)

uzz = σzz

E
· 1

2
hpl ate (3.2)

3.6. Limit state criteria 29

A

BC

D y

z

σy y ,uy yσy y ,uy y

σzz ,uzz

σzz ,uzz

Figure 3.10: Schematic view of the in-plane compression loads applied to the model.

Loading component Symbol Description

Out of plane q0 Pressure at z = 0
q1 Pressure at z = hpl ate

In plane σy y Compression stress in y-direction
σzz Compression stress in z-direction

Table 3.6: Summary of loading parameters for the parametric model. In plane stresses are still defined as actual stresses. The transfor-
mation to displacements is done within the actual parametric FE model.

Remarks In this project, no load factors are included. For both the input for the training data as well as for
input parameters in the final model, raw values for loading are used. It is up to the user to include these load
factors.

Shear stresses are not considered in the model. Since the critical sections are in the center of the lock gate,
shear stresses can be neglected. For other sections where shear stresses are significant, separate analyses are
to be performed where shear buckling phenomena are included.

3.6. Limit state criteria
For the evaluation of the resistance of the structure, two possible limit state criteria can be considered follow-
ing the guidelines in EN 1993-1-5 C.8 [9] Note 1 and 2.

1. Attainment of the (Von Mises) yielding criterion

2. Maximum principle strain reaches ε= 5%

Other criteria are also possible. An example is setting a limit to the size of the yield zone.

In case criterion 1 is used as the limit state criterion, computations can be performed with just linear material
properties. In case criterion 2 is used as limit state criterion, the nonlinear stress strain behaviour of the
material needs to be defined beyond the elastic limit of the material. Possible nonlinear material models as
prescribed in EN and are discussed in Section 3.8.2.

Limit state criterion for training and testing data For the generation of training data, the maximum load is
attained when the maximum equivalent stress reaches the yield criterion at some point in the structure. This
choice is based on the following motivations.

30 3. Mechanical model and FE analysis

• The final predictive model will be used in the context of the preliminary design stages, where quick de-
sign choices have to be made. In this stage, the client will prefer a more conservative design. Therefore
it is not preferable to allow for plasticity. This leaves some margin for changes in (loading) requirements
without the need for drastic design modifications later in the design process.

• The training data for training the predictive model are generated by a series of automated FE analyses.
When nonlinear material behaviour is included in the model, divergence in the non-linear analyses
might cause problems. A method would be needed to determine whether the buckling load is reached
or divergence has occurred. This is outside the scope of this project. A recommendation for further
researched is added in Chapter 7.

3.7. Mesh
3.7.1. Element type
The structure will be modelled with four-node quadrilateral shell elements. In ANSYS, these are referred to
as SHELL181 elements. Figure 3.11 shows the geometry of this shell element as demonstrated in the ANSYS
Element Reference [11]. Each node has six degrees of freedom: three translational and three rotational de-
grees of freedom. According to the element reference [11] the SHELL181 element "is well-suited for linear,
large rotation, and/or large strain nonlinear applications." It also states that the element allows for follower
effects of distributed pressures. This is particularly important for modelling the out of plane water pressure
in combination with a geometrical nonlinear analysis.

Figure 3.11: Schematric representation of the SHELL181 quadrilateral element from the ANSYS element reference [11]

3.7.2. Mesh quality
During the automated running of FE analyses, there is no possibility to make a judgement about the mesh
quality by eye. The generation of the mesh must be performed as robust as possible. Therefore, some precau-
tions are taken to ensure proper mesh quality. A comparison of the resulting mesh qualities with and without
these precautions is shown in Figure 3.16.

• All structural components in the model will be assigned the same mesh size. This avoids sharp discon-
tinuities in mesh size between any two adjacent meshed areas, which might result in shape errors. See
Figure 3.12a for an example with different mesh size for the columns.

• Settings for meshing are set such that mapped meshing is applied where possible. Where mapped
meshing is inappropriate, free meshing will be used. This setting is set with the MSHKEY command (see
ANSYS command reference [10]).

3.7. Mesh 31

• Furthermore, quadrilateral elements that violate either shape error or warning limits are split into tri-
angular elements, even though triangular elements are not recommended as shown in Figure 3.11. This
setting is set with the MOPT command.

(a) A sharp discontinuity between mesh sizes of the column elements
and the other elements of the model. A warning is produced by ANSYS
which states that shape testing revealed that a number of elements
violate shape warning limits.

(b) Improved mesh quality. Some free meshing is visible in the column
web, but none of the elements violate shape warning limits.

Figure 3.12: Comparison of mesh quality when using different mesh settings

3.7.3. Mesh size
As noted in Section 3.9.2, stress singularities form a problem in the automated FE analyses. To reduce the
stress peaks, the element size is not set too small. A balance must be found between mesh convergence and
avoiding peak stresses.

Mesh convergence analysis The element size will be based on a mesh convergence analysis. A linear static
FE analysis with arbitrary, yet realistic, input parameters is run for a series of varying mesh sizes. The results
are plotted in Figure 3.13. The maximum deflection, the eigenvalue and the maximum equivalent stresses are
plotted against the mesh size in mm. A mesh size of 10 mm resulted in a memory overload.

32 3. Mechanical model and FE analysis

160 80 40 20
1.12

1.14

1.16

1.18

1.2

Mesh size (mm)

M
ax

.d
efl

ec
ti

o
n

u
x

(m
m

)

(a) Mesh convergence plot of the maximum deflection [mm]

160 80 40 20

0.86

0.88

0.9

0.92

0.94

0.96

Mesh size (mm)

E
ig

en
va

lu
e
λ

(-
)

(b) Mesh convergence plot of the first eigenvalue [-]

160 80 40 20

275

280

285

Mesh size (mm)

M
ax

im
u

m
eq

u
iv

al
en

ts
tr

es
s
σ

eq
v

(M
Pa

)

(c) Mesh convergence plot of the maximum stress [MPa]

Figure 3.13: Mesh convergence plots

In order to reduce the influence of stress singularities, it is avoided to set the element size too small. The

3.8. Non-linear FE analysis 33

mesh size is set equal to a value of 40 mm for all analyses, even though the output values have not yet fully
converged. The center-to-center distance between the longitudinal stiffeners has a lower bound of 240 mm.
In this way it is guaranteed that there are always at least 240/40 = 6 elements between any two longitudinal
stiffeners.

3.8. Non-linear FE analysis
The main objective of the FEA is to find the maximum stresses in a nonlinear buckling analysis of the plated
structure. EN 1993-1-5 [9] annex C provides guidelines for the use of FE analysis for finding the nonlin-
ear buckling resistance of steel plated structures. The rules and guidelines in the document are used as a
guidance for the FE analyses in this project. However, some complications were encountered regarding the
automation of the nonlinear analyses. Therefore some simplifications have been made. The encountered
complications and the work-arounds are described in their respective sections 3.8.1 and 3.8.2.

3.8.1. Geometrical nonlinearities
Initial geometric imperfections must be applied to the structure in order to initiate the buckling of the struc-
ture in a nonlinear analysis. This initial imperfection will be amplified upon loading, changing the stiffness
of the system. At each load step, the initial imperfection will grow until finally, instability occurs.

The selection of an appropriate imperfection is a difficult task and requires the critical judgement of the engi-
neer. The applied imperfection and its scale have a big influence on the resulting resistance of the structure.
Generally, multiple analyses will have to be performed with varying types of initial imperfections, of which
the lowest resistance is governing.

Application of imperfections for the automated FE analyses For the automated FE analyses, a simplified
approach has been adopted for applying the geometrical imperfections. Initially, the aim was to apply ge-
ometric imperfections following the guidelines described in EN 1993-1-5 [9] annex C.5. This approach is
described in the next paragraph.

However, difficulties were encountered with determining the scale factors for the imperfections based on the
buckled shape. A visual inspection of the buckled shape is needed to determine the type of buckling mode
and the accompanying scaling factor. Such an inspection is obviously not possible during an automated
series of FE analyses. An attempt was made to determine the character of the buckled shape by reading the
displacements of the nodes of the deformed shape. Due to limited time it was decided to take a different
approach. A recommendation for further research is added in Chapter 7.

Therefore, instead of determining the scale factor based on displacement data of the first eigenmode, the
scale factor will be input as a free parameter. First, a linear eigenvalue analysis is performed. The displace-
ments resulting from the eigenvalue analysis are then scaled to the input scaling factor using the UPGEOM

command in ANSYS APDL.

Guidelines imperfection in Eurocode EN 1993-1-5 [9] C.5 (2) Note 1 states: "Geometric imperfections may
be based on the shape of the critical plate buckling modes with amplitudes given in the National Annex." These
amplitudes are given in Figure 3.14 and are based on the deformed shape. The corresponding types of imper-
fections are shown in Figure 3.15. Some examples are given to clarify the approach.

See Figure 3.16a and Figure 3.16b. These global buckling shapes correspond to imperfection number 2 global
bow of longitudinal stiffener. The corresponding scaling factor is based on either the length of the longitudinal
stiffener or the wavelength of the buckle.

Figure 3.16c shows local twist of the longitudinal stiffeners, corresponding to imperfection number 4 of the
table in Figure 3.15. The amplitude for this imperfection is equal to 1

50 hsw where hsw is the height of the
longitudinal stiffener. Figure 3.16d shows a combination of local buckling of subpanels (imperfection number
3) and twist of the longitudinal stiffeners. For both types of imperfections a scaling factor can be determined,
of which the largest value will be chosen to create the most unfavourable imperfection.

34 3. Mechanical model and FE analysis

Figure 3.14: Guidelines for setting the amplitudes of imperfections. Table C.2 in [9]

Figure 3.15: Table showing the geometrical characteristics of imperfections. Figure C.1 in [9]

3.8. Non-linear FE analysis 35

(a) Global buckling of the skin plate. One half wavelength fits over the
height of the plate.

(b) Global buckling of the skin plate. One full wavelength fits over the
height of the plate.

(c) Local buckling of the stiffeners. The scale factor is based on the
height of the longitudinal stiffeners.

(d) A combination of buckling of local subpanels and twisting of the
longitudinal stiffeners.

Figure 3.16: Comparison

3.8.2. Material non-linearities
Eurocode EN 1993-1-5 C.6 provides four different material models that can be used for nonlinear buckling
analysis of steel plated structures. The accompanying figures are shown in Figure 3.17.

36 3. Mechanical model and FE analysis

As already pointed out in Section 3.6, a linear elastic material model will be used for the generation of training
data. Plasticity may result in an unconverged solution. The handling of unconverged solutions during auto-
mated FE analyses is outside the scope of this project. Recommendations regarding divergence and material
nonlinearity are included in Chapter 7.

1. Elastic-plastic without strain hardening

2. Elastic-plastic with a nominal plateau slope

3. Elastic-plastic with linear strain hardening

4. True stress-strain curve modified from the test results

Figure 3.17: Nonlinear material models. Figure C.2 from EN-1993-1-5 [9]

3.9. Encountered difficulties
3.9.1. Divergence
Initially, the load σy y was applied as a displacement and the vertical load σzz was applied as a stress directly.
The reason to apply the load in z-direction as a stress instead of a displacement was to avoid reaction forces
higher than the input stress value, due to the Poisson effect. During generation of automated FE analyses,
divergence was encountered. Therefore, a workaround will have to be made to handle the divergence issues.

Some settings were changed to see if convergence of this analysis could be made possible

1. Instead of automatic time stepping, the arc-length method was used. The default values for the mini-
mum and maximum arc-length were maintained as provided by ANSYS. The solution did not result in
a converged solution.

3.9. Encountered difficulties 37

2. The vertical stress σzz was applied as a displacement uzz instead of as a stress directly. (See equation
(3.2) on page 28). This made the analysis a displacement controlled analysis, resulting in convergence.
Both automatic time stepping and the arc-length method led to a converged solution with this adjust-
ment.

For this project it is therefore decided to apply both compressive stresses along the edges as displacements
instead of stresses. The possibility of unconverged solutions when deploying a load-controlled analysis is
the main motivation for this. Filtering out unconverged solutions is outside the scope of this project. These
incorrect data may negatively affect the prediction performance of the Artificial Neural Networks. Automatic
time stepping is used instead of the arc-length method since automatic time stepping showed to reduce the
computation time.

Implications of displacement controlled analysis The application of the vertical stress in the form of a
displacement has the following implications.

• During pre stressing of the structure, the Poisson ratio of the material results in higher compressional
stresses along the edges than defined. This leads to an underestimation of the eigenvalue.

• The nodes belonging to the cross sections of the ends of the columns are uniformly displaced. This
results in a fully constrained cross section of the column ends, making for a stiffer behaviour of the
column.

3.9.2. Stress singularities
Stress singularities regularly occurred in several analyses. These stress peaks were often found in different
locations of the model, usually either in the corner of the plate or at the attachment of the stiffeners flanges
to the column webs (Figure 3.18). The Artificial Neural Network are to be trained to predict the maximum
stress values in the model, based on a set of geometrical and loading input parameters. These peak stresses
however also depend on the mesh size. See Figure 3.19 where the maximum stress does not converge with
refining the mesh. Trying to train the neural network on these values will negatively influence the accuracy
of the predictive model.

Figure 3.18: Peak stress at the interface between the stiffener flange and the column web. The maximum equivalent stress equals σeqv =
349.5 MPa at a mesh size of 40 mm. Figure 3.13 shows how this peak stress increases when refining the mesh.

38 3. Mechanical model and FE analysis

40 20 10

350

400

450

500

Mesh size (mm)

M
ax

.e
q

u
iv

al
en

ts
tr

es
s
σ

eq
v

(M
Pa

)

Figure 3.19: Plot maximum equivalent stress against the mesh size. The maximum equivalent stress increases upon refining the mesh,
indicating a stress peak.

Since no personal judgement can be made during automated FE analyses about whether or not the maxi-
mum stress is a stress singularity or not, a work-around is necessary to cope with these singularities. Below
are listed some options to work around the issue of stress singularities, together with their implications. Rec-
ommendations for further research regarding these points are included in Chapter 7.

1. Include a nonlinear material model. Allowing the material to yield upon reaching the yield stress will
result in redistribution of stresses around the stress peak. The maximum occurring plastic strain in the
model could be used as an output parameter. Prediction of the plastic strain is also in line with the limit
state criterion of the maximum strain ε< 0.05 as defined in the rules and guidelines of EN-1993-1-5 [9].
The drawback of this approach is the possibility of divergence in a nonlinear analysis.

2. Use larger finite elements. The ratio of nodal force over the element size will be lower, thus decreasing
the peak stress values. This unfortunately can negatively influence the accuracy of the rest of the model.

3. Ignore the regions where stress peaks occur. The effect of the singularity diminishes the further away
from it. The drawback is that all stresses in this region will be ignored, even if a governing stress value
other than the peak stress is present here.

A combination of methods number 2 and 3 will be applied in this project. The settings for the mesh size are
discussed in Section 3.7.3. Furthermore, the values of the maximum stresses of 3 different regions will be
used as output parameter. One stress value will be the maximum stress in the entire model, including peak
stresses. The two other output stress values will be the maximum stresses in either the plate or the stiffeners,
ignoring the regions close to the column webs. A region with the size 10% of the skin plate width will be
ignored here.

Predictive models will be trained on both output stress values. It is assumed that the predictions of the
stresses ignoring the singularities will be more accurately.

3.10. Summary and example FE analysis
This section shows a short example of the FE as will be performed for generation of the data. A design with
arbitrary design parameters is selected. These are listed in Table 3.7. The result plots are presented in Figure
3.20 and Figure 3.21.

Figure 3.21 shows the first buckling mode. This buckling mode is used as initial imperfection scaled with an
arbitrary scale factor equal to 10. The nonlinear analysis is performed using automated time stepping.

3.10. Summary and example FE analysis 39

Element Value

Skin plate tpl ate = 12 mm
hpl ate = 3570 mm
wpl ate = 3100 mm

T-stiffeners ns = 6
hsw = 220 mm
tsw = 9 mm
bs f = 50 mm
ts f = 20 mm

Columns hcw = 515 mm
tcw = 12 mm
bc f = 250 mm
tc f = 15 mm

Out of plane load q0 = 0.05 MPa
q1 = 0.03 MPa

In plane load σy = 200 MPa
σz = 75 MPa

Table 3.7: Overview of geometric and loading parameters of the model example FE analsysis

(a) Total deformation upon application of loading before eigenvalue anal-
ysis and nonlinear analysis. Plotted deformations are the sum of all dis-
placement vectors in x, y and z direction

(b) Von Mises stresses upon application of loading before eigenvalue anal-
ysis and nonlinear analysis. Maximum stress close to yielding stress

(c) Total deformations at the end of geometrical nonlinear analysis (d) Von Mises stresses at the end of geometrical nonlinear analysis. Maxi-
mum stress far beyond yield stress

Figure 3.20: Maximum deformations and stresses during preloading and at the end of nonlinear analysis

40 3. Mechanical model and FE analysis

Figure 3.21: First buckling mode which is used as initial imperfection shape

4
Approach

4.1. Introduction
This chapter will discuss the complete approach for generating training data, training predictive models and
analyzing the results. Figure 4.1 shows a flowchart of the global process. References to the corresponding
sections are added to the flowchart where applicable.

Section 4.2 discusses the choices and considerations for the software used. In Section 4.3 a small overview of
the mechanical models is given. Apart from the main mechanical model which was described in Chapter 3,
also two simplified models will be treated. Section 4.4 describes the process of generating the datasets. These
datasets are generated by setting up a parametric model in ANSYS FEA after which a series of analyses can be
performed automatically for a number of unique sets of input values. In Section 4.5 some details are given
about how these data are prepared before they can be used for training the neural networks. The process of
training a neural network is discussed in Section 4.6. Then Section 4.7 explains how the hyperparameters
for these neural networks are optimized using a genetic algorithm. Then finally in Section 4.8, the other
interpolation techniques are briefly introduced.

41

42 4. Approach

Generate datasets
(Section 4.4)

For each single dataset

Train set (80%)
Split dataset
(Section 4.5)

Test set (20%)

Find best ANN architecture
for dataset using Genetic

Algorithm
(Section 4.7)

Train best ANN on train
data

(Section 4.6)

All fitted models
Predict on train and test

data and export predicted
values

Fit interpolaters to train
data

(Kriging, Polynomials)
(Section 4.8)

.CSV files containing
predicted data for each

dataset

Analysis and compare
predictions

Figure 4.1: Flowchart vizualizing the global process from data generation up to training neural networks and comparing the accuracies
with interpolation techniques

4.2. Software
This section will give an overview of the software packages and modules that are used in this project, includ-
ing the motivations for selecting these.

4.2. Software 43

4.2.1. Python
The Python programming language will be used as the central framework for all processes within this project.
All tasks, ranging from creating parametric input files for FE software, deploying Machine Learning algo-
rithms, up to collecting and comparing all results, are done using programming in Python. All the Python
scripts that are written for these tasks can be found in the appendices.

Python is a high-level programming language which has a very clear syntax, meaning that it is relatively easy
to read and understand the written code compared to other languages. The language is open-source and
knows a wide community of developers and contributors. This enables the user to import so called packages
with functionalities written for certain tasks. In this way, the Python user is not forced to reinvent the wheel
for each specific problem he encounters.

Many Python packages have also been developed for Machine Learning applications. These packages enable
the users to use common ML algorithms without having to code the exact mathematical formulations and
algorithms themselves. In this way, ML models can be constructed relatively quickly, reducing the chance of
making errors. Some commonly used packages are listed below with a short introduction and the motivations
why or why not the package is chosen to use in this project.

• TensorFlow: TensorFlow is an open-source ML package that is very suitable for many ML algorithms.
TensorFlow is developed by Google and enables the user to specify a certain graph of mathematical
operations. This graph is essentially a series of mathematical steps to be performed. TensorFlow trans-
lates this graph, or series of mathematical operations, to high performance C++ binaries. The benefit
is that the TensorFlow functions figures out how to properly perform the mathematical operations as
efficiently as possible across the different processing units of the computer. The user can focus on the
ML problem itself instead of worrying about e.g. matching multidimensional tensors. TensorFlow is
a relatively low-level application which can be used directly, or it can be used via a more high-level
application like Keras. (See next item).

• Keras: Keras is an open-source package developed specifically for the design of Artificial Neural Net-
works. It employs the functionalities of TensorFlow in the background, making it a higher level API.
This enables the user to focus more on quick experimentation and a more intuitive creation of ANN’s.
While Keras is easier to use than TensorFlow, it is also less flexible. For the creation of more advanced
ANN’s or ML algorithms in general, it is advised to use a more low-level application like TensorFlow
instead. In this project, the focus will be limited to very common feed-forward neural networks. It is
perfectly possible to construct this type of networks using Keras. Therefore, in this project Keras will be
used for constructing Artificial Neural Networks.

• DEAP: DEAP stands for Distributed Evolutionary Algorithms in Python. It is developed for deploy-
ing evolutionary algorithms in a convenient way. The theory of Evolutionary Algorithms, also called
Genetic Algorithms, is discussed in Chapter 2. Using DEAP, the user is able to conveniently define a
genotype of individuals in the desired format, create generations of random individuals and let the
evolution run generation after generation. Predefined crossover functions and mutation functions can
be applied to the individuals, but it is also possible to define custom crossover and mutation functions.
There is also the possibility of parallel processing in which computation tasks can be distributed across
multiple CPU cores to enhance the computational speed of the Genetic Algorithm. The application of
the package DEAP in this project is described in Section 4.7

• Scikit-Learn: Scikit-Learn is a general purpose ML library containing functions for many ML algo-
rithms. It also contains a package for Artificial Neural Networks, called the Multi-Layer Perceptron
regressor. However, the options and functionalities in this package are relatively limited compared to
those in the Keras package. That is the reason why Scikit-Learn will not be used for the construction of
Artificial Neural Networks in this project. But apart from the ML algorithms, many additional tools are
available in the library that are useful in other stages of the process. Some of these tools will be used
in this project for pre-processing of the datasets (see Section 4.5). Also, the interpolation techniques as
described in Section 4.8 will be implemented using the Scikit-Learn library.

4.2.2. Finite element software
The finite element software used in this project is ANSYS. There are two environments in which this software
can be used: ANSYS Workbench and ANSYS APDL. In this project, the APDL framework will be used.

44 4. Approach

In the following subsections, both frameworks and their features will be briefly introduced. In Section 4.2.3,
the advantages and disadvantages of both frameworks are discussed, supporting the motivation for choosing
APDL in this project instead of Workbench.

APDL: Ansys Parametric Design Language
The abbreviation APDL stands for Ansys Parametric Design Language, which is the native language of the
ANSYS software. In APDL, all FEM modelling and analysis can be performed by entering a sequence of APDL
commands or inputting a script file. It also has a graphical user interface, although very limited compared to
the Workbench environment.

Generally, the APDL environment is more commonly used in scientific context, where more advanced pre-
processing and post-processing steps are required. The user has a more ’direct’ connection to the actual FE
solver. It is possible to perform many mathematical operations like creating matrices, vectors and perform
operations on these.

In ANSYS APDL, all tasks are performed within one interface only. All steps, starting from the modelling of
the CAD geometry up to the actual solving, take place in one single interface.

ANSYS Workbench ANSYS Workbench is the modern interface which has a more user friendly Graphical
User Interface and more advanced graphical features. Workbench uses the very same solver as the one in
APDL, but the user does not need to know or use any commands. This makes it more intuitive for the user to
quickly model and solve the problem.

The Workbench environment can be considered as the main, overall interface. As opposed to the APDL envi-
ronment, where all tasks are performed in one and the same interface, Workbench includes multiple ’native’
software packages, each capable of its own set of tasks.

For the modelling, two native CAD modules are available: DesignModeler and SpaceClaim. The latter one
has a built-in Python interpreter in which a CAD model can be generated by writing a Python script. In this
way, a rule-based design can be generated based on a set of defined parameters, which is a very useful feature
for parametric design tasks.

A second important native package is ANSYS Mechanical, used for the structural analysis. In this program,
the boundary conditions and loading are applied, the geometry is meshed and the actual solving is initiated.
In this program, scripting is also possible. However, this is done in JScript, which is similar to JavaScript.

The Workbench itself also has a built-in IronPython console in which all the general processes within the
Workbench environment can be scripted. This is a very useful feature for automating tasks inside Workbench.

Surrogate modelling ANSYS Workbench has a built-in feature for creating surrogate models. This feature
is called the Response Surface. and is part of the ANSYS DesignXplorer module. There are five different fitting
methods available for constructing a Response Surface.

It is interesting to note that one of these fitting methods makes use of Artificial Neural Networks. This was not
foreseen before starting this project. The documentation regarding the settings or deployment of these ANN’s
is very limited However, the only hyperparameter than can be modified manually is the number of neurons,
which is limited to a maximum of 10 neurons. It is not clear which activation functions, optimizers or other
hyperparameters are used for these ANN’s. Considering these limitations, it is expected that the Response
Surface using ANN will not be able to use the full potential of ANN’s.

4.2.3. Considerations Ansys Workbench or APDL
In this section, the considerations for choosing an ANSYS environment used in this project will be discussed.
At the start of the project, the plan was to use the Workbench environment for generation of the training
data. Also it was planned to provide a comparison of the performance of the Response Surface with the
performance of the Artificial Neural Networks created in this project. But during the course of the project,
many limitations in Workbench were encountered. It was discovered that APDL would be preferred above
Workbench. In the next subsections, a more in depth discussion of both interfaces will explain why eventually
APDL would be preferred in this project.

4.2. Software 45

Since no direct comparison can be made between the ANSYS Response Surface and the Artificial Neural Net-
works, two of the available fitting methods of the Response Surface, Kriging interpolation and quadratic
interpolation, are deployed directly using the Scikit-Learn library in Python. The implementation of these
methods is explained in Section 4.8.

Overall workflow Choosing to use APDL for the FEM computations simplifies the total workflow since in
this case there are only two frameworks to deal with. Instead of using different submodules, scripting API’s
and even different scripting languages as required in Workbench, all processes, ranging from generating data
up to applying machine learning algorithms and analyzing the results, can be controlled directly from one
Python script.

License issues ANSYS is an expensive software package. Therefore, the number of available licenses within
a company or university is limited. These licenses are available through a remote license server. When the
maximum number of licenses is already used by the employees or students, it is not possible to use to program
or parts of the program.

This lead to issues when automating tasks inside Workbench for running a series of analyses in order to create
a dataset. For each new analysis, the program needs to open SpaceClaim in the background for creating the
CAD geometry. Next, for solving the model, also Mechanical has to be opened in the background. Each of
these native programs require their own license. When running many successive analyses, it often occurs
that the maximum number of licenses is reached when trying to open such a program. This results in license
failures and therefore unsolved analyses.

These issues do not occur in APDL, since all tasks are performed within in one interface only as pointed out
in Section 4.2.2. Once the user has access to the license, the program can be used and all automated tasks can
be performed without any issues. This is a major advantage and is one of the main motivations for using the
APDL environment in this project.

Computational time As pointed out in the previous subsection, each time when an analysis is performed
in Workbench, the native programs have to be opened in the background. The starting up of these programs
requires some time and computational effort. This is not a problem when trying to solve a few analyses, but
for larger numbers of design points these time delays can count up to significant amounts.

For a simple linear elastic analysis with less than 10.000 elements it was found that running the analysis in
Workbench took approximately 47 seconds, whereas solving the same model in APDL took less than one
second only. Note that the actual solving time is equal in both environments, since both use the same solver.
The difference in computation time comes from the initiation of native software packages in Workbench.

Since many analyses will have to be run in order to create the datasets, this drastic time reduction is an
important reason to choose APDL.

Parameter constraints When running a series of FE analyses of random designs, some of these designs are
known to be infeasible beforehand. Geometrical clashed might also be possible. When generating data for
a predictive model, one would want to avoid generation of data which is known to be infeasible or has an
invalid geometry, since it is useless to train a model on these data. Refer to Section 4.4.3 for a more in-depth
explanation of this concept.

In Workbench, it is not possible to directly set constraints on the relations between input parameters. There
is a plug-in available called DxUtilities which can be downloaded from the ANSYS website and integrated in
the program. Here the user can define functions which describe certain conditions which have to be fulfilled
for a design to be considered feasible. In order to avoid unnecessary computations of design points that are
known to be infeasible, these designs can be filtered out.

This added functionality is unfortunately only available for the generation of design points. For generating
verification points in the Response Surface module, necessary for evaluating the accuracy of the response
surface, it is not possible to set these parameter constraints.

A workaround could be to generate the design points inside the DesignOfExperiments module using the DxU-
tilities plug-in, after which these can be exported to a .CSV file and imported back as verification points.

46 4. Approach

However, it is not guaranteed that these verification points are positioned far away enough from the design
points. Therefore, when the verification points are too close to the original design points, the evaluation of
the performance of the model might give the false impression that the response surface performs very well
on the verification points while in reality this may not be the case.

In this project, the parameter constraints will be defined within Python functions in the main Python script.
Valid splitting techniques for creating training datasets and verification datasets are used with the Scikit-
Learn data processing tools. This guarantees a valid verification of the accuracy of the predictive models.

4.3. Simplified mechanical models
Apart from the main mechanical problem as described in Chapter 3, two additional, simplified mechanical
models are used for creation of predictive models. These simplified models serve to reduce the complexity
while getting acquainted with the machine learning algorithms, as well as providing insight in performance of
different predictive models for different mechanical models and output parameters. In total, three different
mechanical problems will be analyzed.

1. Elastic deflection of stiffened, simply supported steel plate under out of plane loading

2. Linear eigenvalue analysis of stiffened, steel plate under in plane compressional stresses

3. Non-linear buckling analysis of stiffened steel plate (main problem as described in Chapter 3)

Model number Nature of analysis Output parameter(s)

1 Linear ux,max [mm]
2 Linear λ1 [-]
3 Nonlinear, linear σeqv,max [MPa], λ1, ux,max

Table 4.1: Overview of material properties as used throughout the project

The simplified models share the following properties with the main mechanical model 3. These can be re-
ferred to in Chapter 3.

• Material properties (linear)

• Loading conditions

Note that the loading conditions in the main problem include a combination of in-plane and out of plane
loading. The simplified models are only loaded by one component per model: Model 1 is only loaded by
out of plane pressure in x-direction. Model 2 is only loaded by in plane compressional stresses in y and/or
z-direction.

Geometry The simplified models 1 and 2 share the same geometric parameters and support conditions.
The difference between the geometry of the simplified models and the main problem is that the simplified
models do not contain any supporting columns. No reduced modelling is applied to the simplified models.
See Figure 4.2 for the geometry of the simplified structure. Table 4.2 shows an overview of the geometrical
parameters and their description.

4.3. Simplified mechanical models 47

A

B

C

D

Skin plate

T-stiffener

x

y

z

Figure 4.2: 3D geometry of the simplified models numbers 1 and 2. No columns included. All edges are supported in x-direction

B A
hpl ate

tpl ate

ts f

tswhsw

csbs f

Figure 4.3: Cross sectional drawing through the xz-plane indicating the dimensions of the longitudinal T-stiffeners and the plate

48 4. Approach

Structural Element Symbol Description

Skin plate tpl ate Skin plate thickness
hpl ate Skin plate height
wpl ate Skin plate width (= c.t.c. distance columns)

T-stiffeners ns Number of T-stiffeners
cs Center-to-center distance
hsw T-stiffener web height
tsw T-stiffener web thickness
bs f T-stiffener flange width
ts f T-stiffener flange thickness

Table 4.2: Overview of geometry parameters of the simplified models. Geometry parameters of the columns are not included.

Boundary conditions Both simplified models have different boundary conditions. See Table 4.3 and Table
4.4 for overviews of the boundary conditions for simplified problem 1 and 2 respectively.

Description Location [mm] ux uy uz θx θy θz

1 A-B: Plate edge y = 0, x = 0 0 - - - - -
2 B-C: Plate edge z = hpl ate , x = 0 0 - - - - -
3 C-D: Plate edge y = wpl ate , x = 0 0 - - - - -
4 A-D: Plate edge z = 0, x = 0 0 - - - - -

Table 4.3: Boundary conditions applied to the nodes of simplified model 1. Only the plate edges are supported in x-direction.

Description Location [mm] ux uy uz θx θy θz

1 A-B: Plate edge, stiffener sections y = 0 0 uy y 0 - - -
2 B-C: Plate edge z = hpl ate , x = 0 0 - -uzz - - -
3 C-D: Plate edge, stiffener sections y = wpl ate 0 -uy y 0 - - -
4 A-D: Plate edge z = 0, x = 0 0 - uzz - - -

Table 4.4: Boundary conditions applied to the nodes of simplified model 2.

Range of parameter values For both simplified models, multiple datasets will be generated. Each dataset
will have a different number of free variables and a different number of data samples. This is done in order to
study the relation between these properties and the possible accuracies of the predictors. An overview of the
applied parameter value ranges for all mechanical models is provided in tables 4.8 and 4.9 in Section 4.4.2.

Note that these simplified models only serve for experimental purposes. The parameter value ranges and
their relations are not limited by ’practical’ values. It is not considered whether these values are reasonable
or can be considered an efficient design.

4.4. Generation of data
A sufficient amount of training data is required for training the predictive models to ensure high accuracy. A
dataset is generated that contains the results of a number of FE analyses. See Table 4.5 for the general shape
of a dataset. Each row in this dataset is a list containing the input parameter values for a single analysis and
the corresponding output values found by solving the actual FE analysis. Each column of the table represents
a specific input or output parameter. The data are stored in a comma-separated values file (CSV file) which
makes it convenient to be used in different frameworks like Python and Excel.

4.4. Generation of data 49

Input 1 Input 2 · · · Input n Output 1 Output 2

Sample 1
Sample 2
...
Sample m

Table 4.5: General shape of a dataset. Each row represents a single FE analysis summarizing its input parameters and the resulting output
parameters produced by the analysis.

Figure 4.4 shows a flowchart that visualizes the complete process of the generation of datasets. Hyperlinks
are included inside the flowchart that redirect to the corresponding section where the process is described in
detail.

4.4.1. Create parametric models
Parametric models form the basis for each FE analysis. These parametric models are set up as ordinary text
files containing APDL scripts. These APDL scripts are a series of APDL commands that are read by the ANSYS
APDL software, after which ANSYS performs each line of commands subsequently. All necessary steps are
contained within such a command file.

1. Define input parameter values

2. Create geometry

3. Define element settings

4. Mesh geometry

5. Add boundary conditions and loading

6. Set solve settings

7. Solve

8. Post processing

For each FE analysis, a unique APDL file is created.

Template APDL files Each FE analysis has a unique set of input parameters. Also, among different mechan-
ical models, different solver settings and post processing methods are needed. Therefore, so called APDL
template files are created. Such a template file contains the most general APDL commands that are suitable
for all projects. A part of the commands that are unique to one of the projects are left out. These template
files are then modified by a Python script in order to complete it with the correct commands corresponding
to the set of input parameters and analysis settings for the single FE analysis. The general workflow in the
Python script for reading a template file and writing the final APDL files is as follows:

1. Read template file, corresponding to the actual project.

2. Search for the keywords in the template

3. Replace the keywords with the correct APDL commands

4. Write the final APDL input file

An example of a template input file is included in Appendix G An example of a complete APDL file is included
in Appendix K

4.4.2. Define projects
In the context of this thesis, a project is a collection of datasets belonging the same mechanical model (model
1, 2 or 3) and having the same number of free input parameters. These projects are defined inside an Excel
file, which is read by the Python script. Also the ranges of the parameter values are defined within this Excel
file.

50 4. Approach

Parametric APDL template
files

(Section 4.4.1)

Excel file containing
project definitions

(Section 4.4.2)
Read files

Create Designs of
Experiments

(Section 4.4.3)
APDL input files

Send batch file to OS
Run FE analyses in ANSYS

in batch mode

Collect results
(Section 4.4.4)

Output FE results

Couple output to input

Export datasets Datasets (.csv files)

Figure 4.4: Flowchart describing the process of generating datasets that will serve as training data for the neural networks. All processes
within the dashed frame are automatically performed in the Python scripts.

4.4. Generation of data 51

This is organized in such a way in order to study the relations of prediction accuracy as a function of the num-
ber of free variables and the number of data samples in a dataset. Table 4.6 visualizes the project numbers.
Each q-icon represents a single dataset for which an artificial neural network will be trained.

Number of data samples
Mechanical
model

Project
number

Num. of
variables

40
samples

80
samples

160
samples

1

1-1-1-1 4 q q q
1-2-1-1 5 q q q
1-3-1-1 6 q q q
1-4-1-1 7 q q q
1-5-1-1 8 q q q

2

2-1-1-1 4 q q q
2-2-1-1 5 q q q
2-3-1-1 6 q q q
2-4-1-1 7 q q q
2-5-1-1 8 q q q

3

3-1-2-1 13 q q q
3-1-2-2 13 q q q
3-1-2-3 13 q q q
3-1-2-4 13 q q q
3-1-2-5 13 q q q

Table 4.6: Definition of projects, each belonging to a mechanical model, a number of free variables and parameters ranges. For each
project, multiple datasets are created with a varying number of data samples.

Proj. num. Num. Vars Variables Outputparameter

1-1-1-1 4 tp ,hsw ,tsw ,q0, ux,max

1-2-1-1 5 tp ,ns ,hsw ,tsw ,q0, ux,max

1-3-1-1 6 hp ,tp ,ns ,hsw ,tsw ,q0, ux,max

1-4-1-1 7 tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0, ux,max

1-5-1-1 8 hp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0, ux,max

2-1-1-1 4 tp ,ns ,hsw ,tsw , λ1

2-2-1-1 5 hp ,tp ,ns ,hsw ,tsw , λ1
2-3-1-1 6 tp ,ns ,hsw ,tsw ,ws f ,ts f , λ1

2-4-1-1 7 hp ,tp ,ns ,hsw ,tsw ,ws f ,ts f , λ1

2-5-1-1 8 hp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,σzz , λ1

3-1-2-1 13 hp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0,σzz , σmax,al l

3-1-2-2 13 hp ,wp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0,σy y ,σzz ,ci mp , ux,max

3-1-2-3 13 hp ,wp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0,q1,σy y ,σzz ,ci mp , σmax,pl ate,mi d

3-1-2-4 13 hp ,wp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0,q1,σy y ,σzz ,ci mp , σmax,st i f f .,mi d

3-1-2-5 13 hp ,wp ,tp ,ns ,hsw ,tsw ,ws f ,ts f ,q0,q1,σy y ,σzz ,ci mp , λ1

Table 4.7: Overview of project numbers including the input parameters and output parameters

52 4. Approach

Proj. num. hp [mm] wp [mm] tp [mm] ns [-] hsw [mm] tsw [mm] bs f [mm] ts f [mm]

1-1-1-1 2000 2000 8, 24 6 60, 200 6, 12 0 0
1-2-1-1 2000 2000 8, 24 4, 8 60, 200 6, 12 0 0
1-3-1-1 2000, 4000 2000 8, 24 4, 14 60, 200 6, 12 0 0
1-4-1-1 2000 2000 8, 24 4, 8 60, 200 6, 12 60, 160 6,12
1-5-1-1 2000, 4000 2000 8, 24 4, 14 60, 200 6, 12 60, 160 6,12
2-1-1-1 2000 2000 8, 24 4, 8 60, 200 6, 12 0 0
2-2-1-1 2000, 4000 2000 8, 24 4, 14 60, 200 6, 12 0 0
2-3-1-1 2000 2000 8, 24 4, 8 60, 200 6, 12 60, 160 6,12
2-4-1-1 2000, 4000 2000 8, 24 4, 14 60, 200 6, 12 60, 160 6,12
2-5-1-1 2000, 4000 2000 8, 24 4, 14 60, 200 6, 12 60, 160 6,12
3-1-2-1 3000, 6000 2000, 5000 6, 30 4, 25 100, 400 6, 24 50, 350 6, 30
3-1-2-2 3000, 6000 2000, 5000 6, 30 4, 25 100, 400 6, 24 50, 350 6, 30
3-1-2-3 3000, 6000 2000, 5000 6, 30 4, 25 100, 400 6, 24 50, 350 6, 30
3-1-2-4 3000, 6000 2000, 5000 6, 30 4, 25 100, 400 6, 24 50, 350 6, 30
3-1-2-5 3000, 6000 2000, 5000 6, 30 4, 25 100, 400 6, 24 50, 350 6, 30

Table 4.8: Overview of geometry parameter value ranges for all projects. A single value in a cell implies a fixed value for that parameter.
Two values in a cell represent the minimum and maximum possible values respectively.

Proj. q0 [MPa] q1 [MPa] σy y [MPa] σz z [MPa] AMP [mm]

1-1-1-1 0.05, 0.2 Q0 0 0 0
1-2-1-1 0.05, 0.2 Q0 0 0 0
1-3-1-1 0.05, 0.2 Q0 0 0 0
1-4-1-1 0.05, 0.2 Q0 0 0 0
1-5-1-1 0.05, 0.2 Q0 0 0 0
2-1-1-1 0 0 1.0 0 0
2-2-1-1 0 0 1.0 0 0
2-3-1-1 0 0 1.0 0 0
2-4-1-1 0 0 1.0 0 0
2-5-1-1 0 0 1.0 0.1, 0.5 0
3-1-2-1 0.05, 0.2 0.05, 0.2 100, 250 50, 150 1.0, 12.5
3-1-2-2 0.05, 0.2 0.05, 0.2 100, 250 50, 150 1.0, 12.5
3-1-2-3 0.05, 0.2 0.05, 0.2 100, 250 50, 150 1.0, 12.5
3-1-2-4 0.05, 0.2 0.05, 0.2 100, 250 50, 150 1.0, 12.5
3-1-2-5 0.05, 0.2 0.05, 0.2 100, 250 50, 150 1.0, 12.5

Table 4.9: Overview of loading parameter value ranges for all projects. A single value in a cell implies a fixed value for that parameter. Two
values in a cell represent the minimum and maximum possible values respectively. AMP is the scaling factor with which the buckling
shape is multiplied in order to include geometric imperfections

4.4.3. Create design of experiments
For creation of each dataset, a proper Design Of Experiments (DOE) must be created. The DOE is defined
as a set of samples, each sample containing a unique set of input values for a FE analysis. The design of
experiments in this case is a m×n matrix where m represents the number of samples and n being the number
of input parameters for each sample.

All input parameters and their possible values define the total design space. This design space is the collection
of all possible combinations of values for the input parameters. Each sample will be a unique combination of
values for its input variables. This will be called a design point. The design point can be visualized as a single
point in the n-dimensional design space, where n is equal to the number of free variables.

Two important features regarding the design points determine how well the predictive models can be trained.
The first one is the number of design points used for the training process. It is expected that the predictive
model will perform better for a higher number of design points. The second one is the sampling method of
the design points from the design space.

4.4. Generation of data 53

Number of samples The predictive models are expected to perform better when trained with a higher num-
ber of training samples. The drawback is that the generation of training data is computationally expensive.
For each design point, a complete FE analysis will have to be run. Therefore it is important to find a good bal-
ance between limiting the amount of time needed for generating the datasets and making sure that enough
samples are available for accurate prediction.

In this thesis, the number of samples will be varied in order to draw conclusions about the resulting perfor-
mance of the predictive models. For the two simplified mechanical models 1 and 2, datasets with 40, 80 and
160 samples will be generated. For the main mechanical model, 80, 160 and 320 samples will be generated.
Out of each dataset, 80% of the samples will be used for actually training the predictive models. The other
20% of the samples will be used for validating the performance of the predictive models. More about splitting
datasets is written in Section 4.5.

Sampling method Choosing the right sampling method ensures a proper distribution of data points in the
design space. For all datasets, the Latin Hypercube Sampling (LHS) method will be used. The LHS is a sta-
tistical sampling method for drawing random samples from a multidimensional design space. The main
advantage of the LHS method over standard grid sampling is that the design space can be covered with less
data samples since input values are not repeated. A general rule of thumb in machine learning is that at
least 5 values for each input parameters are needed [25] to capture the response of the system accurately.
When applying the grid like sampling method for a problem with 8 input parameters, a dataset containing
58 = 390625 data samples would be needed, which is obviously infeasible in the context of this thesis.

In LHS, the range of each parameter is split up in m equally spaced partitions. The sampling method is set up
such that from each partition, only one value is selected. In this way, each sampling point has a unique value
for each input parameter.

See Figure 4.5 for a visualization of both concepts in 2 dimensions. Imagine that for both input parameters, 3
unique values have to be drawn In the grid sampling method in Figure 4.5a, 9 data points are needed to cover
the design space, while for the LHS method in Figure 4.5b, the ranges of both input parameters are covered
with only 3 data points.

(a) A grid-like sampling method requires mn data samples to cover
the design space, where m is the number of unique values for a single
parameter and n the number of dimensions.

(b) The Latin Hypercube sampling method requires less data while still
covering the range of the dimensions with the same amount of unique
values.

Figure 4.5: Comparison of grid sampling method and Latin Hypercube Sampling method

For sampling with the LHS method in Python, a special package is be imported. This library is called doepy,
and is available for free. The source code can be found on the GitHub page [2].

54 4. Approach

Filter out infeasible designs For some combinations of input values it is known that the design will be
infeasible. This can be based on experience, limitations in the Eurocode or a simple mathematical proof that
the structure will fail. Other design points may be infeasible due to geometrical clashes, like flanges of T-
stiffeners overlapping eachother. It can also be the case that the structure cannot be fabricated at all, due to
a lack of working space for the welder.

In order to avoid generation of useless data and training predictive models on these data, the infeasible de-
signs have to be filtered out from the design space in advance. This can be done by specifying a set of con-
ditions that each design point has to fulfil. If the design point does not fulfil the conditions, the design point
will be filtered out.

Of course, each time when design points are filtered out, the number of available design points decreases.
Since a specific number of design points is desired, new samples will have to be drawn. In order to make sure
that all data points remain optimally distributed, a completely new dataset will have to be drawn with a higher
number of samples to compensate for the samples that will be filtered out. This is an iterative procedure
which is visualized in Figure 4.6. A visualization is shown in Figure 4.7

Set n = ng oal Draw n samples

Design constraints Filter out infeasible designs
Increase n:

nnew = n +∆n

n f easi ble = ng oal ?

Create Design of
Experiments

APDL input files

no

yes

Figure 4.6: Flowchart visualizing the iterative procedure of sampling data and filtering infeasible designs

4.5. Preparation of data 55

0 2 4 6 8 10
0

2

4

6

8

10

x1

x 2
LHS sampling n = 64, n f easi ble = 40

0 2 4 6 8 10
0

2

4

6

8

10

x1

x 2

LHS sampling n = 100, n f easi ble = 63

Figure 4.7: Visualization of filtering infeasible designs and drawing more samples to end up with desired number of feasible samples.
The problem has two variables: x1 and x2. The variables have the same ranges: 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. A design where the sum of
x1 and x2 is higher than 12 can be considered infeasible. The red dots represent the infeasible designs that are filtered out. In the right
figure, the amount of samples is increased to 100 samples after which 63 designs remain. The iteration is repeated until the number
feasible designs is equal to the number of desired samples.

4.4.4. Run FE analyses and collect the results
For each data sample a APDL input file is created. Also a batch file is written which contains commands
that will send each APDL file to the ANSYS solver. The analyses are run in batch mode and the relevant
output values of the FE analyses are collected and coupled to the corresponding input data. These data are
organized in datasets as shown in Table 4.5 in Section 4.4. These tabular data are then exported to .CSV files.
Some modifications will have to be performed on the data before using these data for training. These steps
are explained in Section 4.5.

4.5. Preparation of data
4.5.1. Split data
In order to be able to verify the performance of the trained artificial neural network, a dataset will be split
into a training dataset and a testing dataset, which is a common procedure in machine learning. The testing
dataset is held out, so that the neural network is trained on only the training dataset. The testing dataset
is used to verify the prediction accuracy of the predictive model on data it has not been trained on. It is
important to verify this performance since it is the key idea of a predictive model to use it for all data points,
not only for data it has already seen during the training process. The advised percentage of the dataset that is
held out as a testing set is between 5% and 25%. In this project, 20% of the available data in each dataset will
be held out for testing the predictive model.

The selection of test data points must be performed with care. It is not advisable to simply select 20% of the
data points at either end of the dataset, as these points might be clustered in a particular region of the design
space. Instead, the data points must be selected randomly. A special Python function available in the Sci-kit
Learn library called train-test-split will be used for performing this operation.

4.5.2. Scale data
It is very important to scale the ranges of all input parameters to the same range. These ranges are preferably
small, e.g. values between 0 and 1. The different input variables may have different units and different scales.
The thickness of a steel plate for example is in the order of (tens of) millimetres, while the Young’s modulus of
this steel material may have a value of 211 N/m2. Big differences in scales along variables may result in poor
performance of the neural network [15].

56 4. Approach

Two important scaling methods are

• Min-Max scaling (normalization)

• Standard scaling (standardization)

Where Min-Max scaling scales all data to values within a specified interval [5] and and Standard scaling scales
all the data to a standard normal distribution [8].

It is advised to standardize the dataset if the data is normally distributed [15]. Otherwise, min-max scaling
is a better option. Since the LHS method results in uniform distributions for all input parameters, all input
variables will be scaled to fit within a range between 0 and 1.

Scaling output data may be necessary in case multiple output parameters are to be predicted by one neural
network and when the values have a large difference in range. Since in this project only one output parameter
is to be predicted at a time, scaling is not required and will thus not be applied.

4.5.3. Modify input data
There are more options available for to manipulate the data in order to improve training capabilities of the
predictive models. These are both related to decreasing the dimensionality of the problem.

Feature selection Feature selection is the process of choosing certain input parameters to be included in
the training dataset. Some variables might be excluded when it is expected that these parameters have a
low influence on the output parameters. In this project however, the response of the system is determined
by interaction of all the input variables described by physical laws. It is therefore expected that all input
variables have an influence on the output values. In this project, no input variables are excluded.

Feature extraction Feature extraction is the process of creating new input variables that are derived from
the original input variables. These derived variables may be expected to have a high influence on the output
values. An example in the domain of structural mechanics might be to derive the torsional stiffness of the
system from the input variables describing the dimensions and material properties of the system.

Feature extraction is not within the scope of this project. A suggestion for further research considering this
point is added in Chapter 7

4.6. Predictive modeling using Artificial Neural Networks
Theory of Artificial Neural Networks is treated in detail in Chapter 2. This section will discuss the application
of the method in this thesis, together with motivations for certain choices.

4.6.1. Create the ANN model
For creation and fitting ANN models, the Python library called Keras is used. In Section 4.2, an introduction
to this library is given. Many different types of neural networks exist and can be created with the Keras library.
However, in this project, the ANN’s will be limited to single hidden layer feedforward neural networks.

For this purpose, a custom Python class is created and stored in a separate module, in which the functions for
creating and fitting the ANN are written. This class and its functions can conveniently be re-used in different
scripts. The script file containing this class has been added in Appendix B. The desired hyper parameters can
be provided in the function arguments.

4.6.2. Choose hyper parameters
The capability of the ANN to fit to the data is highly dependent on network architecture and the chosen set of
hyperparameters. Choosing the right set of hyperparameters is one of the most important and time consum-
ing tasks when working with Artificial Neural Networks, or any machine learning method in general. Since
the final performance of the network can only be evaluated after training it, the time needed for evaluating
multiple combinations of hyperparameters can quickly become a limitation. Therefore it is necessary to find
a way to find the optimal hyperparameters in the most efficient way.

4.6. Predictive modeling using Artificial Neural Networks 57

Hyperparameter Options

Number of neurons 1 - 50
Activation function Linear, Hyperbolic tangent, ReLu, Elu, Selu, Exponential, Sigmoid, Softplus
Optimizer RMSprop, Stochastic gradient descent, ADAM, ADAGRAD, ADADELTA, ADAMAX,

NADAM
Kernel initializer Random uniform, Constant, Zeros
Bias initializer Random uniform, Constant, Zeros

Table 4.10: An overview of the hyperparameters to be optimized and the possible options

Hyperparameter optimization For finding the optimal hyperparameters for Artificial Neural Networks, dif-
ferent approaches are possible.

• Manual optimization
This is essentially the most basic yet cumbersome way of tuning hyperparameters. This is a process of
trial and error of manually adjusting the hyperparameters. The performance is evaluated after training
the network. While it is useful for getting a feeling quickly for which hyperparameters work well and
which do not, it is very labour intensive for analyzing multiple sets of hyperparameters.

• Grid search
A grid-like sampling method is used for selecting hyperparameters, much like the example shown in
Figure 4.5a. Each point in the design space represents a neural network with a unique set of hyperpa-
rameters. Each neural network is trained and the best performing network is selected. The drawback
of this method is that the number of individual settings increases exponentially with the number of
hyperparameters (the curse of dimensionality), making it computationally expensive to train and test
each neural network.

• Randomized search
Randomized search is much like a Monte-Carlo simulation, randomly selecting a fixed number of sam-
ples from the total design space of hyperparameters. Since a fixed number of samples is drawn, the
curse of dimensionality does not hold and the computational time can be controlled.

• Genetic algorithm
The main shortcoming of the grid search and random search methods is that for each set of hyperpa-
rameters, a neural network has to be trained regardless of the results of the already performed evalu-
ations. In this way, the knowledge about previous evaluations is not used and therefore many neural
networks are trained with hyperparameters which are known to yield bad performing networks A ge-
netic algorithm takes a different approach.

First, a set of hyperparameters is randomly selected (just like random search), after which each set
is evaluated. Then the algorithm zooms in into promising subregions of the design space with well-
performing neural networks. New samples are drawn with hyperparameters from these subregions,
expecting to find even better performing neural networks. This process is repeated until the set of
hyperparameters is found to produce sufficiently accurate neural networks. In this thesis, this method
will be used for hyperparameter optimization. The implementation is described in Section 4.7. The
theory of genetic algorithms can be found in Chapter 2.

Hyperparameters to be optimized For ANN’s there are many different hyperparameters that can be tweaked.
In this project, the focus will be on five different hyper parameters that will be varied. These are listed in Table
4.10.

Note that the learning rate is not included in the list. This is chosen to avoid complexities in the hyper param-
eter optimization using Genetic Algorithms. Some optimizers use a fixed learning rate, while other optimizers
have an adaptive learning rate which changes during the training process. Providing a value for the learning
rate will only be useful in case an optimizer is applied with a fixed learning rate. The complexity that arises
with genetic algorithms concerning this point will be explained in Section 4.7.1.

58 4. Approach

Define loss function Different loss functions are suitable for different problems. For classification prob-
lems, accuracy is a common loss function which is a percentage of correct classifications. For regression
problems like in this project, the mean squared error of the prediction is chosen as a loss function. See equa-
tion (2.7).

4.6.3. Training the ANN on data
After constructing the ANN, the model can be fit to the training data. Upon starting the training process, the
training data must be provided, together with the number of training epochs.

In general, the longer the ANN is trained to the provided training data, the lower the loss quantity can become,
until convergence is reached. But a lower loss quantity does not necessarily imply a better performance. It is
very likely that the model performs very well at predicting the outcomes of the training data, but very poorly
on the testing data.

Number of training epochs Choosing a fixed number of training epochs beforehand is tricky, since too low
a number might result in underfitting, while too many epochs might result in overfitting. This problem can be
solved by defining so called callback functions. A callback function as used in the Keras library is a function
that is executed at the end of each training epoch with which the training process can be better controlled.
Two callback functions will be used in this project.

EarlyStopping callback The EarlyStopping callback function is a function that stops the training process
when the model accuracy stops improving or even starts to become worse.

Before reading on, a clear distinction must be made here between two terms.

• Loss: The value of the error, computed over the prediction of all training samples. The weights in the
neural network will be updated, based on optimization of this loss value.

• Validation loss: The value of the error, computed over the prediction of all testing samples. This value
is only used for checking the capability of the network to predict on unseen data. The testing samples
are not used for training, i.e. updating the network weights and biases.

The EarlyStopping callback function is a function that can be added to the ANN fitting function in Keras to
reduce the chance of overfitting. The callback function monitors the value of the validation loss at the end of
each training epoch. When the validation loss does not decrease (i.e. improve) with a certain specified value,
or even increases (meaning that the performance gets worse), the training process will be stopped.

The callback function requires two arguments:

• ∆mi n : the minimum required change in validation loss.

• Patience: The number of training epochs to continue after registering an insufficient amount of im-
provement. Once a training epoch did not result in the specified minimum amount of improvement,
the callback function is called. This patience setting makes the callback more ’forgiving’ in case the
validation loss reaches a short plateau. It can happen that the validation loss starts decreasing again
after some epochs.

ModelCheckpoint callback The ModelCheckpoint callback is a function that saves the model of the ANN
to an external file after each training epoch provided that the accuracy has improved. At the very end of a
training process, it is guaranteed that the saved is the model with the lowest validation loss as found during
the training process, even if the validation loss started increasing again at some point.

The drawback of including this callback function is that it demands more computational effort, drastically
increasing the time needed for a training session. Therefore, this callback will only be included in the final
refitting stage, after the hyperparameter optimization (Section 4.7) has already taken place.

Visualization of callbacks in training process See Figure 4.8 for an example of the history of a training
process. The number of training epochs is fixed to 10.000 epochs and no EarlyStopping callback is provided
here. At some point, approximately around training epoch 1250, the validation loss reaches its minimum

4.6. Predictive modeling using Artificial Neural Networks 59

and does not improve anymore. The training process is continued until the specified number of epochs is
reached.

Figure 4.9 shows an example where an EarlyStopping callback is provided. After the validation loss reaches its
minimum around training epoch 200, it starts increasing again. At this point, the callback function is called
with a patience value of 1000 epochs. Therefore, 1000 epochs later, the training process is terminated. No
more improvement is observed after training epoch 200. After approximately epoch 400, the values of the
validation loss starts oscillating, clearly indicating an unstable training process. The ANN model is saved at
the point where the validation loss was lowest.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

100

200

300

400

500

600

700

800

900

1,000

Minimum validation loss reached

Training epoch

M
ea

n
sq

u
ar

ed
er

ro
r

[m
m

2
]

Training process with a fixed number of epochs without callback functions

Training loss
Validation loss

Figure 4.8: Training session with 10.000 training epochs without a defined earlystopping callback function. The validation loss reaches a
plateau but the training process is continued until the defined 10.000 epochs are done. This is a waste of computational effort during a
hyperparameter optimization algorithm.

60 4. Approach

−100 0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

0

50

100

150

200

250

300

350

400

Lowest validation loss, model saved by ModelCheckpoint callback

Early stopping callback

Training epoch

M
ea

n
sq

u
ar

ed
er

ro
r

[m
m

2
]

Training process with two callback functions defined

Training loss
Validation loss

Figure 4.9: In this training process two callbacks are defined. The ModelCheckpoint callback saves the model at the training epoch with
the lowest value of the validation loss. The EarlyStopping callback is invoked upon reaching this minimum value of the validation loss
and waits for 1000 more epochs before terminating the training process.

4.6.4. Validation
There are two types of validation to be distinguished. The first one is cross-validation, which is used during
the hyperparameter optimization process. The other one is validation on the testing dataset, which is used
for final evaluation and validation of the chosen neural network with the hyperparameters found from the
hyperparameter optimization process.

The mean cross validation score is a metric which tells a lot about the generalization capacities of the ANN,
which is the capacity to predict values on data it has never been trained on. This mean cross validation score
will be the scoring metric of the a neural network used in the genetic algorithm

K-fold cross validation K-fold cross validation is a method to evaluate the generalization capacity of the
predictive model. The outcome of this validation is a metric for the capability of the model to predict ac-
curately on unseen data, i.e. to give an accurate prediction for situations it has not encountered during the
training sessions.

The method might be confusing. Figure 4.10 schematically shows the partitioning of the full dataset. The
complete dataset has already been split into a training set and a testing set. This testing set is used for the
final evaluation of the ANN. For the hyperparameter optimization process, the training dataset is used. But
the training dataset is split again into K equally sized partitions. In this project, 5-fold cross validation is
applied, meaning that the training dataset is split up in 5 parts.

In K-fold cross-validation, an ANN is trained and evaluated 5 times. Each time, one of the partitions of the
training data is used as a validation dataset, and the other four parts make up the (sub)training dataset. The
ANN is trained on these four training partitions and validated on the validation part left out. The outcome is
a validation loss. In the end, each of the five partitions has served as a validation set once. After performing
this 5 times, the mean value of all 5 separate validation losses is computed.

4.7. Hyperparameter optimization using Genetic Algorithms 61

Figure 4.10: Vizualization of the splitting of data in train and test set, after which the test set is split again in 5 folds for cross validation
[29]

4.7. Hyperparameter optimization using Genetic Algorithms
The goal of hyperparameter optimization is to find those settings (hyperparameters) for an Artificial Neu-
ral Network that produce a network with the best learning capacity for a specific dataset. In this thesis, the
hyperparameters will be optimized using genetic algorithms, also called evolutionary algorithms. This es-
sentially means that two machine learning methods are stacked onto eachother. The theoretical concepts are
described Chapter 2.

The main idea is to iterate towards an optimal set of hyperparameters for a neural network. These iterations
are so-called generations, just like a generation of individuals in biological evolution. The fitness of the indi-
viduals are supposed to improve in each successive generation. In the first generation, a number of random
sets of hyperparameters is created. These unique sets of hyperparameters are called the individuals in the
context of a genetic algorithm. With each set of hyperparameters, a neural network is created, trained and
validated. The validation of the neural network returns a certain fitness value, which is assigned to the neural
network. The fittest neural networks are selected to survive and pass on their genes to the next generation.

In this section, the deployment of the genetic algorithms for hyperparameter optimization will be discussed.
The chosen settings for the genetic algorithms are listed down along with brief motivations. The settings of
the genetic algorithms are based on small scale experiments which will not be documented in this thesis.
The genetic algorithms are programmed using the DEAP library. The Python code created for the genetic
algorithms for this project can be found in Appendix C.

4.7.1. Hyperparameters to optimize
Table 4.11 shows the list of hyperparameters that will be optimized. The available options are listed on the
right side of the table. There are five hyperparameters to be optimized. Therefore, the genotype of an indi-
vidual is represented as a Python list of five elements long. Each element contains the value of the respective
hyperparameter. An example of such a genotype is shown in (4.1).

62 4. Approach

Hyperparameter Options

Number of neurons 1 - 50
Activation function Linear, Hyperbolic tangent, ReLu, Elu, Selu, Exponential, Sigmoid, Softplus
Optimizer RMSprop, Stochastic gradient descent, ADAM, ADAGRAD, ADADELTA, ADAMAX,

NADAM
Kernel initializer Random uniform, Constant, Zeros
Bias initializer Random uniform, Constant, Zeros

Table 4.11: An overview of the hyperparameters to be optimized and the possible options

g enot y pe = [24, sigmoid, adam, constant, random_uniform] (4.1)

Note about learning rate It was already mentioned in Section 4.6.2 that the learning rate is not included in
this list. The reason for that is to avoid issues with defining a genotype. Most of the available optimizers have
an adaptive learning rate, that automatically changes during the training process. Only a few optimizers have
a fixed learning rate which is required to be defined. This would mean that genotypes with different amount
of genes would have to be created. An individual with five genes in case of an optimizer with an adaptive
learning rate, and six genes in case of an optimizer with a fixed learning rate. This can lead to problems when
applying crossover operations between two individuals with different genotype lengths.

An alternative option would be to fix the genotype length to six genes for all individuals, thus including a value
for the learning rate for all ANN’s. The problem is that the provided learning rate will only have an influence
on the individuals with fixed learning rate optimizers and no influence at all on the fitness of the individuals
with adaptive learning rate optimizers. It is expected that this will negatively affect the convergence of the
genetic algorithm.

Therefore, it is decided to not include the learning rate as a hyperparameter to optimize. Instead, for the
optimizers with a fixed learning rate, the default value is maintained.

4.7.2. Settings for genetic algorithm
Before running the genetic algorithm, certain settings have to be chosen. The concepts related to these set-
tings are discussed in the theory section in Chapter 2.

Population size The population size must be chosen large enough, such that there exists a sufficient amount
of variety in the gene pool. Too small a population can lead to too fast convergence to a local optimum. At the
same time, the larger the population size, the more individuals will have to be evaluated in each generation.
If the evaluation of the fitness of an individual takes only a short amount of time, this does not need to be a
limitation. But, in the context of this project, the evaluation of an individual means 5-fold cross validation of
an ANN (see Section 4.6.4). Since this requires a significant amount of time, the population size needs to be
limited in order to limit computation time.

In this project, the population size is set to 40 individuals for each generation.

Number of generations The number of generations needs to be high enough to ensure convergence. But
setting a high number of generations also implies evaluating many individuals, therefore increasing compu-
tational time.

In this project, the number of generations is limited to 5 generations.

Crossover rate and mutation rate The settings for the crossover rate and mutation rate strongly influence
the behaviour of the algorithm. In this project, a comparison has been made between two sets of settings.

• Experiment 1: crossover rate = 0.8, mutation rate = 0.2

• Experiment 2: crossover rate = 0.1, mutation rate = 0.9

4.7. Hyperparameter optimization using Genetic Algorithms 63

The results showed that the settings for the rates in experiment 2 yielded better performing neural networks.
Experiment 1 showed a more converged solution, although to a local minimum. The high mutation rate in
experiment 2 ensured a more thorough exploration for possibly better solutions, showing a less converged
solution, yet the best found individual performed better in this experiment.

In this project the crossover rate will be set to 0.1 and the mutation rate is set to 0.9. This high mutation rate
may mean that the algorithm does not really converge to one solution, but it does result in a more thorough
exploration of alternative neural networks. It is considered more important to find a best solution from many
varied individuals, instead of the algorithm converging to one single solution only. The best hyperparameters
for the ANN are selected based on the very best individual from all generations.

Tournament size The size of each group of selected competitors is called the tournament size. The tour-
nament size should have a reasonable proportion to the population size. Simply setting the tournament size
equal to the population size would imply that in each tournament, the single best individual of the entire
generation would be selected, in which the offspring would contain copies of one single individual only. This
will lead to an insufficient variety in the gene pool of the offspring. On the other hand, too low a tournament
size would allow weak individuals to win a tournament and pass on their genes to the next generation.

The tournament size in this project is set equal to 10, which is 25% of the population size.

Elite portion In order to avoid the chance of the best individuals not being chosen for competition, elitism
is applied in this project.

The elite portion is set equal to a value of 0.1, meaning that the top 10% of a generation is always selected to
pass to the next generation.

4.7.3. Custom functions
Fitness function For evaluation of the fitness of an individual, a custom evaluation function is defined in
the Pyhton script. This function takes the genes of the individual as input, and returns the fitness value of the
individual.

In the context of this project, the genes are the hyperparameters of the ANN as demonstrated in Section 4.7.1.
The fitness value of the individual is equal to the mean cross validation loss. The mean cross validation loss is
computed by applying K-fold cross validation which is treared in Section 4.6.4.

64 4. Approach

Initialize population of
ANN’s

Apply K-fold
cross-validation to each

ANN

Generation number > 5? Stop algorithm

Selection of best
performing ANN’s for next

generation
Best ANN hyperparameters

Crossover

Mutation

Yes

No

Figure 4.11: Flowchart vizualizing the hyperparameter optimization for neural networks using a genetic algorithm and K-fold cross
validation

4.8. Other methods for predictive modeling
The accuracy of the predictions performed by the Artificial Neural Networks are compared with the accuracy
of predictions performed by three interpolation techniques. Two of these interpolation techniques are avail-
able options in ANSYS for constructing a Response Surface. The first one is Kriging interpolation, which is
a commonly used method in geostatistics. The second one is quadratic interpolation, which is the standard
option for constructing the Response Surface in ANSYS. Next to quadratic interpolation, also cubic inter-
polation is performed, which is basically the same technique as quadratic interpolation, although up to a
higher degree polynomial. Cubic interpolation is not an available interpolation technique in ANSYS but it is
included in this study to make a more thorough comparison. Each of the methods is briefly discussed in the
following sections.

4.8.1. Kriging interpolation
Kriging interpolation, also called Gaussian Process Regression is a method of interpolation which finds its
origin in geostatistics. Figure 4.12 shows an example of Kriging interpolation. The top surface represents the
actual prediction over the full domain of the problem. Not only is the method capable of interpolation, the

4.8. Other methods for predictive modeling 65

accuracy of prediction can also be computed. This can be seen in the bottom surface of Figure 4.12 where the
white spots correspond to the actual data points. The red regions indicate a higher probability of prediction
error. The interpolation technique fits exactly through the data points. Therefore, the error in these data
points is always equal to zero.

The exact theoretical background is not discussed here. A brief introduction of the theory on Kriging interpo-
lation can be found on [17] A more in-depth explanation on the theory can be found in the article [28].

Figure 4.12: 2D vizualization of a prediction surface created with Kriging interpolation. The bottom plot shows the error estimate of the
interpolation. [4]

While the applications in geostatistics generally involve predictions in a 2D space, the method is also applica-
ble in more dimensions. In this project, the method is implemented using an open-source Python package,
specifically designed for this task. It is included in the powerful Sci-kit Learn library, containing many func-
tions and packages used in machine learning and data science. The class is called GaussianProcessRegressor
(GPR) and the documentation can be found on [27].

In this project, the GPR is fitted to the exact same data as used for training the Artificial Neural Networks in
order to make an exact comparison. The settings for the GPR are left at their default state.

4.8.2. Polynomial interpolation
Polynomial interpolation is a well-known method for fitting a curve through data points. In this project, two
Python classes from the Sci-Kit Learn library are used in combination to create polynomial interpolations.
These classes can be used for both quadratic and cubic interpolation.

First, a set of polynomial features is constructed which contains all possible polynomial combinations of the
variables up to the degree as specified. Then, linear regression is performed in order to determine the values
of the coefficients such that the Mean Squared Error is minimized.

Example
Consider a 2-dimensional problem with the two variables x1 and x2. A polynomial to the degree 2 is to be
constructed for this problem. First, a set polynomial features up to the degree 2 is created. This is done using
the Python class PolynomialFeatures [6]. This will yield a set of 6 terms as shown in (4.2).

f (x1, x2) = a1 · x2
1 +a2 · x1 +a3 · x1x2 +a4 · x2

2 +a5 · x2 +a6 (4.2)

The unknown terms ai are then solved by means of linear regression. The method is based on ordinary least
squares regression, aiming at minimizing the Mean Square Error.

5
Results and discussion

5.1. Computational efforts
This section will give a very brief overview of the computational efforts that were required to generate the
data and to train and optimize the neural networks.

The total amount of time required for creation of a single predictive model in the form of a neural network,
following the methodology as presented in Chapter 4, is composed of the following elements.

1. Creation of the parametric model:
Setting up an FE model parametrically takes slightly more time and attention than setting up a normal
FE model. This is mostly due to the rule based procedures and logic that requires time to implement.

2. Generation of training data:
The amount of time required for the generation of training data is highly dependent on the nature of
the analysis. Within the created framework, a single linear FE analysis took approximately 1 second
when running in batch mode. Running 160 linear analyses only took 4 minutes.

Geometrical nonlinear analyses took between 1 to 5 minutes in general, depending on the amount of
elements and the convergence behaviour of the analysis. Running 320 nonlinear FE analyses took a
little more than 9 hours in total, resulting in an average of 1.7 minutes per analysis.

Keep in mind that the sole purpose of the linear analyses was to experiment with neural networks on
a simplified problem. The benefits of creating neural networks are less applicable to linear analyses,
since these can be performed very quickly. The time reduction of producing output using a neural
network compared to an actual FE analysis is less pronounced than in case of nonlinear analyses.

3. Hyperparameter optimization:
The hyperparameter optimization process involves 5-fold cross-validation of approximately 200 neural
networks in the genetic algorithm as described in Section 4.7. This is equivalent of approximately 1000
training sessions of a neural network. This process took approximately 3 hours for finding an optimal
neural network architecture for a single dataset. For datasets with 256 training samples corresponding
to projects 3-1-2-3 and 3-1-2-4, containing data of maximum stresses in the plate and stiffeners respec-
tively, this optimization process took a little more than 5 hours. When introducing parallel processing,
as described in Section 5.5, the computational time needed for the genetic algorithm for these datasets
were reduced to only 1 hour and 35 minutes.

4. Training of the final neural network:
The training time of a single neural network itself was found to be relatively short, with training times
ranging from 10 to 60 seconds.

The time required for fitting of the standard interpolation techniques to the data is negligible. This step took
no more than 1 second.

67

68 5. Results and discussion

5.2. Comparison of accuracies predictive models
In this section, an overview will be given where the accuracies of the neural networks are compared to the
accuracies of the other interpolation techniques. The datasets are split up for each mechanical model.

5.2.1. Comparison accuracies mechanical model 1
This section shows the resulting accuracies for model 1. Figure 5.2 shows two plots comparing the prediction
accuracy of all predictive models for a series of datasets. Both plots have the series of datasets (15 sets in
total) on the horizontal axis. These datasets all belong to the simplified mechanical model number 1 and
are all predictions on the test datasets. So the plotted accuracies/errors are those related to data that the
predictive models were not trained on.

Both plots in Figure 5.2 show that up to and including dataset number 7, the Artificial Neural Networks out-
perform the other predictors. The top plot shows that the RMSE suddenly drops for all predictors after dataset
number 8. This can be explained by the fact that extra input parameters are added at this point: The di-
mensions of the flanges of the longitudinal T-stiffeners are included in these models. This introduces higher
bending stiffnesses in the structure for all subsequent datasets, reducing the average maximum deflection
and also reducing the possible absolute errors.

Therefore, the bottom plot is included plotting the value of the coefficient of determination R2 on the vertical
axis. This accuracy measure is scale independent and therefore is more suitable to compare the accuracies.
The closer the value to 1, the better the accuracy. Values below 0.5 are not shown in the plot for better visual-
ization.

In this bottom plot it is clear that the value of R2 is higher for the neural networks for all datasets except for set
number 8. This number corresponds to the dataset for mechanical model 1 with 6 free input parameters and
128 training data points. It is interesting to note that at exactly this point with the highest number of training
data (128 training points), the neural network performs worse than the other predictors.

Dataset number 8 Scatter plots belonging to predictions of this particular dataset are shown in Figure 5.3.
It is clearly visible that both the predictions belonging to training data and testing data deviate a lot from the
true value for the ANN. Yet this is the only dataset for mechanical model 1 where the neural network performs
worse than the others. A value of R2 = 0.88 as the lowest value is very promising.

Scatter plots dataset 14 Dataset number 14 belongs to the model with the highest amount of input pa-
rameters and 128 training datapoints. See Figure 5.4 for the scatterplots belonging to the predictions on this
dataset. Here it is clearly visible that the neural network makes the best predictions. It does not perform best
on the training data, represented by the blue dots. This is because Kriging exactly interpolates through the
training dots. The neural network does outperform the other predictors on the test data, which is is the most
important feature of a predictive model.

Concluding remark about predictions on mechanical model 1 The plots in Figure 5.2 shows that the neu-
ral networks perform better on all but one dataset. Furthermore, the accuracies of the neural network look
more stable among the different datasets. The other interpolation techniques often have values of R2 below
0.5, whereas for the neural networks, this value is above 0.88 for all datasets.

5.2. Comparison of accuracies predictive models 69

Dataset Project Num. Num. variables Num. training samples Output parameter

0 1-1-1-1 4 32 ux,max

1 1-1-1-1 4 64 ux,max

2 1-1-1-1 4 128 ux,max

3 1-2-1-1 5 32 ux,max

4 1-2-1-1 5 64 ux,max

5 1-2-1-1 5 128 ux,max

6 1-3-1-1 6 32 ux,max

7 1-3-1-1 6 64 ux,max

8 1-3-1-1 6 128 ux,max

9 1-4-1-1 7 32 ux,max

10 1-4-1-1 7 64 ux,max

11 1-4-1-1 7 128 ux,max

12 1-5-1-1 8 32 ux,max

13 1-5-1-1 8 64 ux,max

14 1-5-1-1 8 128 ux,max

Figure 5.1: Overview of datasets and their contents belonging to the analyses of mechanical model 1

70 5. Results and discussion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5

10

15

20

25

30
R

o
o

tM
ea

n
Sq

u
ar

ed
E

rr
o

r
[m

m
]

Comparison accuracy of fitting methods for each dataset of model 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

Dataset number

C
o

ef
fi

ci
en

to
fd

et
er

m
in

at
io

n
(R

2
)

[-
]

ANN Kriging Polynomial degree 2 Polynomial degree 3

Figure 5.2: Comparison of accuracies of prediction on test data for all datasets of model 1. Model 1 is the simplified mechanical model
with maximum plate deflection as output parameter. Each tick on the horizontal axis represents a single dataset belonging to that model.
See Table 5.1. On the vertical axes are shown two different error metrics.

5.2. Comparison of accuracies predictive models 71

0 20 40 60

0

20

40

60

P
re

d
ic

te
d

va
lu

e
(m

m
)

ANN

0 20 40 60

0

20

40

60

Kriging

0 20 40 60

0

20

40

60

True value (mm)

P
re

d
ic

te
d

va
lu

e
(m

m
)

Polynomial degree 2

0 20 40 60

0

20

40

60

True value (mm)

Polynomial degree 3

Train data
Test data

True value

Figure 5.3: Comparison of scatterplots for individual predictors on dataset number 8 of model 1. The Artificial Neural Network performs
worse than the other predictive models.

72 5. Results and discussion

0 5 10 15 20 25 30

0

5

10

15

20

25

30
P

re
d

ic
te

d
va

lu
e

(m
m

)

ANN

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Kriging

0 5 10 15 20 25 30

0

5

10

15

20

25

30

True value (mm)

P
re

d
ic

te
d

va
lu

e
(m

m
)

Polynomial degree 2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

True value (mm)

Polynomial degree 3

Train data
Test data

True value

Figure 5.4: Comparison of scatterplots for individual predictors on dataset number 14 of model 1. The Artificial Neural Network performs
best on the training data. In the right tail of the spectrum the predictions are slightly underestimated.

5.2.2. Comparison accuracies mechanical model 2
In Figure 5.6 the accuracies of the predictions on test data for mechanical model 2 are compared. The dif-
ference in performances in this figure looks less pronounced than for the mechanical model 1 in Figure 5.2.
Up to dataset number 6, the neural networks perform better than the other interpolation techniques. But
from that point on, the neural networks are either more accurate, or approximately equally accurate as the
other interpolation techniques. The only dataset where the neural network performs significantly is dataset
number 6, where Kriging interpolation works better. At dataset number 12, all predictive models have a very
low coefficient of determination. This dataset corresponds to model 2 with the highest number of input pa-
rameters (8 variables) and only 32 training data samples. This is also the first model where the vertical stress
σzz is introduced.

Overall it can be seen that also in these plots, the accuracies of the neural networks are more stable among
the different datasets than for the other interpolation techniques. With the extremity of dataset number 12
excluded, all predictions with neural networks have a coefficient of determination of at least 0.7.

5.2. Comparison of accuracies predictive models 73

Dataset number 12 As already pointed out, all predictive models performed badly on dataset number 12.
When looking at the scatterplots in Figure 5.7, we can clearly see that something very strange happens. The
predictions of the neural network on the test data are roughly as close to the true values as do the other
interpolations. But the predictions on the training data show a significant difference. These predictions do
not correlate at all with the true values.

When looking at the convergence plot of the training process of the neural network in Figure 5.8 we can see
that the training loss is bigger than the validation loss during the entire training process, while this usually
would be the other way around. This plot is in accordance with the observations in the corresponding scat-
terplot.

Dataset number 14 Dataset number 14 belongs to the model with the highest amount of input parameters
and 128 training datapoints. See Figure 5.9 for the scatterplots belonging to the predictions on this dataset.
According to the overview plot in Figure 5.6 the differences in accuracies on this dataset are relatively small.
This is also visible in the scatterplots. Kriging interpolation and the 3r d degree polynomial interpolation
again perform best on the training data, yet the performance on the testing data is slightly better for the
neural networks.

Dataset Project Num. Num. variables Num. training samples Output parameter

0 2-1-1-1 4 32 λ1

1 2-1-1-1 4 64 λ1

2 2-1-1-1 4 128 λ1

3 2-2-1-1 5 32 λ1

4 2-2-1-1 5 64 λ1

5 2-2-1-1 5 128 λ1

6 2-3-1-1 6 32 λ1

7 2-3-1-1 6 64 λ1

8 2-3-1-1 6 128 λ1

9 2-4-1-1 7 32 λ1

10 2-4-1-1 7 64 λ1

11 2-4-1-1 7 128 λ1

12 2-5-1-1 8 32 λ1

13 2-5-1-1 8 64 λ1

14 2-5-1-1 8 128 λ1

Figure 5.5: Overview of datasets and their contents belonging to the analyses of mechanical model 2

74 5. Results and discussion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

200

300

400

500
R

o
o

tM
ea

n
Sq

u
ar

ed
E

rr
o

r
[-

]

Comparison accuracy of fitting methods for each dataset in model 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

1

Dataset number

C
o

ef
fi

ci
en

to
fd

et
er

m
in

at
io

n
(R

2
)

[-
]

ANN Kriging Polynomial degree 2 Polynomial degree 3

Figure 5.6: Comparison of accuracies of prediction on test data for all datasets of model 1. Model 1 is the simplified mechanical model
with maximum plate deflection as output parameter. Each tick on the horizontal axis represents a single dataset belonging to that model.
See Table 5.5. On the vertical axes are shown two different error metrics.

5.2. Comparison of accuracies predictive models 75

0 500 1,000 1,500

0

500

1,000

1,500

P
re

d
ic

te
d

va
lu

e
(-

)
ANN

0 500 1,000 1,500

0

500

1,000

1,500

Kriging

0 500 1,000 1,500

0

500

1,000

1,500

True value (-)

P
re

d
ic

te
d

va
lu

e
(-

)

Polynomial degree 2

0 500 1,000 1,500

0

500

1,000

1,500

True value (-)

Polynomial degree 3

Train data
Test data

True value

Figure 5.7: Comparison of scatterplots for individual predictors on dataset number 12 of model 2. The coefficient of determination for
the training data R2 =−0,035484122 which is remarkably bad.

76 5. Results and discussion

0 500 1,000 1,500 2,000 2,500

0

1

2

3

4

·105

Epoch

Lo
ss

(M
SE

)
[-

]

Convergence plot ANN for dataset number 6

Training loss
Validation loss

Figure 5.8: Convergence plot of the training process on dataset number 12. Although it looks stable, we see that the training loss is bigger
than the validation loss during the entire training process. Also in the end the losses are increasing.

5.2. Comparison of accuracies predictive models 77

0 500 1,000 1,500

0

500

1,000

1,500

P
re

d
ic

te
d

va
lu

e
(-

)
ANN

0 500 1,000 1,500

0

200

400

600

800

1,000

1,200

1,400

Kriging

0 500 1,000 1,500

0

500

1,000

1,500

True value (-)

P
re

d
ic

te
d

va
lu

e
(-

)

Polynomial degree 2

0 500 1,000 1,500

0

500

1,000

1,500

True value (-)

Polynomial degree 3

Train data
Test data

True value

Figure 5.9: Comparison of scatterplots for individual predictors on dataset number 14 of model 2. Accuracy of ANN is approximately
equal to Kriging and 2nd degree interpolation

5.2.3. Comparison accuracies mechanical model 3
In Figure 5.11 the accuracies of the predictions on test data for mechanical model 3 are compared. Here, no
plot is included comparing the RMSE, since the predicted output values are different among different datasets
See Table 5.10 for reference of the dataset numbers. All output values are results of nonlinear FE analyses.

The predictions appear to be less accurate when comparing to mechanical models 1 and 2. This could be due
to the fact that the data are based on nonlinear analyses. But it must also be noted that all data for model 3 are
dependent on 13 design variables, where the amount of variables for models 1 and 2 was not higher than 8.
The relation between prediction accuracy and the number of design variables is discussed further in Section
5.4.

We can see the same phenomenon occurs for predictions on model 3, that the accuracies of the neural net-
works are far more stable than the other interpolation techniques. The coefficient of determination never
drops below 0.58, while the others regularly drop below 0.5.

78 5. Results and discussion

Predictions of maximum stresses Datasets 0-2 and 6-11 belong to predictions made on maximum stresses
in the FE model. Sets 0, 1, 2 contain the output stresses of the complete FE model, whereas the other datasets
only contain stresses in either the skin plate or longitudinal stiffeners, both excluding the region close to the
columns. The neural networks show more accurate predictions on all of these stress datasets, apart from
dataset number 1. On this dataset, Kriging interpolation performs slightly better.

The predictions on maximum stresses in the skin plate, with the regions close to the column excluded, are
represented by datasets number 6,7 and 8. We can see that these are by far the most accurate among all stress
predictions.

The predictions on the maximum stresses in the stiffeners in datasets 9, 10 and 11 are also slightly more
accurate than the predictions on the maximum stresses in the complete mechanical model. This indicates
that it can be beneficial to focus on restricted regions to read out stresses, in order to obtain a higher accuracy.

Predictions of maximum deflections It was expected that the predictions on maximum deflection would
be more accurate than the predictions of maximum stresses, due to the irregular nature of the location and
occurrence of stress peaks in the FE model. However, this is not the case. Both dataset 3 and 5 show very bad
results. Dataset 4, trained with 128 data samples, performs best. It is remarkable that these predictions are
more accurate than on dataset 5, while the results from dataset 4 are from a neural network that was trained
with only half the amount of data.

Figures 5.12 and 5.13 show the scatterplots belonging to predictions on dataset 4 and 5 respectively. In the
first figure, it is clearly visible that the neural network predicts the most accurate on the test data. In Figure
5.13, we can observe a very strange behaviour in the predictions. The predicted value seems bounded by an
upper value of 20 mm deflection, and a strange curve can be observed below it. Let us take a closer look on
the convergence plot of the training process in Figure 5.14. Here we can see a very unstable training process.
with sharp alternating values in both training and validation loss. Such a result is not acceptable. This can
be an indication that the genetic algorithms that are deployed to optimize the hyperparameters of the neural
networks do not always converge to the most stable neural networks.

Dataset Project Num. Num. variables Num. training samples Output parameter

0 3-1-2-1 13 64 σmax,al l

1 3-1-2-1 13 128 σmax,al l

2 3-1-2-1 13 256 σmax,al l

3 3-1-2-2 13 64 ux,max

4 3-1-2-2 13 128 ux,max

5 3-1-2-2 13 256 ux,max

6 3-1-2-3 13 64 σmax,pl ate,mi d

7 3-1-2-3 13 128 σmax,pl ate,mi d

8 3-1-2-3 13 256 σmax,pl ate,mi d

9 3-1-2-4 13 64 σmax,st i f f .,mi d

10 3-1-2-4 13 128 σmax,st i f f .,mi d

11 3-1-2-4 13 256 σmax,st i f f .,mi d

12 3-1-2-5 13 64 λ1

13 3-1-2-5 13 128 λ1

14 3-1-2-5 13 256 λ1

Figure 5.10: Overview of datasets and their contents belonging to the analyses of mechanical model 3

5.2. Comparison of accuracies predictive models 79

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.5

0.6

0.7

0.8

0.9

Dataset number

C
o

ef
fi

ci
en

to
fd

et
er

m
in

at
io

n
[-

]
Comparison accuracy of fitting methods for each dataset in model 3

ANN Kriging Polynomial degree 2 Polynomial degree 3

Figure 5.11: Comparison of accuracies of prediction on test data for all datasets of model 3. Each tick on the horizontal axis represents a
single dataset belonging to that model. See Table 5.10. Only the coefficient of determination is shown since the units are different among
the datasets.

80 5. Results and discussion

0 10 20 30 40 50

0

10

20

30

40

50
P

re
d

ic
te

d
va

lu
e

(m
m

)

ANN

0 10 20 30 40 50

0

10

20

30

40

50

Kriging

0 10 20 30 40 50

−50

0

50

True value (mm)

P
re

d
ic

te
d

va
lu

e
(m

m
)

Polynomial degree 2

0 10 20 30 40 50
−10

0

10

20

30

40

50

True value (mm)

Polynomial degree 3

Train data
Test data

True value

Figure 5.12: Comparison of scatterplots for individual predictors on dataset number 4 of model 3. Outputparameter is maximum deflec-
tion ux,max . Although trained on less training samples than dataset number 5 in Figure 5.13, its performance is a lot better.

5.2. Comparison of accuracies predictive models 81

0 10 20 30 40 50
−10

0

10

20

30

40

50

60
P

re
d

ic
te

d
va

lu
e

(m
m

)
ANN

0 10 20 30 40 50

0

10

20

30

40

50

Kriging

0 10 20 30 40 50

0

10

20

30

40

50

60

True value (mm)

P
re

d
ic

te
d

va
lu

e
(m

m
)

Polynomial degree 2

0 10 20 30 40 50
−10

0

10

20

30

40

50

60

True value (mm)

Polynomial degree 3

Train data
Test data

True value

Figure 5.13: Comparison of scatterplots for individual predictors on dataset number 5 of model 3. Neural network performs worse while
trained on more training samples than dataset 4. A very strange pattern can be observed in the scatter data.

82 5. Results and discussion

0 500 1,000 1,500 2,000 2,500 3,000

50

100

150

Epoch

Lo
ss

(M
SE

)
[-

]

Convergence plot ANN for dataset number 6

Training loss
Validation loss

Figure 5.14: Convergence plot of the training process on dataset number 5. The losses show a very unstable pattern.

5.3. Analyses of errors predictions Artificial Neural Networks
This section presents a number of histograms providing insight in the distribution of errors of predictions of
the best found neural networks on test data. Each figure shows two plots. The left plot shows the frequency
distribution of absolute errors of the predictions on test data. The right plots shows the relative errors in
percentage.

Section 5.3.1 presents some error plots of the simplified mechanical models 1 and 2. In Section 5.3.2, the
error plots corresponding to the main mechanical model 3 are presented.

Since there are 45 datasets and therefore 45 predictions on test data, only a handful of error distributions will
be shown.

5.3.1. Error analysis simplified mechanical models 1 and 2
Simplified model 1 Figure 5.15 shows the errors corresponding to the predictions on test data of the sim-
plest model, namely model number 1 with only 4 design variables. The output parameter is the maximum
deflection of the stiffened plate ux,max . The absolute errors almost exclusively fall between the range of ± 1.5
mm, apart from one prediction which has an error of -9 mm. The right plot shows that the majority of the
predictions have a relative error in the range ± 5 %, which seems very reasonable. Four predictions underes-
timate the value with more than 5% error. This does not necessarily mean a bad prediction. The minimum
value of ux,max in the test data is equal to 1.4 mm. A relative error of -17 % in this case would mean a predicted
value of 1.69 mm.

Figure 5.16 shows the error of predictions on test data of project 1-5-1-1, which has the highest number of
variables for this simplified model, namely 8 free input parameters. The absolute errors show a nice normal
distribution with the mean value around 0 mm error. The absolute errors mostly fall within the range of ± 0.5
mm. This looks like lower errors compared to project 1-1-1-1, but it can be explained by the fact that in this
model, flanges are included to the longitudinal stiffeners, increasing the stiffness of the structure. The mean
value of the deflections is only 5.34 mm, compared to 13.24 mm. The right plot shows higher relative errors.
The minimum value of the true output is only 0.65 mm as compared to 1.4 mm in project 1-1-1-1, which can
explain the greater relative errors.

5.3. Analyses of errors predictions Artificial Neural Networks 83

−10 −8 −6 −4 −2 0

0

5

10

15

20

Absolute error ux,max (mm)

Fr
eq

u
en

cy

−15 −10 −5 0 5

0

2

4

6

Relative error in %

Figure 5.15: Error distribution histograms on test data corresponding to dataset 2 of mechanical model 1

−1.5 −1 −0.5 0 0.5 1

0

5

10

Absolute error ux,max (mm)

Fr
eq

u
en

cy

−15 −10 −5 0 5 10 15

0

2

4

Relative error in %

Figure 5.16: Error distribution histograms on test data corresponding to dataset 14 of mechanical model 1

Simplified model 2 Figure 5.18 shows the error distributions for project 2-5-1-1, which corresponds to the
eigenvalue analyses with 8 free input parameters. The output values are dimensionless load factors λ1 corre-
sponding to the first buckling mode. Here the absolute values of the errors are less normally distributed and
range between ± 100, while the mean value of the true outputs is λ1 = 545.5. The relative errors are between
the ranges ± 15% and include extremities up to 60%. These are do not appear to be very accurate predictions.

On the other hand, the plots in Figure 5.17 show a much more concentrated range of errors. These predictions
correspond to project 2-1-1-1, eigenvalue buckling with 4 free input parameters. While the mean value is
approximately the same with a value of 517.80, the absolute errors in these predictions are a lot smaller,
ranging only between ± 50. This improvement is also visible in the relative errors.

84 5. Results and discussion

−50 0 50 100 150

0

2

4

6

8

Absolute error load factor λ (-)

Fr
eq

u
en

cy

−5 0 5 10 15

0

2

4

6

Relative error in %

Figure 5.17: Error distribution histograms on test data corresponding to dataset 2 of mechanical model 2

−100 −50 0 50 100

0

1

2

3

4

Absolute error load factor λ (-)

Fr
eq

u
en

cy

−60 −40 −20 0 20 40

0

2

4

6

Relative error in %

Figure 5.18: Error distribution histograms on test data corresponding to dataset 14 of mechanical model 2

5.3.2. Error analysis main mechanical model 3
In this subsection, the prediction errors on test data for the main mechanical model are presented. All results
in these project were obtained by nonlinear analyses. Refer to Table 5.10 for the different output parameters
for each of the predictions. Figures 5.19, 5.20 and 5.21 correspond to predictions of maximum stresses, Figure
5.22 and Figure 5.23 correspond to the prediction of maximum deflection ux,max , the first one being trained
with more training data samples.

Maximum stresses The maximum stresses were extracted from different regions of the structure in order to
try to filter out the peak stresses.

• Figure 5.19: The maximum stress of the entire structure

• Figure 5.20: The maximum stress in the skin plate, without the region close to the column

• Figure 5.21: The maximum stress in the longitudinal stiffeners, without the region close to the column

5.3. Analyses of errors predictions Artificial Neural Networks 85

The predictions on maximum stresses in the regions without the columns were expected to be more accurate
than the case in which the entire structure is included. This is not directly visible in the three plots when
looking at the relative errors. When looking at the absolute errors however, bigger differences are visible. The
maximum errors are in the range ± 100 MPa whereas in the other 2 predictions this is mainly between ± 50
MPa.

Also, when looking at the comparative plot in Figure 5.11 of Section 5.2.3, the datasets corresponding to the
maximum stresses in the restricted regions, show more accurate predictions than for the predictions predict-
ing the stresses in the total structure, with values R2 > 0.8. for most of the predictions. This more refined
extraction of maximum stresses appears to have a positive effect on the accuracy.

−100 0 100

0

2

4

6

8

Absolute error σmax,al l (MPa)

Fr
eq

u
en

cy

−20 0 20 40

0

2

4

6

8

10

12

Relative error in %

Figure 5.19: Error distribution histograms on test data corresponding to dataset 2 of mechanical model 3

−100 −50 0 50 100

0

2

4

6

8

Absolute error σmax,pl ate,mi d (MPa)

Fr
eq

u
en

cy

−20 −10 0 10 20

0

2

4

6

8

Relative error in %

Figure 5.20: Error distribution histograms on test data corresponding to dataset 8 of mechanical model 3

86 5. Results and discussion

−50 0 50 100 150

0

2

4

6

8

10

12

Absolute error σmax,st i f f ener,mi d (MPa)

Fr
eq

u
en

cy

−20 0 20 40

0

5

10

Relative error in %

Figure 5.21: Error distribution histograms on test data corresponding to dataset 11 of mechanical model 3

Maximum deflection The predictions of the maximum deflections ux,max for the nonlinear analyses show
very big errors in Figure 5.22. The expectation was that predictions on the deflection would be more accurate
than the predictions of the stresses, considering the irregular occurrences of stress concentrations.

When looking at Figure 5.23 however, the errors are much lower, while this neural network was trained on 128
samples instead of 256. This unexpected behaviour of larger errors while trained on more data is observed
more often. More about this can be found in Section 5.4

−10 −5 0 5

0

2

4

6

8

Absolute error ux,max (mm)

Fr
eq

u
en

cy

−150 −100 −50 0 50 100 150

0

2

4

6

8

10

Relative error in %

Figure 5.22: Error distribution histograms on test data corresponding to dataset 5 of mechanical model 3

5.4. Influencing parameters on accuracy 87

−4 −2 0 2 4

0

2

4

6

Absolute error ux,max (mm)

Fr
eq

u
en

cy

−60 −40 −20 0 20 40 60

0

2

4

Relative error in %

Figure 5.23: Error distribution histograms on test data corresponding to dataset 4 of mechanical model 3

5.4. Influencing parameters on accuracy
This section discusses the influence of the amount of free input variables and the amount of training on
the prediction accuracies of the neural networks. Section 5.4.1 will treat the dependence of accuracy on the
number of training samples. The dependence on the amount of free input variable is discussed in Section
5.4.2.

5.4.1. Relation accuracy to number of training data samples
See the histograms in Figure 5.24, Figure 5.25 and Figure 5.26. The histograms correspond to mechanical
models 1, 2 and 3 respectively. The bars in the histograms are distributed in groups of 3. In case of model 1
and 2, each group of bars corresponds to 3 datasets for a fixed number of free input variables and a varying
number of training samples. In case of model 3, each group of bars corresponds to a specific output value
(refer to Table 5.10). See the legend for the description.

In all figures, the top plot shows the coefficient of determination as a function of the number of training
samples. The bottom plot shows the values of the Root Mean Squared Error (RMSE). One would expect to
see an increase of R2 for increasing number of training samples and a decrease in RMSE. This is not very
pronounced in the figures. There does not seems to be a very significant increase in accuracy for increas-
ing number of training samples. Sometimes, neural networks even perform worse for increasing number of
training data.

But, according to the histograms with R2 on the vertical axis, the networks trained on the maximum num-
ber of training data (128 samples) almost always perform better than the networks trained on the minimum
number of training data (32 samples). The exceptions are the predictions on the mechanical model 1 with 6
free parameters and mechanical model 3 for the prediction of σmax,al l . The network trained on 128 performs
a lot worse than the networks trained on 32 and 64 samples.

The predictions of mechanical model 1 with 6 free parameters appears to be the dataset number 8 discussed
in Section 5.2.1. This was the only time that the neural network performed worse than the interpolation
techniques for mechanical model 1. The convergence plot of the training process showed a very unusual
pattern, where the training loss was always higher than the testing loss. This is a clear example of a case
where the genetic algorithm converged to a far from optimal neural network.

The histograms in Figure 5.25 are more in correspondence with the expectation that the networks trained
on 128 samples perform better than the networks trained on 32 samples. The performance of the networks
trained on 64 samples varies, either performing better or worse than the networks trained on 128 samples.

88 5. Results and discussion

4 5 6 7 8

0.88

0.9

0.92

0.94

0.96

0.98

1
C

o
ef

fi
ci

en
to

fd
et

er
m

in
at

io
n

R
2

Error metrics ANN on test data model 1 for varying number of training samples

4 5 6 7 8

0

1

2

3

4

Number of free variables

R
o

o
tM

ea
n

Sq
u

ar
ed

E
rr

o
r

(R
M

SE
)

[m
m

]

32 Training samples 64 Training samples 128 Training samples

Figure 5.24: Histogram showing varying accuracy of predictions neural networks on results of model 1 for varying number of training
samples

5.4. Influencing parameters on accuracy 89

4 5 6 7 8

0.2

0.4

0.6

0.8

1

C
o

ef
fi

ci
en

to
fd

et
er

m
in

at
io

n
R

2
Error metrics ANN on test data model 2 for varying number of training samples

4 5 6 7 8

50

100

150

200

250

300

Number of free variables

R
o

o
tM

ea
n

Sq
u

ar
ed

E
rr

o
r

(R
M

SE
)

[-
]

32 Training samples 64 Training samples 128 Training samples

Figure 5.25: Histogram showing varying accuracy of predictions neural networks on results of model 2 for varying number of training
samples

90 5. Results and discussion

σmax,al l ux,max,al l σmax,pl ate,mi d σmax,st i f f .,mi d λ1

0.6

0.7

0.8

0.9
C

o
ef

fi
ci

en
to

fd
et

er
m

in
at

io
n

R
2

Error metrics ANN on test data model 3 for varying number of training samples

σmax,al l ux,max,al l σmax,pl ate,mi d σmax,st i f f .,mi d λ1

0

20

40

60

Number of free variables

R
o

o
tM

ea
n

Sq
u

ar
ed

E
rr

o
r

(R
M

SE
)

[-
]

64 Training samples 128 Training samples 256 Training samples

Figure 5.26: Histogram showing varying accuracy of predictions neural networks on results of model 3 for varying number of training
samples

5.4.2. Relation accuracy to number of design variables
Figures 5.27 and 5.28 show the response of the accuracies as a function of the number of free input variables
for mechanical models 1 and 2 respectively. These plots are based on the same data as the previous figures,
although presented in a different way.

The bars in the histograms are distributed in 3 groups of 5. Each group corresponds to 5 datasets for a fixed
number of training samples and a varying number of input variables. See the legend for the description.

It is expected that the prediction accuracy decreases when the amount of design variables increases. But also
in these plots, this expectation is not very clearly visible. There is no clear relation to be discovered between
the dimensionality of the design and the accuracy of the predictions. Only in Figure 5.27, for the datasets with
64 training samples, the coefficient of determination seems to decrease.

5.4. Influencing parameters on accuracy 91

32 64 128
0.5

0.6

0.7

0.8

0.9

1

C
o

ef
fi

ci
en

to
fd

et
er

m
in

at
io

n
R

2
(-

)
Error metrics ANN on test data model 1 for varying number of training samples

32 64 128

0

1

2

3

4

Number of training samples

R
o

o
tM

ea
n

Sq
u

ar
ed

E
rr

o
r

(R
M

SE
)

(m
m

)

4 Variables 5 Variables 6 Variables 7 Variables 8 Variables

Figure 5.27: Histogram showing varying accuracy of predictions neural networks on results of model 1 for varying number of design
variables

92 5. Results and discussion

32 64 128
0.5

0.6

0.7

0.8

0.9

1
C

o
ef

fi
ci

en
to

fd
et

er
m

in
at

io
n

R
2

(-
)

Error metrics ANN on test data model 2 for varying number of training samples

32 64 128

50

100

150

200

250

300

Number of training samples

R
o

o
tM

ea
n

Sq
u

ar
ed

E
rr

o
r

(R
M

SE
)

(-
)

4 Variables 5 Variables 6 Variables 7 Variables 8 Variables

Figure 5.28: Histogram showing varying accuracy of predictions neural networks on results of model 2 for varying number of design
variables

5.5. Additional results
After obtaining and analyzing the results as described in the previous sections, this section will give an overview
of additional results obtained after applying some small modifications to the possible settings of the neural
networks and the addition of some simplified mechanical models.

Section 5.5.1 will explain the improvements made on the neural networks, and the results it yielded on some
existing datasets, Section 5.5.2 introduces some new mechanical models which are simplified. The results of
these new simple models is presented in Section 5.5.4.

5.5.1. Modifications on Neural Networks training
Some improvements have been applied to the process of the hyperparameter optimization for neural net-
works. The modifications are listed below.

5.5. Additional results 93

New predictions have been performed on the datasets of project 3-1-2-3 and 3-1-2-4 after applying these
modifications, to see whether the accuracies would improve on predicting the maximum equivalent stresses.
The results are shown in Section 5.5.3 Also predictions are made on new datasets with simplified models.
These new models are described in Section 5.5.2. The results are shown in Section 5.5.4.

• Increased possible number of hidden layers
The maximum possible amount of number of hidden layers is set to 4 instead of only one layer as used
previously. This allows for capturing more complex behaviour of a system. The number of neurons is
equal in each hidden layer.

• Removed the option for linear activation function
The genetic algorithms of the previous runs show that the linear activation function never yielded good
results. In order to avoid unnecessary evaluations of neural networks using linear activation functions,
this option has been removed. Furthermore, a neural network containing multiple hidden layers com-
bined with a linear activation function is equivalent to just a single-hidden layer neural network [1].
This makes it useless to apply multiple hidden layers.

• Removed option for Stochastic Gradient Descent (SGD) optimizing scheme
The results of the previous runs showed that the neural networks with SGD optimizers never yielded
good results. By removing this option, only optimizers with adaptive learning rates are used.

• Options for kernel initializers modified
Two possible methods for the initialization of the weight factors of the neural network are removed as
options: namely zero initialization and constant initialization. These options, where all weights have
the same value initially, can cause problems in the process of updating the weights during training. If
different neurons in the same hidden layer have the same initial weight factors, the gradient descent
algorithm will update all these weight factors with the same value. (Page 301 in [19]) In this way all
neurons will finally perform the exact same computations, resulting in a useless neural network not
able to map complex relations between input and output. A new list of possible initialization methods
is added. These can be found in the Python script in Appendix C.

• All bias matrices initialized as zeros
Previously, the bias matrices for the neural networks could be initialized from statistical distributions
like a random uniform distribution or a constant value for all bias values. These options are removed
and instead all bias matrices are initialized with values equal to 0. This is conform convention and
eliminates one hyperparameter to be optimized during the genetic algorithm. Zero initialization of
bias matrices is compatible with most weight initialization schemes (page 301 in [19]).

• Parallel processing
The genetic algorithm has been modified such, that multiple neural network configurations can be
trained at the same time. Up to 8 processes were computed in parallel, reducing the optimization
time from 5 hours and 10 minutes to only 1 hour 35 minutes (in case of project number 3-1-2-4). This
does not directly influence the accuracy, but more generations or larger populations of neural networks
could be generated, possibly resulting in finding a better neural network in the same amount of time.
However, the number of generations and the population size is kept the same.

5.5.2. Simplified models. Non-linear analyses of unstiffened plates
To see how the accuracy of the predictions can improve upon reducing the complexity of the models, some
additional tests have been performed on strongly simplified problems.

The problems involve unstiffened plates under uni-directional loading, applied incrementally using auto-
matic time stepping. The number of free variables was equal to either 1 or 4. All datasets contained 40 data
samples, of which 32 samples were used for training, and 8 samples for testing. Table 5.1 shows an overview
of the additional simplified problems. Table 5.2 lists the ranges of the parameter values. The same coordinate
system and symbol conventions are used as defined in the previous chapters.

• Geometry
The geometry is an unstiffened, rectangular, steel plate with a height hpl ate , a width wpl ate and a thick-
ness tpl ate .

94 5. Results and discussion

• Boundary conditions
The plate is simply supported along all edges. Due to symmetric geometry and loading conditions,
symmetric boundary conditions are applied just like the mechanical models 1, 2 and 3 described in the
previous sections.

• Loading
The plate is loaded (compressed) in one direction only (y-direction) which is applied directly as a dis-
placement onto the the plate edge.

• Mesh
The mesh size is set to 40 mm for all models

• Material
Models 4 are linear elastic. For model 5, the elastic-plastic material model from figure C.2 in the Eu-
rocode [9] is adopted. This is the third material model from Figure 3.17. The yield stress is equal to
355 MPa. The Young’s modulus, used to determine the slope of the stress-strain curve after the point of
yielding, is equal to 210 GPa.

• Initial geometrical imperfection: Instead of performing a linear eigenvalue analysis and applying the
first buckling mode shape as geometrical imperfection, a standard equivalent imperfection is applied
in order to guarantee that for each analysis, the same geometrical imperfection is applied. The im-
perfection shape corresponds to the global buckling shape of the plate as shown in Figure 3.15 from
the Eurocode [9] (second item). The amplitude is based on the dimensions of the plate and follows the
rules from Figure 3.14 [9]. Before analysis, the nodes of the plate are displaced according to a sinusoidal
shape. The implementation using the APDL commands can be found in Appendix J.

For the linear elastic models number 4, datasets with σeqv,max and Fy are used as output parameters. For
the elastic-plastic models numbers 5, datasets with the maximum equivalent mechanical strain εeqv,max and
Fy are used as output parameters. The outputparameter Fy is the reaction force in y-direction, where the
displacement is applied along the edge.

Proj. num. Num. Variables Variables Material Outputparameter

4-1-1-1 1 uy y Elastic σmax,pl ate

4-1-1-2 1 uy y Elastic Fy

4-2-1-1 4 hpl ate , wpl ate , tpl ate , uy y Elastic σmax,pl ate

4-2-1-2 4 hpl ate , wpl ate , tpl ate , uy y Elastic Fy

5-1-1-1 1 uy y Elastic-plastic εmax,pl ate

5-1-1-2 1 uy y Elastic-plastic Fy

5-2-1-1 4 hpl ate , wpl ate , tpl ate , uy y Elastic-plastic εmax,pl ate

5-2-1-2 4 hpl ate , wpl ate , tpl ate , uy y Elastic-plastic Fy

Table 5.1: Overview of project numbers, the corresponding input variables and the produced output variables

Proj. num. hp [mm] wp [mm] tp [mm] uy y [mm]

4-1-1-1 2000 1000 20 0.1, 1.5
4-1-1-2 2000 1000 20 0.1, 1.5
4-2-1-1 2000, 3000 1000, 2000 10, 20 0.1, 1.5
4-2-1-2 2000, 3000 1000, 2000 10, 20 0.1, 1.5
5-1-1-1 2000 1000 20 0.1, 25
5-1-1-2 2000 1000 20 0.1, 25
5-2-1-1 2000, 3000 1000, 2000 10, 20 0.1, 25
5-2-1-2 2000, 3000 1000, 2000 10, 20 0.1, 25

Table 5.2: Overview of project numbers and the ranges of the parameter values. Cells containing a single value imply a fixed value for
that parameter. Two values in a cell, separated by a comma, are the minimum and maximum values for that parameter. Note that these
value ranges are chosen purely for experimental use. It is not considered whether the resulting designs are sensible in terms of expected
efficiency or resistance.

5.5. Additional results 95

5.5.3. Results on existing datasets
Applying the modifications on the neural network optimization as described in Section 5.5.1, new predictions
are made on 2 existing datasets. These are the sets containing 320 data samples each, belonging to projects 3-
1-2-3 and 3-1-2-4, containing the output of maximum equivalent stress in the plate or stiffeners respectively.
The error histograms are shown in figures 5.29 and 5.30.

When comparing these histograms with the error plots in figures 5.20 and 5.21 from Section 5.3.2, the first
thing that can be noticed is that the error bars corresponding to the predictions after the improvements show
a slightly more compact bell shape. This in accordance with the results shown in the overview in Table 5.3.
The improved optimizations show more predictions to fall within the specified error range compared to be-
fore the improvements.

Although some improvements are visible, the differences are not very significant. The bars of the relative
errors in Figure 5.30 also show outliers as in the old case of Figure 5.21, with relative errors around 30 to 40 %.
Furthermore, although the majority of the 66 predictions have an absolute error smaller than 50 MPa, these
errors are still quite significant.

Num. relative errors Num. absolute errors
Project Settings <5% <10% <25 MPa <50 MPa

3-1-2-3
Old 23 49 39 55
New 29 54 38 58

3-1-2-4
Old 25 51 42 55
New 30 52 43 60

Table 5.3: Comparison of ranges of prediction errors on test data of projects 3-1-2-3 and 3-1-2-4 (320 samples, of which 66 test samples)
before and after improvements of the hyperparameter optimization. The numbers listed is the number of predictions on test data that
falls within the error range specified in the column header. ’Old’ or ’New’ settings refers to predictions before or after improvements of
the hyperparameter optimization.

−100 −50 0 50 100

0

2

4

6

8

10

Absolute error σmax,pl ate,mi d (MPa)

Fr
eq

u
en

cy

−10 0 10 20 30

0

2

4

6

8

Relative error in %

Figure 5.29: Error distribution histograms on test data of mechanical model 3 after applying improvements on the hyperparameter
optimization of the neural networks. The predictions are on the maximum equivalent stresses in the plate, with the regions neglected
that are close to the columns.

96 5. Results and discussion

−50 0 50 100

0

2

4

6

8

10

12

Absolute error σmax,st i f f ener,mi d (MPa)

Fr
eq

u
en

cy

−20 −10 0 10 20 30 40

0

2

4

6

8

10

Relative error in %

Figure 5.30: Error distribution histograms on test data of mechanical model 3 after applying improvements on the hyperparameter
optimization of the neural networks. The predictions are on the maximum equivalent stresses in the stiffeners, with the regions neglected
that are close to the columns.

5.5.4. Results accuracies unstiffened plates
In this section, the accuracies of predictions of the results of the simplified, unstiffened models are discussed.
The accuracies of the neural networks are only compared to Kriging interpolations, since these generally
performed better on small datasets compared to the polynomial interpolations. All datasets contain only 40
data samples, of which 8 samples are used for validation. Scatterplots are used to visualize the performance.
The true values are on the horizontal axis and the predictions are on the vertical axis. The closer the dots
to the line of true value, the more accurate the predictions. Refer to Table 5.1 for an overview of the project
numbering and their properties.

Observations scatterplots

• The scatterplots show that both the neural networks and Kriging interpolations perform equally well on
datasets with only one free variable. Almost all predictions are exactly on the line corresponding to the
true value. The execption is in the case of project 5-1-1-2 in Figure 5.36 where the Kriging predictions
of the reaction force Fy deviate a lot from the true value.

• In case of linear elastic models with 4 variables, both predictors perform approximately equal, as can
be seen in figures 5.33 and 5.34. In the last figure however the neural network performs slightly better,
again corresponding to the prediction of the reaction force Fy .

• When including non-linear material and 4 free variables, the neural networks perform significantly
better than Kriging interpolations. This is visible in figures 5.37 and 5.38. In this case, the Kriging
interpolation shows very strong deviations while the predictions of the neural networks are close to the
line of true values.

Next to visual inspection, the performance measures are compared for each dataset between predictions of
ANN and Kriging. These are summarized in Table 5.4. This table shows that the neural networks perform best
on all datasets of mechanical models 4 and 5.

5.5. Additional results 97

MSE R2

Proj num ANN Kriging ANN Kriging
4-1-1-1 0,30877 1,673915 0,999988 0,999935
4-1-1-2 4,3E-06 1,12E-05 0,999997 0,999991
4-2-1-1 98,53278 162,6066 0,998378 0,997324
4-2-1-2 0,005253 0,040592 0,998971 0,992053
5-1-1-1 7,87E-07 2,18E-06 0,999921 0,999782
5-1-1-2 8,97E-06 0,061075 0,999966 0,77046
5-2-1-1 0,002069 0,007116 0,756994 0,164023
5-2-1-2 0,062782 0,866804 0,904775 -0,31472

Table 5.4: Comparison of performance measures on all simplified datasets. For each dataset and performance measure, the best value
is in bold. The artificial neural network performs best on all datasets. The difference is most significant in dataset 5-1-1-2 and beyond.
MSE is the Mean Squared Error value of all predictions on test data. No unit is given since the units vary among the datasets. R2 is the
coefficient of determination.

Linear elastic models. 1 Free variable Figure 5.31 shows the scatter plot of dataset 4-1-1-1, with predictions
on the maximum equivalent stress in the plate. Figure 5.32 shows the scatter plot of dataset 4-1-1-2, with
predictions on the total reaction force.

0 200 400 600 800 1,000
0

200

400

600

800

1,000

True value (MPa)

P
re

d
ic

te
d

va
lu

e
(M

Pa
)

ANN

0 200 400 600 800 1,000
0

200

400

600

800

1,000

True value (MPa)

Kriging

Test data
True value

Figure 5.31: Comparison of scatterplots on dataset for project 4-1-1-1. Predicted output parameter isσmax,pl ate in MPa. The predictions
of both the ANN and Kriging interpolation lie exactly on the line. The two methods perform equally well on this dataset.

98 5. Results and discussion

2 4 6 8 10

2

4

6

8

10

True value (MN)

P
re

d
ic

te
d

va
lu

e
(M

N
)

ANN

2 4 6 8 10

2

4

6

8

10

True value (MN)

Kriging

Test data
True value

Figure 5.32: Comparison of scatterplots on dataset for project 4-1-1-2. The predicted output parameter is the total reaction force Fy in
MN along the loaded edge. The predictions of both the ANN and Kriging interpolation lie exactly on the line. The two methods perform
equally well on this dataset.

Linear elastic models. 4 Free variables Figure 5.33 shows the scatter plot of dataset 4-2-1-1, with predic-
tions on the maximum equivalent stress in the plate. Figure 5.34 shows the scatter plot of dataset 4-2-1-2,
with predictions on the total reaction force.

0 200 400 600 800 1,000

0

200

400

600

800

1,000

True value (MPa)

P
re

d
ic

te
d

va
lu

e
(M

Pa
)

ANN

0 200 400 600 800 1,000

0

200

400

600

800

1,000

True value (MPa)

Kriging

Test data
True value

Figure 5.33: Comparison of scatterplots on dataset for project 4-2-1-1. Predicted output parameter isσmax,pl ate in MPa. The predictions
of both the ANN and Kriging interpolation are close to the line. The two methods perform approximately equally well on this dataset.

5.5. Additional results 99

0 2 4 6
0

2

4

6

True value (MN)

P
re

d
ic

te
d

va
lu

e
(M

N
)

ANN

0 2 4 6

0

2

4

6

True value (MN)

Kriging

Test data
True value

Figure 5.34: Comparison of scatterplots on dataset for project 4-2-1-2. The predicted output parameter is the total reaction force Fy in
MN along the loaded edge. The predictions of the ANN are slightly closer to the line compared to Kriging interpolation, implying a better
prediction accuracy.

Elastic-plastic material models. 1 Free variable Figure 5.35 shows the scatter plot of dataset 5-1-1-1, with
predictions on the maximum equivalent strain in the plate. Figure 5.36 shows the scatter plot of dataset 5-1-
1-2, with predictions on the total reaction force.

0 5 ·10−2 0.1 0.15 0.2 0.25 0.3

0

5 ·10−2

0.1

0.15

0.2

0.25

0.3

True value (-)

P
re

d
ic

te
d

va
lu

e
(-

)

ANN

0 5 ·10−2 0.1 0.15 0.2 0.25 0.3

0

5 ·10−2

0.1

0.15

0.2

0.25

0.3

True value (-)

Kriging

Test data
True value

Figure 5.35: Comparison of scatterplots on dataset for project 5-1-1-1. The predicted output parameter is the maximum equivalent
mechanical strain εmax,pl ate . The predictions of both the ANN and Kriging interpolation lie exactly on the line. The two methods
perform equally well on this dataset.

100 5. Results and discussion

2 3 4 5 6

2

3

4

5

6

True value (MN)

P
re

d
ic

te
d

va
lu

e
(M

N
)

ANN

2 3 4 5 6

2

3

4

5

6

True value (MN)

Kriging

Test data
True value

Figure 5.36: Comparison of scatterplots on dataset for project 5-1-1-2. The predicted output parameter is the total reaction force Fy in
MN along the loaded edge. The predictions of the ANN lie exactly on the line, implying (near) exact predictions, while the predictions of
the Kriging interpolation show very strong deviations. The accuracy of the ANN outperforms that of Kriging on this dataset.

Elastic-plastic material models. 4 Free variables Figure 5.37 shows the scatter plot of dataset 5-2-1-1, with
predictions on the maximum equivalent strain in the plate. Figure 5.38 shows the scatter plot of dataset 5-2-
1-2, with predictions on the total reaction force.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

True value (-)

P
re

d
ic

te
d

va
lu

e
(-

)

ANN

0 0.2 0.4 0.6

−0.2

0

0.2

0.4

0.6

True value (-)

Kriging

Test data
True value

Figure 5.37: Comparison of scatterplots on dataset for project 5-2-1-1. The predicted output parameter is the maximum equivalent
mechanical strain εmax,pl ate . The predictions of the ANN lie close to the line, while the predictions of the Kriging interpolation show
very strong deviations. The accuracy of the ANN outperforms that of Kriging on this dataset.

5.5. Additional results 101

1 2 3 4 5

1

2

3

4

5

True value (MN)

P
re

d
ic

te
d

va
lu

e
(M

N
)

ANN

1 2 3 4 5

1

2

3

4

5

6

7

True value (MN)

Kriging

Test data
True value

Figure 5.38: Comparison of scatterplots on dataset for project 5-2-1-2. The predicted output parameter is the reaction force Fy in MN.
The predictions of the ANN lie close to the line, while the predictions of the Kriging interpolation show very strong deviations. The
accuracy of the ANN outperforms that of Kriging on this dataset.

Response of reaction force in elastic-plastic model with one free variable The response plots in Figure
5.39 show the responses of the reaction forces as a function of the applied displacements onto the plate edge.
One can clearly see that the first data point on the left with an applied displacement close to zero results in a
relatively low reaction force. Kriging interpolation is not able to capture this point, such that it overestimates
the reaction force in the early stages of loading. The neural network however is able to capture this point,
and therefore shows a load displacement curve with a tipping point after the second data point, where the
reaction force decreases for increasing applied displacement. This is in accordance with the expectation of a
load displacement curve where the stiffness drops after yielding and further bending.

102 5. Results and discussion

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

Applied displacement uy y scaled to a range between 0 and 1

R
ea

ct
io

n
fo

rc
e

F
y

[M
N

]

Kriging
Neural Network
True data points

Figure 5.39: Plots showing the predictions of both a trained neural network and a fitted Kriging interpolation. The scatters show the true
data points. The neural network is able to fit through all data points, including the first data point. Kriging interpolation overestimates
the reaction force in these early load steps.

6
Conclusion

In this chapter, the research questions stated in Chapter 1 will be answered.

Can the results of linear and/or nonlinear finite element analyses be accurately predicted by means of Ar-
tificial Neural Networks? Figure 5.2 shows that the maximum linear elastic deflection ux,max of a stiffened
steel plate under uniform loading can be accurately predicted. Even for datasets with 8 free design variables
and only 32 training data samples (dataset 12), the coefficient of determination on test data was equal to
0.955. The lowest value on datasets of mechanical model 1 was still 0.88. 10 out of 12 predictions resulted in a
value higher than 0.9. The error plots in Figure 5.15 show that the majority of predictions have a relative error
within the range of ± 5% which is very good. However some outliers are present with relative errors lower
than -10%.

The predictions on the eigenvalue were less accurate than for the deflection. See Figure 5.6. Almost all pre-
dictions resulted in a coefficient of determination higher than 0.7, except for dataset 12, where all models
made very bad predictions.

See Figure 5.11. The predictions on results of geometrical nonlinear analyses was less consistent and yielded
both accurate and inaccurate results. The lowest value of R2 was found to be 0.58, the highest value 0.93.
When analyzing the error distributions of the predictions of maximum stresses from nonlinear analyses as
shown in the histogram in Figure 5.19 we can see that the absolute errors range up to 100 MPa and relative
errors up beyond 20% . This is corresponding to the dataset containing the stresses of the entire structure.
However, when focusing on either the plate (Figure 5.20) or the longitudinal stiffeners (Figure 5.21) and ig-
noring a portion of the plate close to the column (to ignore peak stresses), the results look slightly better. The
relative errors on plate stresses are mostly within the range of ± 15%.

In Section 5.5, some improvements were described on the hyperparameter optimization process of the neural
networks. With these improvements, new neural networks were constructed for datasets 3-1-2-3 and 3-1-2-4.
The results are summarized in Table 5.3 and compared with the accuracies before deploying the improve-
ments. The accuracies did improve, however not very significantly. Yet, it can be concluded that 54 out 66
predictions on plate stresses had a relative error smaller than 10%, and 52 out of 66 predictions on stiffener
stresses had a relative error smaller than 10% with the improved hyperparameter optimization for neural
networks.

Also in Section 5.5, new datasets were generated and new neural networks were constructed for these. These
datasets were generated with the results of geometrically nonlinear, and in some cases also physically non-
linear FE analyses of unstiffened rectangular plates under uni-directional compressional loading, applied di-
rectly as a displacement. The number of free variables was equal to either 1 or 4, which is significantly lower
than the 13 design variables of the main mechanical model 3. The performances of the neural networks were
compared with Kriging interpolations. Different types of output parameters were predicted. The scatterplots
in figures 5.31 till 5.38 show that the predictions of the neural networks are all either exactly on the line of
true values, or very close to the true values. For the linear elastic models, the neural networks and Kriging
interpolation perform approximately equally well.

103

104 6. Conclusion

Figure 5.39 shows a plot with the reaction force as a function of applied displacement when including material
plasticity. One can see that the neural network is able to capture the strong nonlinear response of the system.
Even with only one data point which was positioned far from the other data points, the neural network could
be fitted such to include this point.

To conclude: Accurate predictions of results of FE analyses are indeed possible, although this is not always the
case. Some bad neural networks were found as well. When the goal is to implement the neural network for
maximum stresses in a design optimization algorithm, as found for projects 3-1-2-3 and 3-1-2-4, the accuracy
is probably not sufficient. Also after improving the neural networks, the accuracies are still not sufficient. The
results in Section 5.5 however, showed very good results when the dimensionality of the mechanical problem
was reduced.

How does the performance of these neural networks compare to the performance of several well known
interpolation techniques? When comparing the accuracy of predictions of the neural networks with the
predictions created by either Kriging, 2nd degree or 3r d degree polynomial interpolation, the neural networks
generally performed better. Especially on the datasets for mechanical model 1, where the neural networks
were more accurate on all but one dataset. Although on some of the datasets, the interpolation methods
were more accurate, the neural networks generally showed a more stable accuracy over all datasets, where
the coefficient of determination did not drop to very low values as regularly as the other predictors. This can
be observed in figures 5.2, 5.6 and 5.11.

This is confirmed by the average values of R2 over all predictions per predictive model. For the artificial neural
networks, an average value of R2 = 0.869 was found over predictions of all test datasets of mechanical models
1, 2 and 3. For Kriging interpolation this was R2 = 0.640, for second degree polynomials R2 = −1.848, and a
value of R2 = 0.356 for third degree polynomial interpolation.

The predictions of nonlinear results on the unstiffened models (4 and 5) as described in Section 5.5 appear to
be a lot more accurate than Kriging interpolation. In Table 5.4 it can be seen that the neural networks perform
better on all datasets of the unstiffened models. The difference is most pronounced when including material
nonlinearity.

Is it worth the investment of time and computational resources to create the predictive model? One of
the main goals of a predictive model is the ability to insert it into a design optimization algorithm, allowing to
quickly iterate over a number of design alternatives in order to find the optimal design of a structure quickly.
Section 5.1 gives an impression of the time required to create and optimize a neural network for a particular
dataset.

The answer to the question highly depends on the application of this procedure in practice. The following
points are important to consider.

• How often is the the particular structure/substructure to be designed in a project or among different
projects?

• What are the potential gains in terms of time and money when the structure/substructure is optimized
using an optimization algorithm compared to manual design optimization?

• What is the required accuracy of the optimization?

When both the repeatability of the structure and the potential gains by optimization of the structure are high,
creation of a predictive model could be well worth it. The answer will depend on a cost-benefit analysis. A
major benefit of a predictive model is that it can be reused for any project once created.

On the other hand, when the desired accuracy of the optimization is critical, i.e. the design parameters are to
be tweaked on a very small scale, a predictive model might not be accurate enough to ensure this amount of
precision.

In case of the design of the stiffened skin plate of lock gates, the first two conditions do apply. The lock gates
consist of many separate sections that can be optimized individually and also many projects have already
been finished by Iv-Infra involving lock gate design. According to the limit state criteria however, the predic-
tive model requires a fair amount of accuracy. In order to be able optimize the design parameters of the skin
plate, an accuracy of the predictive model would be required to be in the range of 1 - 5 MPa. According to the

105

error distribution plots in Chapter 5 however, this amount of accuracy is not reached by the predictive model.
So in this particular case, the accuracy of the predictions would have to be improved a lot in order to make
the investments in time be worth it.

How does the accuracy of the predictions relate to the number of training samples and the complexity of
the model? In figures 5.24, 5.25 and 5.26, we can see that the coefficient of determination R2 is almost al-
ways higher for predictions on datasets with the highest number of training samples compared to predictions
with datasets with the lowest number of training samples, which is to be expected. There were only 2 excep-
tions. The accuracies of predictions when trained on the medium amount of training samples (red bars) did
not show a very clear pattern.

Also, according to figures 5.27 and 5.28, not a very clear trend has been found that indicates that the predictive
models perform worse a higher number of design variables. However, when looking at the drastic improve-
ments of accuracy upon simplification of the mechanical models (models 4 and 5 as described in Section 5.5)
and the reduction of their design space, we can safely conclude that the dimensionality must be kept small in
order to make accurate predictions. Even when trained with only 32 data samples, the scatterplots in figures
5.31 to 5.38 show very good results. Strong nonlinear behaviours like the one as shown in Figure 5.39 could
be captured by keeping the amount of variables limited.

7
Recommendations

This chapter provides an overview of possible improvements and recommendations for further research.

7.1. FE modelling
Handling stress singularities Difficulties were encountered regarding peak stresses. The locations and the
actual presence of peak stresses varied among the analyses. Prediction of maximum stresses in the FE model
using ANN’s was found to be difficult due to the irregular nature of these singularities.

A first step towards improvement of the prediction accuracy of maximum stresses would be to handle these
peak stresses. Since the FE analyses for data generation are automated, no personal judgement on the na-
ture of the maximum stresses can be made. Instead, an automated procedure would be necessary to judge
whether the maximum stress is a singularity or not. A method must be found to filter out these singularities
and find the real, representative maximum stress in the model.

Apart from handling peak stresses, it is also possible to take different approaches in which peak stresses are
avoided in the first place. These are described in the following paragraphs.

Include plasticity for the main mechanical model All analyses of the main mechanical model in this project
were performed with linear elastic material properties. It would be interesting to investigate the influence of
including plasticity into the material model. Instead of training an ANN to predict the maximum occurring
stress in the model, the network could be trained to predict the maximum strain. The results of mechanical
model 5 in Section 5.5 showed promising results for the unstiffened plate.

In regions where stress peaks are present, the material will yield and redistribute the stresses such that these
stress peaks disappear. This elimination of stress peaks could be an advantage in terms of prediction capa-
bilities of the neural network. However, divergence of the non-linear analyses may cause issues.

Handling divergence During the automated running of nonlinear FE analyses, no personal judgement can
be made about whether an unconverged solution is caused by buckling or by numerical instabilities. A
method for properly handling these situations and producing the correct output values would be very useful.

Eigenmodes and geometric imperfections An important step within the nonlinear buckling analysis is se-
lecting an appropriate initial geometric imperfection. In engineering practice this is a very critical step, in
which generally multiple combinations of imperfections are combined and analyzed of which the lowest re-
sistance is governing.

In this thesis, the selection of geometric imperfection was solely based on the shape of the first buckling
mode, scaled with a certain amplitude. In practice, this amplitude is based on properties of the buckling
shape and the geometry of the structure as provided by design guidelines. Since the FE analyses are auto-
mated, no judgement can be made on the buckling shape and therefore the correct scaling factor. Therefore
the scaling factor was introduced as a free variable, to be input by the user.

107

108 7. Recommendations

It would be interesting to create an algorithm that takes the nodal displacements of the buckling shape as in-
put and produces some key characteristics or classification of the buckling shape as output. This information
can then be used to introduce the right scaling factor.

Another possibility would be to create a separate machine learning model that is trained to predict these
buckling shape characteristics based on the geometry and loading parameters of the structure.

7.2. Training data
Feature extraction In this project, only the raw values of the input parameters were provided. The accuracy
of the predictions could possibly be improved by extracting derived quantities from the input parameters that
are expected to have a high influence on the response of the system. In this way not only the dimensionality
of the problem is reduced, also the correlation between derived input values and system response may be
a lot higher. Experiments can be performed with different sets of derived quantities. Some examples of de-
rived quantities may be the bending stiffness and/or torsional stiffness of the global structure or individual
structural elements.

Output parameters based on load-displacement curve Instead of predicting maximum stresses or strains,
the neural network could be trained to predict important points in the load-displacement curve of the anal-
ysis. The results of mechanical model 5 in Section 5.5 showed promising results for the unstiffened plate.
Some examples could include the prediction of the point where the curve first becomes horizontal, or where
some threshold value of the stiffness of the structure is reached. It could be the case that these values are
more strongly correlated to the provided input parameters than the maximum occurring stresses. Maximum
stresses are very localized in nature, depending on location and prone to stress singularities, whereas e.g. the
buckling load at which a structure loses stability is expected to be a more global property of the structure.

Nested predictions In line with the previous point about feature extraction, another possibility would be
to include predicted output of eigenvalues from one neural network and use these as an input parameter for
another neural network predicting the buckling load Fmax .

The procedure can be as follows. It is expected that the (first) eigenvalue λ is a very strong indicator for
the buckling load Fmax of a structure. Therefore, the final neural network could be trained to predict Fmax ,
including one or more eigenvalues as extra input parameters.

Parallel to this, a separate neural network will be trained to only predict the eigenvalues of the structure.
This trained neural network will produce the eigenvalue which can be used as extra input in the other neural
network that produces Fmax .

The key advantage in this approach is that training datasets containing only results of linear eigenvalue anal-
yses can be produced very fast compared to nonlinear analyses. A lot of data can be generated quickly, provid-
ing enough data to train an accurate neural network. When it is indeed the case that predictions of Fmax are
more accurate upon inclusion of λ as an input parameter, the amount nonlinear analyses needed to create
an accurate network can be reduced, reducing the computation time.

Narrow down parameter range In this project, the influence of the range of the input parameters was not
studied. For each individual mechanical model, the range of possible parameter values was fixed between
the same boundaries. It is expected that the accuracy of the predictive model improves for a more narrow
parameter range. The drawback is that the design space becomes smaller, reducing the applicability of the
trained network. It would be interesting to know to what extend the parameter range influences the accuracy.

7.3. Other machine learning techniques
Network architecture In this project, the possible configurations of neural networks has been limited to
feedforward neural networks. However there exists a wide variety of neural network types, or even machine
learning algorithms in general. Each network type or machine learning algorithm has its own strengths and
weaknesses. It would be interesting to see if other methods can perform better on these types of mechanical
problems.

Bibliography

[1] 7 types of neural network activation functions: How to choose? https://missinglink.ai/guides/

neural-network-concepts/7-types-neural-network-activation-functions-right/.

[2] Doepy. https://doepy.readthedocs.io/en/latest/#.

[3] Gradient descent method – gradient descent. https://easyai.tech/wp-content/uploads/2019/

01/tiduxiajiang-1.png.

[4] Kriging interpolation – the prediction is strong in this one. https://gisgeography.com/

kriging-interpolation-prediction/.

[5] Scikit-learn minmaxscaler. https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.MinMaxScaler.html.

[6] Scikit-Learn PolynomialFeatures.

[7] Scikit-Learn PolynomialFeatures.

[8] Scikit-learn standardscaler. https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.StandardScaler.html.

[9] Eurocode 3: Design of steel structures Part 1-5 Plated structural elements, October 2006.

[10] ANSYS Mechanical APDL command reference, November 2013.

[11] ANSYS Mechanical APDL Element reference, November 2013.

[12] D. Beg, U. Kuhlmann, L. Davaine, and B. Braun. Design of Plated Structures. ECCS, 2010.

[13] J. Brownlee. How to choose loss functions when training deep
learning neural networks. https://machinelearningmastery.com/

how-to-choose-loss-functions-when-training-deep-learning-neural-networks/, Jan-
uary 2019.

[14] J. Brownlee. How to develop a cnn for mnist handwritten digit classification. https://

machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/,
May 2019.

[15] J. Brownlee. How to use data scaling to improve deep learning model
stability and performance. https://machinelearningmastery.com/

how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/,
February 2019.

[16] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust auto-
mated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 2962–2970. Curran Associates, Inc., 2015.

[17] A. for Desktop. How kriging works. http://desktop.arcgis.com/en/arcmap/10.3/tools/

3d-analyst-toolbox/how-kriging-works.htm, May 2013.

[18] P. Gondár. Preliminary design of longitudinally stiffened skin plate of lock gates (eurocode based). In-
ternship technical report, Delft University of Technology, January 2013.

[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

109

 https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
 https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://doepy.readthedocs.io/en/latest/#
https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png
https://easyai.tech/wp-content/uploads/2019/01/tiduxiajiang-1.png
https://gisgeography.com/kriging-interpolation-prediction/
https://gisgeography.com/kriging-interpolation-prediction/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-performance-with-data-scaling/
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/3d-analyst-toolbox/how-kriging-works.htm
http://www.deeplearningbook.org
http://www.deeplearningbook.org

110 Bibliography

[20] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org/contents/numerical.html.

[21] P. Hajela and L. Berke. Neural networks in structural analysis and design: An overview. Computing
systems in Engineering, 3:525–538, 1992.

[22] G. S. Hornby and A. Globus. Automated antenna design with evolutionary algorithms. University of
california santa cruz, NASA Ames Research Center, 2006.

[23] Iv-Infra. https://www.nationalestaalprijs.nl/archief/2014/nominaties/infrastructuur/

uitbreiding-sluizencomplexen-panamakanaal.

[24] B. Johansson, R. Maquoi, G. Sedlacek, C. Müller, and D. Beg. Commentary and worked examples to en
1993-1-5 plated structural elements. Technical report, October 2007.

[25] K. Koutroumbas and S. Theodoridis. Pattern Recognition. Academic Press, 2008.

[26] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson, C. K. Fisher, and D. J. Schwab. A high-
bias, low-variance introduction to machine learning for physicists. http://inspirehep.net/record/
1664035/files/parabola-gd.png.

[27] Rasmussen and Williams. Gaussian process regressor. https://scikit-learn.org/stable/

modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.

gaussian_process.GaussianProcessRegressor.

[28] E. Schulz, M. Speekenbrink, and AndreasKrause. A tutorial on gaussian process regression: Modelling,
exploring, and exploiting functions. Journal of Mathematical Psychology, 85:1–16, 2017.

[29] Scikit-Learn. Cross-validation: evaluating estimator performance. https://scikit-learn.org/

stable/_images/grid_search_cross_validation.png.

[30] M. van der Burg. Plate buckling in design codes. Master thesis, Delft University of Technology, 2011.

[31] T. Verhoog. Parametric design tool for longitudinally stiffened plates of lock gates. Technical report,
February 2019.

[32] D. H. Wolpert. The lack of a priori distinctions between learning algorithms. Neural Computation, pages
1341–1390, 1996.

[33] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, 1:67–82, 1997.

[34] Y. Yao. Do toetsing huidplaten en verstijvers. Technical report, November 2016.

http://www.deeplearningbook.org/contents/numerical.html
http://www.deeplearningbook.org/contents/numerical.html
https://www.nationalestaalprijs.nl/archief/2014/nominaties/infrastructuur/uitbreiding-sluizencomplexen-panamakanaal
https://www.nationalestaalprijs.nl/archief/2014/nominaties/infrastructuur/uitbreiding-sluizencomplexen-panamakanaal
http://inspirehep.net/record/1664035/files/parabola-gd.png
http://inspirehep.net/record/1664035/files/parabola-gd.png
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor
https://scikit-learn.org/stable/_images/grid_search_cross_validation.png
https://scikit-learn.org/stable/_images/grid_search_cross_validation.png

Appendices

111

A
Main Python script

Script for running the genetic algorithms for hyperparameter optimization

1
2 # Keras import statements

3 import keras.optimizers as opt

4 from keras import Sequential

5 from keras import backend as Keras_backend

6 from keras.models import load_model

7 import keras.callbacks as cb

8 import keras.initializers as initializers

9
10 # Deap import statements

11 from deap import base , creator , tools

12
13 from sklearn.model_selection import KFold

14 from data import File , Data , Folder

15 import os

16 import pandas as pd

17
18 import random

19 from scoop import futures

20 import time

21 import numpy as np

22 from files import *

23
24 from multiprocessing import Pool

25
26 np.random.seed (6)

27
28 import concurrent.futures

29
30 """

31 New module containing both ANN and GA classes.

32 Aim is to make a more clean interaction between both and at the same time decouple these from the

33 project - and doe class es.

34 The possible set of hyperparameters will be changed and some validation tests can be run.

35 """

36
37
38
39 def evaluate_ann_single(individual , X_train , y_train , X_test , y_test , callbacks , max_epochs =100000):

40 num_layers , num_neurons , activation , optimizer , kernel_initializer = individual

41 t0 = time.time()

42 ann = ANN()

43 ann.set_hyperparameters(activation , num_layers , num_neurons , optimizer , kernel_initializer)

44 try:

45 ydim = y_train.shape [1]

46 except IndexError:

47 ydim = 1

48 ann.set_dimensions(input_dim=X_train.shape[1],

113

114 A. Main Python script

49 output_dim=ydim)

50 ann.build_model ()

51 ann.model.fit(x=X_train ,

52 y=y_train ,

53 batch_size =512,

54 epochs=max_epochs ,

55 validation_data =(X_test , y_test),

56 callbacks=callbacks ,

57 verbose =0)

58 t1 = time.time()

59
60
61 train_loss = ann.model.evaluate(X_train , y_train)

62 validation_loss = ann.model.evaluate(X_test , y_test)

63 fit_time = t1 - t0

64 return ann , train_loss , validation_loss , fit_time

65
66
67 def evaluate_ann_crossval(individual , X, y, cv=5, max_epochs =50000):

68 last_train_losses = []

69 last_validation_losses = []

70 fit_times = []

71 callbacks = [cb.BaseLogger (),

72 cb.TerminateOnNaN (),

73 cb.EarlyStopping(monitor='val_loss ',

74 min_delta =1e-12,

75 mode='min',

76 verbose=0,

77 patience =1000)]

78
79 kf = KFold(n_splits=cv , shuffle=True , random_state =6)

80 for train_index , validation_index in kf.split(X):

81 ann , train_loss , validation_loss , fit_time = evaluate_ann_single(individual ,

82 X_train=X[train_index],

83 y_train=y[train_index],

84 X_test=X[validation_index],

85 y_test=y[validation_index],

86 max_epochs=max_epochs ,

87 callbacks=callbacks)

88 last_train_losses.append(train_loss)

89 last_validation_losses.append(validation_loss)

90 fit_times.append(fit_time)

91 mean_fit_time = np.mean(fit_times)

92 mean_train_loss = np.mean(last_train_losses)

93 mean_validation_loss = np.mean(last_validation_losses)

94 Keras_backend.clear_session ()

95 print("Cross validation done: ", str(individual), str(mean_validation_loss))

96 return mean_train_loss , mean_validation_loss , mean_fit_time

97
98
99 def refit(individual , X_train , y_train , X_test , y_test , model_filepath , max_epochs =100000):

100 print('Refit on: ', str(individual))

101 callbacks = [cb.BaseLogger (),

102 cb.TerminateOnNaN (),

103 cb.EarlyStopping(monitor='val_loss ',

104 min_delta =1e-12,

105 mode='min',

106 verbose=2,

107 patience =2000) ,

108 cb.ModelCheckpoint(model_filepath ,

109 monitor='val_loss ',

110 verbose=0,

111 save_best_only=True ,

112 save_weights_only=False ,

113 mode='min', period =2)]

114 ann , train_loss , validation_loss , fit_time = evaluate_ann_single(individual ,

115 X_train , y_train , X_test , y_test ,

116 callbacks , max_epochs=max_epochs)

117 ann.model = load_model(model_filepath)

118 return ann

119

115

120
121 def custom_mutation(mutant , toolbox):

122 """ Since the individual contains different data types in each attribute , no standard mutation function is available

123 So instead , this custom mutation function performs a crossover operation between the selected individual

124 and a randomly generated new individual."""

125
126 # for index , attribute in enumerate(random_individual):

127 # if random.random () < indpb:

128 # mutant[index] = attribute

129
130 equal_gene = True

131 while equal_gene:

132 # When the selected gene between the mutant and the random individual is equal ,

133 # create a new individual and select a new index

134 random_individual = toolbox.individual ()

135 index = random.randint(0, len(mutant)-1) # Swap the attribute of the random individual with index to mutant

136 equal_gene = mutant[index] == random_individual[index]

137
138 mutant[index] = random_individual[index]

139 return mutant ,

140
141
142 class ANN:

143 def __init__(self):

144 self.model = Sequential ()

145
146 def set_hyperparameters(self, activation , num_layers , num_neurons , optimizer , kernel_initializer ,

147 bias_initializer='zeros', loss='mean_squared_error '):

148 self.activation = activation

149 self.hidden_layers = [num_neurons for _ in range(num_layers)]

150 self.optimizer = optimizer

151 self.kernel_initializer = kernel_initializer

152 self.bias_initializer = bias_initializer

153 self.loss = loss

154
155 def set_dimensions(self, input_dim , output_dim):

156 self.input_dim = input_dim

157 self.output_dim = output_dim

158
159 def build_model(self):

160 advanced_optimizers = {

161 'rmsprop ': opt.RMSprop(),

162 'adagrad ': opt.Adagrad(),

163 'adadelta ': opt.Adadelta(),

164 'adam': opt.Adam(),

165 'adamax ': opt.Adamax(),

166 'nadam': opt.Nadam()

167 }

168
169 seed = None

170 initializers_dict = {

171 'random_normal ': initializers.RandomNormal(mean =0.0, stddev =0.05, seed=seed),

172 'random_uniform ': initializers.RandomUniform(minval =-0.05, maxval =0.05, seed=seed),

173 'glorot_normal ': initializers.glorot_normal(seed=seed),

174 'glorot_uniform ': initializers.glorot_uniform(seed=seed),

175 'he_normal ': initializers.he_normal(seed=seed),

176 'he_uniform ': initializers.he_uniform(seed=seed)

177 }

178
179 if self.kernel_initializer in list(initializers_dict):

180 self.kernel_initializer = initializers_dict[self.kernel_initializer]

181
182
183
184
185
186 if self.optimizer in list(advanced_optimizers):

187 self.optimizer = advanced_optimizers[self.optimizer]

188
189 # List the the layer instances

190 from keras.layers import Dense

116 A. Main Python script

191 layer_instances = []

192 for i, num_neurons in enumerate(self.hidden_layers):

193 if i == 0: # First hidden layer

194 layer_instances.append(Dense(num_neurons ,

195 activation=self.activation ,

196 kernel_initializer=self.kernel_initializer ,

197 bias_initializer=self.bias_initializer ,

198 input_dim=self.input_dim))

199 else:

200 layer_instances.append(Dense(num_neurons ,

201 kernel_initializer=self.kernel_initializer ,

202 bias_initializer=self.bias_initializer ,

203 activation=self.activation))

204
205 layer_instances.append(Dense(self.output_dim)) # Output layer without activation function

206
207 # Add layers and compile model

208 for layer in layer_instances:

209 self.model.add(layer)

210 self.model.compile(optimizer=self.optimizer , loss=self.loss)

211 return self.model

212
213 def export_predictions(self, data , prediction_filepath):

214 prediction_dict = {

215 'Y_train_true ': data.Y_train ,

216 'Y_train_predicted ': self.model.predict(data.X_train). reshape(1, -1)[0],

217 'Y_test_true ': data.Y_test ,

218 'Y_test_predicted ': self.model.predict(data.X_test). reshape(1, -1)[0]

219 }

220 prediction_df = pd.DataFrame ({key: pd.Series(value) for key , value in prediction_dict.items ()})

221 prediction_df.to_csv(prediction_filepath , index=False)

222
223
224 class GeneticAlgorithm:

225 def __init__(self):

226 pass

227
228 def attach_logfile(self, logfile):

229 self.logfile = logfile

230
231 def set_algorithm_settings(self, parameter_grid , num_generations =5, population_size =40, CXPB =0.9, MUTPB =0.1,

232 elite_portion =0.1, tournament_size =10):

233 self.parameter_grid = parameter_grid

234 self.num_generations = num_generations

235 self.population_size = population_size

236 self.CXPB = CXPB

237 self.MUTPB = MUTPB

238 self.elite_portion = elite_portion

239 self.tournament_size = tournament_size

240
241
242 def set_toolbox_functions(self):

243 self.tb = base.Toolbox ()

244 # creator.create (" MinimizeLoss", base.Fitness , weights =(-1.0,))

245 # creator.create (" Individual", list , fitness=creator.MinimizeLoss)

246
247 self.func_sequence = []

248 for key , value in self.parameter_grid.items ():

249 """ Add functions to the sequence which will be called when initializing the individual """

250 self.tb.register(key , random.choice , self.parameter_grid[key])

251 self.func_sequence.append(getattr(self.tb , key))

252
253 self.tb.register("evaluate", self.evaluate_individual)

254 self.tb.register("individual", tools.initCycle , creator.Individual , self.func_sequence , 1)

255 self.tb.register("population", tools.initRepeat , list , self.tb.individual)

256 self.tb.register("crossover", tools.cxOnePoint)

257 self.tb.register("mutate", custom_mutation)

258 self.tb.register("select", tools.selTournament , tournsize=self.tournament_size)

259
260
261

117

262 def evaluate_individual(self, individual):

263 X = self.X

264 y = self.y

265 if str(individual) not in self.evaluated_individuals.keys ():

266 mean_train_loss , mean_validation_loss , mean_fit_time = evaluate_ann_crossval(individual , X, y)

267 self.evaluated_individuals[str(individual)] = (mean_train_loss , mean_validation_loss , mean_fit_time)

268 else:

269 mean_train_loss , mean_validation_loss , mean_fit_time = self.evaluated_individuals[str(individual)]

270
271 individual.mean_fit_time = mean_fit_time

272 individual.mean_train_loss = mean_train_loss

273 individual.mean_validation_loss = mean_validation_loss

274
275 fitness = mean_validation_loss

276 individual.fitness.values = fitness ,

277 return fitness ,

278
279 def fit(self, X, y):

280 """ Data are included as attributes for the mapping function that maps evaluate_individual function

281 to the poupulation. Otherwise errors regarding arguments """

282 self.X = X

283 self.y = y

284
285 self.best_individual = self.tb.individual ()

286 self.best_individual.fitness.values = 1e9,

287 self.evaluated_individuals = {}

288
289 generation = 0

290 print(f"Start generation {generation}")

291 population = self.tb.population(n=self.population_size)

292 for ind in population:

293 ind.generation = generation

294
295
296 pool = Pool(os.cpu_count ())

297 fitnesses = pool.map(self.evaluate_individual , population)

298 pool.close ()

299 pool.join()

300 # [self.evaluate_individual(ind) for ind in population]

301
302 for individual , fitness in zip(population , fitnesses):

303 individual.fitness.values = fitness

304 individual.mean_validation_loss = fitness [0]

305 self.logfile.add_individual(individual)

306 if individual.fitness.values [0] < self.best_individual.fitness.values [0]:

307 self.best_individual = individual

308
309 for generation in range(1, self.num_generations):

310 print(f"Start generation {generation}")

311 offspring = [self.tb.clone(individual) for individual in population]

312
313 # --------- SELECTION

314 elite = tools.selBest(offspring , int(self.elite_portion * len(offspring)))

315 tournament_selection = self.tb.select(offspring , int(len(offspring) - len(elite)))

316 offspring = elite + tournament_selection # Offspring for mutation and crossover

317
318 """ Create a NEW copy of offspring to ensure that each selected individual remains also

319 a UNIQUE python object. This avoids equal mutation for equal individuals after selection."""

320 offspring = [self.tb.clone(individual) for individual in offspring]

321
322 # Assign generation number to individuals

323 for ind in offspring:

324 ind.generation = generation

325
326
327 # --------- CROSSOVER

328 for child1 , child2 in zip(offspring [::2], offspring [1::2]):

329 if child1 != child2: # Avoid crossover between identical individuals (unnecessary computing)

330 if random.random () < self.CXPB:

331 self.tb.crossover(child1 , child2)

332 del child1.fitness.values

118 A. Main Python script

333 del child2.fitness.values

334
335
336 # --------- MUTATION

337 for mutant in offspring:

338 if random.random () < self.MUTPB:

339 self.tb.mutate(mutant , self.tb)

340 del mutant.fitness.values

341
342
343 # Evaluate the individuals for which the fitness values are deleted

344 invalid_individuals = [ind for ind in offspring if not ind.fitness.valid]

345 pool = Pool(os.cpu_count ())

346 fitnesses = pool.map(self.evaluate_individual , invalid_individuals)

347 pool.close ()

348 pool.join()

349 # [self.evaluate_individual(ind) for ind in invalid_individuals]

350
351 for individual , fitness in zip(invalid_individuals , fitnesses):

352 individual.fitness.values = fitness

353 individual.mean_validation_loss = fitness [0]

354 self.logfile.add_individual(individual)

355 if individual.fitness.values [0] < self.best_individual.fitness.values [0]:

356 self.best_individual = individual

357
358 population = offspring

359 return population

360 #### End of generation

361
362
363 class Logfile:

364 def __init__(self, path):

365 self.path = path

366 self.dataframe = pd.DataFrame ()

367
368 def add_individual(self, individual):

369 newlog = pd.DataFrame ({

370 'generation ': int(individual.generation),

371 'num_layers ': [individual [0]],

372 'num_neurons ': [individual [1]],

373 'activation ': [individual [2]],

374 'optimizer ': [individual [3]],

375 'kernel_initializer ': [individual [4]],

376 # 'mean_fit_time ': [individual.mean_fit_time],

377 # 'mean_train_loss ': [individual.mean_train_loss],

378 'mean_validation_loss ': [individual.fitness.values [0]]

379 })

380 # Add individual to logfile and export update

381 self.dataframe = self.dataframe.append(newlog)

382 self.dataframe.to_csv(self.path)

383
384 def export_excel(self):

385 # Final frame can be exported to excel file.

386 # Only final dataframe exported to excel since modifying an opened excel file raises errors

387 writer = pd.ExcelWriter(self.path.replace('.csv', '.xlsx'), engine='xlsxwriter ')

388 self.dataframe.to_excel(writer , sheet_name='Logfile GA', index=False)

389 writer.save()

390
391
392
393 def export_predictions(Y_train_true , Y_train_pred , Y_test_true , Y_test_pred , prediction_filepath):

394 prediction_dict = {

395 'Y_train_true ': Y_train_true ,

396 'Y_train_predicted ': Y_train_pred ,

397 'Y_test_true ': Y_test_true ,

398 'Y_test_predicted ': Y_test_pred

399 }

400 prediction_df = pd.DataFrame ({key: pd.Series(value) for key , value in prediction_dict.items ()})

401 prediction_df.to_csv(prediction_filepath , index=False)

402
403

119

404 ann_parameter_options = {

405 'num_layers ': [1, 2, 3, 4],

406 'num_neurons ': [num for num in range (2,40)],

407 'activation ': ['tanh', 'relu', 'elu', 'selu', 'exponential ', 'sigmoid ', 'softplus '],

408 'optimizer ': ['rmsprop ', 'adam', 'adagrad ', 'adadelta ', 'adamax ', 'nadam'],

409 'kernel_initializer ': ['random_normal ', 'random_uniform ',

410 'glorot_normal ', 'glorot_uniform ',

411 'he_normal ', 'he_uniform ']

412 }

413
414
415 """ Define folders for storing and retrieving data """

416 main_database = Folder(directory=r'C:\Users\Thomas\Documents\Master Thesis ', name='main_database_final ')

417 database_traindata = Folder(main_database.path , 'database_traindata ')

418 database_optimization = Folder(main_database.path , 'database_optimization ')

419
420
421
422
423 to_train = {

424 '4-1-1-1': [40],

425 '4-1-1-2': [40],

426 '4-2-1-1': [40],

427 '4-2-1-2': [40],

428 '5-1-1-1': [40],

429 '5-1-1-2': [40],

430 '5-2-1-1': [40],

431 '5-2-1-2': [40],

432 '6-1-1-1': [40],

433 '6-1-1-2': [40],

434 '6-1-1-3': [40],

435 '6-2-1-1': [40],

436 '6-2-1-2': [40],

437 '6-2-1-3': [40],

438 '3-1-2-3': [320],

439 '3-1-2-4': [320],

440 }

441
442
443 """ Creator creations must be defined in top level OUTSIDE of main in order for SCOOP to work """

444 creator.create("MinimizeLoss", base.Fitness , weights =(-1.0 ,))

445 creator.create("Individual", list , fitness=creator.MinimizeLoss)

446
447
448 if __name__ == "__main__":

449 for project_number in to_train.keys ():

450 for num_dp in to_train[project_number]:

451 # Obtain data file

452 project_folder = get_project_folder(database_traindata.path , project_number)

453 data_file = get_data_file(database_traindata.path , project_number , num_dp)

454
455 # Read and prepare data

456 data = Data()

457 data.read_datafile(data_file)

458 data.set_output_dim(output_dim =1)

459 data.split(test_size =0.2)

460 data.scale(scaler='minmax ')

461
462 # Define optimization files

463 prediction_directory = Folder(database_optimization.path , f'project{project_number}')

464 logfilepath = create_logfile_path(prediction_directory.path , project_number , num_dp)

465 prediction_filepath_ann = create_prediction_file_path(prediction_directory.path ,

466 'ann', project_number , num_dp)

467
468 # # ===

469 # # --- Genetic algorithm

470 GA = GeneticAlgorithm ()

471 GA.set_algorithm_settings(parameter_grid=ann_parameter_options , num_generations =5, population_size =40,

472 CXPB =0.1, MUTPB =0.9, elite_portion =0.1, tournament_size =8)

473 GA.set_toolbox_functions ()

474 GA.attach_logfile(Logfile(logfilepath))

120 A. Main Python script

475
476
477 pop = GA.fit(data.X_train , data.Y_train)

478 GA.logfile.export_excel ()

479
480 bestmodel_file = File(directory=prediction_directory.path ,

481 name=f'best -ann_project{project_number}_doe -{ num_dp}dp',

482 extension='.h5')

483
484 print(f"Refit: project {project_number}, {num_dp}dp")

485 best_ann = refit(GA.best_individual , data.X_train , data.Y_train , data.X_test , data.Y_test ,

486 bestmodel_file.path , max_epochs =100000)

487
488 best_ann.export_predictions(data , prediction_filepath_ann)

489 # # ===

490
491
492
493
494 # ===

495
496 prediction_filepath_gpr = create_prediction_file_path(prediction_directory.path ,

497 'kriging ', project_number , num_dp)

498 # ===

499 # In this section , predictions are performed and exported with KRIGING

500 # ---

501
502 from sklearn.gaussian_process import GaussianProcessRegressor

503
504 gpr = GaussianProcessRegressor ()

505 gpr.fit(data.X_train , data.Y_train)

506
507 Y_train_pred = gpr.predict(data.X_train)

508 Y_test_pred = gpr.predict(data.X_test)

509
510 export_predictions(Y_train_true=data.Y_train ,

511 Y_train_pred=Y_train_pred ,

512 Y_test_true=data.Y_test ,

513 Y_test_pred=Y_test_pred ,

514 prediction_filepath=prediction_filepath_gpr)

515 # ---

516 # ===

517
518
519 # ===

520 # In this section , predictions are performed and exported with 2nd ORDER POLYNOMIALS

521 # ---

522 prediction_filepath_poly2 = create_prediction_file_path(prediction_directory.path ,

523 'poly2', project_number , num_dp)

524
525 from sklearn.linear_model import LinearRegression

526 from sklearn.preprocessing import PolynomialFeatures

527
528 poly = PolynomialFeatures(degree =2)

529 X_poly_train = poly.fit_transform(data.X_train)

530 X_poly_test = poly.fit_transform(data.X_test)

531
532 poly.fit(X_poly_train , data.Y_train)

533
534 lin2 = LinearRegression ()

535 lin2.fit(X_poly_train , data.Y_train)

536
537 Y_train_pred = lin2.predict(X_poly_train)

538 Y_test_pred = lin2.predict(X_poly_test)

539
540 export_predictions(Y_train_true=data.Y_train ,

541 Y_train_pred=Y_train_pred ,

542 Y_test_true=data.Y_test ,

543 Y_test_pred=Y_test_pred ,

544 prediction_filepath=prediction_filepath_poly2)

545 # ---

121

546 # ===

547
548
549 # ===

550 # In this section , predictions are performed and exported with 3rd ORDER POLYNOMIALS

551 # ---

552 prediction_filepath_poly3 = create_prediction_file_path(prediction_directory.path ,

553 'poly3', project_number , num_dp)

554
555
556 poly = PolynomialFeatures(degree =3)

557 X_poly_train = poly.fit_transform(data.X_train)

558 X_poly_test = poly.fit_transform(data.X_test)

559
560 poly.fit(X_poly_train , data.Y_train)

561
562 lin3 = LinearRegression ()

563 lin3.fit(X_poly_train , data.Y_train)

564
565 Y_train_pred = lin3.predict(X=X_poly_train)

566 Y_test_pred = lin3.predict(X=X_poly_test)

567
568 export_predictions(Y_train_true=data.Y_train ,

569 Y_train_pred=Y_train_pred ,

570 Y_test_true=data.Y_test ,

571 Y_test_pred=Y_test_pred ,

572 prediction_filepath=prediction_filepath_poly3)

573 # ---

574 # ===

575 #

B
ANN classes

Script containing the classes and functions for creating the Artificial Neural Networks

1 import os

2
3 from sklearn.model_selection import KFold

4 from keras import Sequential

5 from keras.layers import Dense

6 import keras.optimizers as opt

7 import keras.callbacks as callbacks

8 import numpy as np

9 import time

10 import pandas as pd

11
12 # A test modification for git testing

13
14 # A second test modification for git

15
16 class ANN:

17 parameter_options = {

18 'num_neurons ': [num for num in range (1,50)],

19 'activation ': ['linear ', 'tanh', 'relu', 'elu', 'selu', 'exponential ', 'sigmoid ', 'softplus '],

20 'optimizer ': ['rmsprop ', 'sgd', 'adam', 'adagrad ', 'adadelta ', 'adamax ', 'nadam '],

21 'kernel_initializer ': ['random_uniform ', 'constant ', 'zeros'],

22 'bias_initializer ': ['random_uniform ', 'constant ', 'zeros'],

23 }

24
25 def __init__(self, input_dim , output_dim =1):

26 self.input_dim = input_dim

27 self.output_dim = output_dim

28 self.callbacks = [callbacks.BaseLogger (),

29 callbacks.TerminateOnNaN (),

30 callbacks.EarlyStopping(monitor='val_loss ',

31 min_delta =1e-12,

32 mode='min',

33 verbose=2,

34 patience =1000)]

35
36
37 def build_model(self, activation , hidden_layers , optimizer , kernel_initializer , bias_initializer , loss):

38 # Initiate Sequential instance

39 self.model = Sequential ()

40
41 advanced_optimizers = {

42 'sgd': opt.SGD(),

43 'rmsprop ': opt.RMSprop(),

44 'adagrad ': opt.Adagrad(),

45 'adadelta ': opt.Adadelta(),

46 'adam': opt.Adam(),

47 'adamax ': opt.Adamax(),

48 'nadam': opt.Nadam()

123

124 B. ANN classes

49
50 }

51 if optimizer in list(advanced_optimizers):

52 optimizer = advanced_optimizers[optimizer]

53
54 # List the the layer instances

55 layer_instances = []

56 for i, num_neurons in enumerate(hidden_layers):

57 if i == 0: # First hidden layer

58 layer_instances.append(Dense(num_neurons ,

59 activation=activation ,

60 kernel_initializer=kernel_initializer ,

61 bias_initializer=bias_initializer ,

62 input_dim=self.input_dim))

63 else:

64 layer_instances.append(Dense(num_neurons ,

65 kernel_initializer=kernel_initializer ,

66 bias_initializer=bias_initializer ,

67 activation=activation))

68 layer_instances.append(Dense(self.output_dim)) # Output layer with linear activation function

69
70 # Create and compile model

71 for layer in layer_instances:

72 self.model.add(layer)

73 self.model.compile(optimizer=optimizer , loss=loss)

74 return self.model

75
76 def fit(self, X, Y, batch_size , epochs , validation_data=None):

77 self.model.fit(X, Y,

78 batch_size=batch_size ,

79 epochs=epochs ,

80 validation_data=validation_data ,

81 verbose=2,

82 callbacks=self.callbacks)

83
84 # def fit_kfold_cv(self, X, Y, cv, batch_size , epochs , random_state=None):

85 # # Test

86 # self.train_losses = []

87 # self.validation_losses = []

88 # self.fit_times = []

89 #

90 # kf = KFold(n_splits=cv, shuffle=True , random_state=random_state)

91 # for train_index , validation_index in kf.split(X):

92 # t0 = time.time()

93 #

94 # initial_weights = self.model.get_weights ()

95 # self.model.fit(X[train_index], Y[train_index],

96 # batch_size=batch_size ,

97 # epochs=epochs ,

98 # validation_data =(X[validation_index], Y[validation_index]),

99 # verbose=2,

100 # callbacks=self.callbacks)

101 #

102 # # Evaluate and add to lists

103 # t1 = time.time()

104 # training_loss = self.model.evaluate(X[train_index], Y[train_index], batch_size=batch_size)

105 # validation_loss = self.model.evaluate(X[validation_index], Y[validation_index], batch_size=batch_size)

106 #

107 # self.fit_times.append(t1 - t0)

108 # self.train_losses.append(training_loss)

109 # self.validation_losses.append(validation_loss)

110 #

111 # self.model.set_weights(initial_weights) # Reset the weights and biases to the original values

112 #

113 # self.mean_fit_time = np.mean(self.fit_times)

114 # self.mean_train_loss = np.mean(self.train_losses)

115 # self.mean_validation_loss = np.mean(self.validation_losses)

116
117
118 def export_predictions(self, data , prediction_filepath):

119 prediction_dict = {

125

120 'Y_train_true ': data.Y_train ,

121 'Y_train_predicted ': self.model.predict(data.X_train). reshape(1, -1)[0],

122 'Y_test_true ': data.Y_test ,

123 'Y_test_predicted ': self.model.predict(data.X_test). reshape(1, -1)[0]

124 }

125 prediction_df = pd.DataFrame ({key: pd.Series(value) for key , value in prediction_dict.items ()})

126 prediction_df.to_csv(prediction_filepath , index=False)

C
Genetic Algorithm classes

Script containing the classes and functions for creating the Genetic Algorithms

1
2 from deap import base , creator

3 from deap import tools

4 import random

5 import pandas as pd

6 from keras import backend as Keras_backend

7 from keras.models import load_model

8 from scoop import futures

9 import multiprocessing

10 import time

11 from sklearn.model_selection import KFold

12
13 import keras.callbacks as callbacks

14
15 from data import *

16 from ann import ANN

17
18 import numpy as np

19
20
21 import pickle

22
23
24 # ===

25 #

26 # Define functions

27 #

28 # ===

29
30
31 def evaluate_ann_crossval(individual , data , epochs =50000):

32 # Extract settings from individual and initialize ANN

33 num_neurons , activation , optimizer , kernel_initializer , bias_initializer = individual

34
35 min_train_losses = []

36 min_validation_losses = []

37 fit_times = []

38
39 kf = KFold(n_splits=5, shuffle=True , random_state=None)

40 for train_index , validation_index in kf.split(data.X_train):

41 t0 = time.time()

42
43 ann = ANN(input_dim=data.input_dim , output_dim=data.output_dim)

44 ann.build_model(activation=activation ,

45 hidden_layers =[num_neurons],

46 optimizer=optimizer ,

47 kernel_initializer=kernel_initializer ,

48 bias_initializer=bias_initializer ,

127

128 C. Genetic Algorithm classes

49 loss='mean_squared_error ')

50
51 ann.fit(X=data.X_train[train_index],

52 Y=data.Y_train[train_index],

53 batch_size =128,

54 epochs=epochs ,

55 validation_data =(data.X_train[validation_index], data.Y_train[validation_index]))

56 t1 = time.time()

57
58 history_loss = ann.model.history.history['loss']

59 history_val_loss = ann.model.history.history['val_loss ']

60
61 min_train_losses.append(min(history_loss))

62 min_validation_losses.append(min(history_val_loss))

63 fit_times.append(t1 - t0)

64
65 mean_fit_time = np.mean(fit_times)

66 mean_train_loss = np.mean(min_train_losses)

67 mean_validation_loss = np.mean(min_validation_losses)

68
69 Keras_backend.clear_session ()

70 return mean_train_loss , mean_validation_loss , mean_fit_time

71
72 def refit(individual , data , model_filepath , epochs =50000):

73 num_neurons , activation , optimizer , kernel_initializer , bias_initializer = individual

74 ann = ANN(input_dim=data.input_dim , output_dim=data.output_dim)

75
76 modelcheckpoint = callbacks.ModelCheckpoint(model_filepath ,

77 monitor='val_loss ',

78 verbose=0,

79 save_best_only=True ,

80 save_weights_only=False ,

81 mode='min', period =1)

82 ann.callbacks.append(modelcheckpoint)

83
84 ann.build_model(activation=activation ,

85 hidden_layers =[num_neurons],

86 optimizer=optimizer ,

87 kernel_initializer=kernel_initializer ,

88 bias_initializer=bias_initializer ,

89 loss='mean_squared_error ')

90
91 ann.fit(data.X_train , data.Y_train , batch_size =128, epochs=epochs ,

92 validation_data =(data.X_test , data.Y_test))

93 ann.history = ann.model.history.history

94
95 ann.model = load_model(model_filepath) # Load model with best validation score

96 return ann

97
98 def export_predictions(self,database , projectname , trainfilename , data):

99 prediction_directory = Folder(database.path , projectname)

100 prediction_filename = trainfilename.replace('traindata ', 'prediction -ann')

101 prediction_file = File(prediction_directory.path , prediction_filename , '.csv')

102 global prediction_dict

103 prediction_dict ={

104 'Y_train_true ': data.Y_train ,

105 'Y_train_predicted ': self.best_ann.predict(data.X_train). reshape (1,-1)[0],

106 'Y_test_true ': data.Y_test ,

107 'Y_test_predicted ': self.best_ann.predict(data.X_test). reshape (1, -1)[0]

108 }

109 prediction_df = pd.DataFrame ({key: pd.Series(value) for key , value in prediction_dict.items ()})

110 prediction_df.to_csv(prediction_file.path , index=False)

111
112 def custom_mutation(mutant , toolbox):

113 """ Since the individual contains different data types in each attribute , no standard mutation function is available

114 So instead , this custom mutation function performs a crossover operation between the selected individual

115 and a randomly generated new individual."""

116
117 # for index , attribute in enumerate(random_individual):

118 # if random.random () < indpb:

119 # mutant[index] = attribute

129

120
121 equal_gene = True

122 while equal_gene:

123 # When the selected gene between the mutant and the random individual is equal ,

124 # create a new individual and select a new index

125 random_individual = toolbox.individual ()

126 index = random.randint(0, len(mutant)-1) # Swap the attribute of the random individual with index to mutant

127 equal_gene = mutant[index] == random_individual[index]

128
129 mutant[index] = random_individual[index]

130 return mutant ,

131
132
133 # ===

134 #

135 # Define class es

136 #

137 # ===

138
139
140 class Logfile(File):

141 def __init__(self, directory , name , extension):

142 super (). __init__(directory , name , extension)

143
144 self.dataframe = pd.DataFrame ()

145
146 def log_generation(self, population):

147 log = pd.DataFrame ({

148 'parameters ': [ind for ind in population],

149 'fitness ': [ind.fitness.values [0] for ind in population]

150 })

151
152 def add_individual(self, individual , generation):

153 newlog = pd.DataFrame ({

154 'generation ': generation ,

155 'num_neurons ': [individual [0]],

156 'activation ': [individual [1]],

157 'optimizer ': [individual [2]],

158 'kernel_initializer ': [individual [3]],

159 'bias_initializer ': [individual [4]],

160 'mean_fit_time ': [individual.mean_fit_time],

161 'mean_train_loss ': [individual.mean_train_loss],

162 'mean_validation_loss ': [individual.fitness.values [0]]

163 })

164 self.dataframe = self.dataframe.append(newlog)

165 # Export intermediate results to csv file

166 self.dataframe.to_csv(self.path)

167
168 def export_excel(self):

169 # Final frame can be exported to excel file.

170 # Only final dataframe exported to excel since modifying an opened excel file raises errors

171 writer = pd.ExcelWriter(self.path.replace('.csv', '.xlsx'), engine='xlsxwriter ')

172 self.dataframe.to_excel(writer , sheet_name='Sheet1 ', index=False)

173 writer.save()

174
175
176
177
178
179
180
181
182
183
184
185 class GeneticAlgorithm:

186
187 def __init__(self, parameter_grid , num_generations =3, population_size =10, CXPB =0.1, MUTPB =0.9,

188 elite_portion =0.1, tolerance =1e-6, tournament_size =3):

189 self.parameter_grid = parameter_grid

190 self.num_generations = num_generations

130 C. Genetic Algorithm classes

191 self.population_size = population_size

192 self.CXPB = CXPB

193 self.MUTPB = MUTPB

194 self.elite_portion = elite_portion

195 self.tolerance = tolerance

196 self.tournament_size = tournament_size

197
198 # Create class es for the Fitness and the individual

199 creator.create("MinimizeLoss", base.Fitness , weights =(-1.0 ,))

200 creator.create("Individual", list , fitness=creator.MinimizeLoss)

201
202 # Register special functions in the toolbox

203 self.register_toolbox ()

204
205 def register_toolbox(self):

206 self.tb = base.Toolbox ()

207
208 self.func_sequence = []

209 for key , value in self.parameter_grid.items ():

210 """ Add functions to the sequence which will be called when initializing the individual """

211 self.tb.register(key , random.choice , self.parameter_grid[key])

212 self.func_sequence.append(getattr(self.tb , key))

213
214 self.tb.register("evaluate", self.evaluate_individual)

215 self.tb.register("individual", tools.initCycle , creator.Individual , self.func_sequence , 1)

216 self.tb.register("population", tools.initRepeat , list , self.tb.individual)

217 self.tb.register("crossover", tools.cxOnePoint)

218 self.tb.register("mutate", custom_mutation)

219 self.tb.register("select", tools.selTournament , tournsize=self.tournament_size)

220
221 # Register special 'map' function from the futures module to enable parallel processing

222 self.tb.register("map", futures.map)

223
224 def attach_logfile(self, logfile):

225 self.logfile = logfile

226
227 def attach_data(self, data):

228 self.data = data

229 self.X_train = data.X_train

230 self.Y_train = data.Y_train

231
232 def evaluate_individual(self, individual):

233 if str(individual) not in self.evaluated_individuals.keys ():

234 mean_train_loss , mean_validation_loss , mean_fit_time = evaluate_ann_crossval(individual , self.data)

235 self.evaluated_individuals[str(individual)] = (mean_train_loss , mean_validation_loss , mean_fit_time)

236 else:

237 mean_train_loss , mean_validation_loss , mean_fit_time = self.evaluated_individuals[str(individual)]

238
239 individual.mean_fit_time = mean_fit_time

240 individual.mean_train_loss = mean_train_loss

241 individual.mean_validation_loss = mean_validation_loss

242
243 fitness = mean_validation_loss

244 individual.fitness.values = fitness ,

245 return fitness ,

246
247 def evaluate_population(self, population , generation):

248 # self.tb.map(self.evaluate_individual , population)

249
250 for individual in population:

251 # individual.generation = generation

252 self.evaluate_individual(individual)

253 self.logfile.add_individual(individual , generation)

254 # Replace best individual with new individual in case it performs better

255 if individual.fitness.values [0] < self.best_individual.fitness.values [0]:

256 self.best_individual = individual

257
258 def run_evolution(self):

259 self.best_individual = self.tb.individual ()

260 self.best_individual.fitness.values = 1e9,

261 self.evaluated_individuals = {}

131

262
263 generation = 0

264 population = self.tb.population(n=self.population_size) # Create initial population

265 self.evaluate_population(population , generation)

266 # [self.logfile.add_individual(individual , generation) for individual in population]

267
268 # Loop over generations

269 for generation in range(1, self.num_generations):

270 # Make a clone of the population for further manipulation

271 offspring = [self.tb.clone(individual) for individual in population]

272
273 # --------- SELECTION

274 elite = tools.selBest(offspring , int(self.elite_portion*len(offspring))) # Select elite for current gene pool

275 # elite_nextgen = [self.tb.clone(individual) for individual in elite] # Clone elite for next generation

276 tournament_selection = self.tb.select(offspring , int(len(offspring)-len(elite)))

277 offspring = elite + tournament_selection # Offspring for mutation and crossover

278
279 """ Create a NEW copy of offspring to ensure that each selected individual remains also

280 a UNIQUE python object. This avoids equal mutation for equal individuals. """

281 offspring = [self.tb.clone(individual) for individual in offspring]

282
283
284 # --------- CROSSOVER

285 for child1 , child2 in zip(offspring [::2], offspring [1::2]):

286 if child1 != child2: # Avoid crossover between identical individuals (unnecessary computing)

287 if random.random () < self.CXPB:

288 self.tb.crossover(child1 , child2)

289 del child1.fitness.values

290 del child2.fitness.values

291
292
293 # --------- MUTATION

294 for mutant in offspring:

295 print(mutant)

296 if random.random () < self.MUTPB:

297 # print('mutation! : ', mutant)

298 self.tb.mutate(mutant , self.tb)

299 # print('after: ', mutant)

300 del mutant.fitness.values

301 else:

302 print('No mutation ')

303
304
305 # Compute fitnesses of new individuals with invalid fitness values

306 invalid_inds = [ind for ind in offspring if not ind.fitness.valid]

307 self.evaluate_population(invalid_inds , generation)

308
309 population = offspring

310 # [self.logfile.add_individual(individual , generation) for individual in population]

311 # End of looping over generations

312
313 if __name__ == '__main__ ':

314 parameter_options = {

315 'num_neurons ': [num for num in range(1, 50)],

316 'activation ': ['linear ', 'tanh', 'relu', 'elu', 'selu', 'exponential ', 'sigmoid ', 'softplus '],

317 'optimizer ': ['rmsprop ', 'sgd', 'adam', 'adagrad ', 'adadelta ', 'adamax ', 'nadam '],

318 'kernel_initializer ': ['random_uniform ', 'constant ', 'zeros'],

319 'bias_initializer ': ['random_uniform ', 'constant ', 'zeros'],

320 }

321
322 GA = GeneticAlgorithm(parameter_options)

323
324 tb = GA.tb

325
326 pop = tb.population (10)

327
328
329 import random

330 for ind in pop:

331 ind.fitness.values = random.random(),

332 print(ind , ind.fitness.values [0])

132 C. Genetic Algorithm classes

333
334 gen = 1

335 offspring = [tb.clone(individual) for individual in pop]

336 print(offspring)

337
338 print('Selection :....')

339 elite = tools.selBest(offspring , int (1)) # Select elite for current gene pool

340 # elite_nextgen = [self.tb.clone(individual) for individual in elite] # Clone elite for next generation

341 tournament_selection = tb.select(offspring , int (9))

342 offspring = elite + tournament_selection # Offspring for mutation and crossover

343
344 offspring = [tb.clone(individual) for individual in offspring]

345
346 for i, m in zip(pop , offspring):

347 print(i, '--', m)

348
349 selected_offspring = [tb.clone(ind) for ind in offspring]

350
351
352 print('Crossover :...')

353 for child1 , child2 in zip(offspring [::2], offspring [1::2]):

354 if child1 != child2: # Avoid crossover between identical individuals (unnecessary computing)

355 if random.random () < 1:

356 tb.crossover(child1 , child2)

357 del child1.fitness.values

358 del child2.fitness.values

359
360
361 print('Mutation :...')

362 for mutant in offspring:

363 if random.random () < 0.9:

364 tb.mutate(mutant , tb)

365 del mutant.fitness.values

366
367 for i,m in zip(selected_offspring , offspring):

368 print(i, '--', m, m.fitness.values)

D
APDL classes

Script for creating the generating the datasets by running FE analyses is ANSYS

1 import os

2 import pandas as pd

3 import pickle

4 from data import Folder , File , Data , PrepareTrainData

5 import doepy

6 from doepy import build

7
8
9

10 def initialize_projects_from_file(excel_path , destination_folderpath):

11 excelframe = pd.read_excel(excel_path , comment='#')

12 projects = []

13 for excel_row in excelframe.itertuples ():

14 if excel_row.include == 'yes':

15 project = Project(parent_directory=destination_folderpath ,

16 project_number=excel_row.project_number ,

17 keyword=excel_row.keyword ,

18 template_filename=excel_row.template_filename ,

19 template_geometry_filename=excel_row.template_geometry ,

20 samples=excel_row.samples)

21 project.read_parameters(excel_row)

22 projects.append(project)

23 return projects

24
25
26 def create_designofexperiments(project_samples , parameters_free , parameters_fixed , parameter_constraints):

27 DOE_list = []

28 for n_samples in project_samples:

29 DOE = DesignOfExperiments(n_samples , parameters_free , parameters_fixed , parameter_constraints)

30
31 # if not os.path.exists(os.path.join(project.folder.path , DOE.name)):

32 DOE.folder = Folder(project.folder.path , DOE.name)

33 DOE.generate(n_goal=n_samples , max_iterations =50)

34 DOE.create_designpoints ()

35
36 DOE_list.append(DOE)

37 return DOE_list

38
39
40
41 class Project:

42 available_parameters = ['SPH', 'SPW', 'SPT', 'NOTS', 'TSWH', 'TSWT', 'TSFW', 'TSFT',

43 'CWH', 'CWT', 'CFW', 'CFT', 'Q0', 'Q1', 'Syy', 'Dy', 'Szz', 'AMP',

44 'MSHSIZE ', 'LONGSUP ', 'EQVIMP ', 'MATNONL ']

45
46 #

47 # parameter_constraints = [lambda m: m['SPH '] / (m['NOTS '] + 1) > 240,

48 # lambda m: m['SPH '] / (m['NOTS '] + 1) < 800,

133

134 D. APDL classes

49 # lambda m: m['SPH '] / (m['NOTS '] + 1) - m['TSFW '] > 150,

50 # lambda m: m['TSFT '] > m['TSWT '],

51 # lambda m: m['TSWH '] < m['CWH '],

52 # lambda m: m['Q0 '] > m['Q1 '],

53 # lambda m: m['Szz '] < 0.5*m['Syy ']

54 #]

55
56 parameter_constraints = []

57
58
59 def __init__(self, parent_directory , project_number , keyword , template_filename , template_geometry_filename , samples , data_mod='raw'):

60 self.parent_directory = parent_directory

61 self.number = project_number

62 self.keyword = keyword

63 self.template_filename = template_filename

64 self.template_geometry_filename = template_geometry_filename

65 self.samples = [int(num) for num in samples.strip('()').split(',')]

66 self.data_mod = data_mod

67
68 self.index_mech = int(self.number.split('-')[0])

69 self.name = 'project ' + str(self.number)

70 self.folder = Folder(parent_directory , self.name)

71
72 self.DOE_list = []

73 self.parameters_free = {}

74 self.parameters_fixed = {}

75
76 def read_parameters(self, excel_row):

77 for parameter_name in self.available_parameters:

78 # Get the raw cell values from a single row in the excel file

79 cellvalue = getattr(excel_row , parameter_name)

80 value_list = [val for val in cellvalue.strip('()').split(',')]

81
82 # Convert the values to a floating point number if possible. Otherwise string

83 for i, val in enumerate(value_list):

84 try:

85 value_list[i] = float(val)

86 except ValueError:

87 value_list[i] = str(val)

88
89 # Add parameter ranges to the respective dictionaries

90 if len(value_list) == 1:

91 self.parameters_fixed[parameter_name] = value_list

92 elif len(value_list) == 2:

93 self.parameters_free[parameter_name] = value_list

94
95 def extract_outputparameters_from_results(self, doe):

96 self.outputparameters = list(doe.resultsframe.drop(

97 labels=list(self.parameters_free.keys ()) + list(self.parameters_fixed.keys()), axis =1))

98
99 def create_infofile(self, database_results):

100 self.infofilename = 'info_{}'.format(self.name)

101 self.infofile_folder = Folder(database_results.path , self.name)

102 self.infofile = File(self.infofile_folder.path , self.infofilename , '.csv')

103
104 info = {

105 'project_num ': [self.number],

106 'project_keyword ': [self.keyword],

107 'num_free_parameters ': [len(self.parameters_free)],

108 'free_parameters ': [list(self.parameters_free.keys ())],

109 'data_mod ': self.data_mod

110 }

111 self.info_df = pd.DataFrame(info)

112 self.info_df.to_csv(self.infofile.path)

113
114 def create_picklefile(self, database_results):

115 self.pickle_filename = 'info_{}'.format(self.name)

116 self.picklefile_folder = Folder(database_results.path , self.name)

117 self.picklefile = File(self.picklefile_folder.path , self.pickle_filename , '.p')

118 database_results.project_pickles.append(self.picklefile)

119

135

120 self.pickle_filename = f'projectobject_{self.name}'

121 with open(self.picklefile.path , 'wb') as pf:

122 pickle.dump(self, pf)

123
124
125 class DesignOfExperiments:

126 # Remove project

127 # Add conditions , parameters free , parameters fixed

128 # Create resultsfile method with one folder argument. but call the method twice instead of copying

129 def __init__(self, n_samples , parameters_free , parameters_fixed , parameter_constraints):

130 self.n_samples = n_samples

131 self.parameters_free = parameters_free

132 self.parameters_fixed = parameters_fixed

133 self.parameter_constraints = parameter_constraints

134
135 self.name = 'doe -{}dp'.format(self.n_samples)

136 self.designpoints = []

137
138
139 def generate(self, n_goal , max_iterations):

140 n = n_goal

141 diff = n

142 i = 0

143 while diff != 0 and i < max_iterations:

144 i+=1

145 self.random_sample(n)

146 self.filter ()

147 n_feasible = len(self.matrix)

148 ratio_feasible = n_feasible / n

149 diff = n_goal - n_feasible

150 if i <= 10:

151 n +=int(diff / ratio_feasible)

152 else:

153 n += diff

154
155 def modify_discrete(self, parameter , range , action):

156 """ Three actions can be performed with this function

157 1) Modify: Modifies the values in parameters_free attribute of project class with a specified range

158 in order to accommodate for correct sampling of discrete variables. The modification action ensures that

159 the probability of selecting the extreme values of the discrete variable is equal to the

160 prob. of selecting other values in the value options

161 2) Round: The free discrete variable is sampled as a real valued number. The round action rounds the

162 sampled value to the nearest integer

163 3) Restore: Restores the project attribute parameters free back to the original form;

164 without the ranges added to the extreme values of the discrete variables

165 """

166 original = self.parameters_free

167 key = parameter

168 if action is 'modify ':

169 # Add the specified range to the maximum value of discrete variable and subtract it from the minimum value

170 if key in self.parameters_free:

171 self.parameters_free[key][0] -= range

172 self.parameters_free[key][0] += range

173
174 elif action is 'round':

175 # Round off values back to integers

176 self.matrix[key] = self.matrix[key].apply(round)

177
178 elif action is 'restore ':

179 # Set project attribute parameters_free back to original

180 self.parameters_free = original

181
182 def random_sample(self, n_samples):

183 self.modify_discrete(parameter='NOTS', range =0.4999 , action='modify ')

184
185 # Draw LHS samples from free parameters

186 self.matrix = doepy.build.space_filling_lhs(

187 self.parameters_free ,

188 n_samples

189)

190

136 D. APDL classes

191 # Add fixed parameters to the DOE

192 for key , val in self.parameters_fixed.items ():

193 self.matrix[key] = val[0]

194
195 # For discrete parameters , round off values to integers

196 self.modify_discrete(parameter='NOTS', range =0.499 , action='round')

197 self.modify_discrete(parameter='NOTS', range =0.499 , action='restore ')

198
199 def filter(self):

200 if self.parameter_constraints is not None:

201 for condition in self.parameter_constraints:

202 self.matrix = self.matrix[condition(self.matrix)]

203 self.matrix.reset_index(drop=True , inplace=True)

204
205 def create_designpoints(self):

206 # Create instances of designpoints in DOE and add parameter values

207 for i, row in self.matrix.iterrows ():

208 dp = DesignPoint(self, i)

209 dp.inputparameters = self.matrix.iloc[i,:]. to_dict ()

210 self.designpoints.append(dp)

211
212 def create_resultsfile(self, destination_folderpath):

213 self.resultsfilename = 'designpoints_ {}'.format(self.name)

214 self.resultsfile = File(destination_folderpath , self.resultsfilename , '.csv')

215
216 self.resultsframe = pd.DataFrame ()

217 for designpoint in self.designpoints:

218 print(designpoint.name)

219 newrow = pd.read_csv(designpoint.parametervaluesfile.path , header=None).iloc[:, 1]

220 self.resultsframe = self.resultsframe.append(newrow)

221 print(newrow)

222
223 columns = list(pd.read_csv(self.designpoints [0]. parametervaluesfile.path , header=None).iloc[:, 0])

224 print(columns)

225 self.resultsframe.columns = columns

226 self.resultsframe.reset_index(drop=True , inplace=True)

227 self.resultsframe.to_csv(self.resultsfile.path)

228
229 def read_resultsfile(self, resultsfilepath):

230 self.resultsframe = pd.read_csv(resultsfilepath , index_col =0)

231
232
233 def create_resultsfile_directfolder(self, destination_folderpath):

234 self.resultsfilename = 'designpoints_ {}'.format(self.name)

235 self.resultsfile = File(destination_folderpath , self.resultsfilename , '.csv')

236
237 self.resultsframe = pd.DataFrame ()

238 i=0

239 for dp_foldername in os.listdir(self.folder.path):

240 dp_folderpath = os.path.join(self.folder.path , dp_foldername)

241 for filename in os.listdir(dp_folderpath):

242 if 'parametervalues ' in filename:

243 parametervaluespath = os.path.join(dp_folderpath , filename)

244
245
246
247
248 newrow = pd.read_csv(parametervaluespath , header=None).iloc [:,1]

249 self.resultsframe = self.resultsframe.append(newrow)

250 i+=1

251
252 columns = list(pd.read_csv(parametervaluespath , header=None).iloc[:, 0])

253 self.resultsframe.columns = columns

254 self.resultsframe.reset_index(drop=True , inplace=True)

255 self.resultsframe.to_csv(self.resultsfile.path)

256
257
258 class DesignPoint:

259 def __init__(self, DOE , number =0):

260 self.DOE = DOE

261 self.number = number

137

262
263 self.name = 'dp{}'.format(str(number))

264 self.folder = Folder(self.DOE.folder.path , self.name)

265
266 #self.project = self.DOE.project

267 #self.DOE.designpoints.append(self)

268
269 # Initiate resultsfile for use later

270 self.parametervaluesfile = File(self.folder.path , 'parametervalues ', '.csv')

271
272 def create_inputfile(self, project , templates_folderpath):

273 main_template_path = os.path.join(templates_folderpath , project.template_filename + '.txt')

274 geometry_template_path = os.path.join(templates_folderpath , project.template_geometry_filename + '.txt')

275
276 self.inputfilename = 'inputfile_ {}'.format(self.name)

277 self.inputfile = InputFile(self.folder.path , self.inputfilename , '.inp')

278 self.inputfile.read_templates(main_template_path , geometry_template_path)

279 self.inputfile.add_doc_settings(project , self)

280 self.inputfile.add_parameters(self)

281 self.inputfile.add_geometry ()

282 #self.choose_method_nonlinear(self.project)

283 # self.inputfile.add_imperfections(templates_folderpath) # In case of eqv imperfection

284 self.inputfile.add_upgeomcommand(self) # In case of eigenvalue analysis

285 self.inputfile.add_writeinputparameters(project)

286 self.inputfile.add_delete_commands(self.name ,

287 extensions =['rst', 'full', 'esav', 'R001', 'RDB', 'MODE', 'LDHI', 'DSP',

288 'db', 'mntr', 'stat'])

289 self.inputfile.write ()

290
291 #self.DOE.project.database.inputfiles.append(self.inputfile)

292 self.create_outputfile ()

293
294 def choose_method_nonlinear(self, project):

295 if 'eqv_imp ' in project.keyword:

296 self.inputfile.add_imperfections(project)

297 elif 'upgeom ' in project.keyword:

298 self.inputfile.add_upgeomcommand(self)

299 else:

300 print('Invalid method ')

301
302 def create_outputfile(self):

303 self.outputfilename = 'outputfile_ {}'.format(self.name)

304 self.outputfile = File(self.folder.path , self.outputfilename , '.out')

305
306
307 class InputFile(File):

308
309 def __init__(self, directory , name , extension):

310 super (). __init__(directory , name , extension)

311
312 def read_templates(self, main_template_path , geometry_template_path):

313 with open(main_template_path , 'r') as f:

314 self.content = f.read()

315 with open(geometry_template_path , 'r') as f:

316 self.geometry_template = f.read()

317
318 def add_doc_settings(self, project , designpoint):

319 self.filename = '{}_{}'.format(project.name , designpoint.name)

320 self.doc_settings_string = '/FILNAME , {} \n/CWD , \'{}\' \n/TITLE , {} \n'.format(

321 designpoint.name , designpoint.folder.path , project.name)

322 self.content = self.content.replace('!input_document_settings ', self.doc_settings_string)

323
324 def add_parameters(self, designpoint):

325 self.parameter_strings = []

326 for name , value in designpoint.inputparameters.items ():

327 self.parameter_strings.append('{} = {} \n'.format(name , str(value)))

328 self.content = self.content.replace('!input_parameters ', ''.join(self.parameter_strings))

329
330 # def add_imp(self, designpoint):

331 # if designpoint.inputparameters['EQVIMP '] - 0.0 <= 0.01:

332 # self.add_upgeomcommand(designpoint)

138 D. APDL classes

333 # elif designpoint.inputparameters['EQVIMP '] - 1.0 <= 0.01:

334 # pass

335 # else:

336 # pass

337
338
339
340 def add_geometry(self):

341 self.content = self.content.replace('!input_geometry_codes ', self.geometry_template)

342
343 def add_imperfections(self, templates_folderpath):

344 with open(os.path.join(templates_folderpath , 'template_IMP2.txt'), 'r') as f:

345 imperfection_string = f.read()

346 #

347 # delete_string = '\nEWRITE ,elementsfile ,elem\nALLSEL\nACLEAR ,all\nADELE ,all\n\n'

348 # redraw_string = '! - Redraw nodes with imperfections\n*do,i,1,ntot\nnodenum = nodes(i,1)\n' \

349 # 'x_new = nodes(i,2) + DISPL(i,2)\ ny_new = nodes(i,3) + DISPL(i,3)\n' \

350 # 'z_new = nodes(i,4) + DISPL(i,4)\nN, nodenum , x_new , y_new , z_new\n*enddo\n\n' \

351 # '! Read elements file\nEREAD ,elementsfile ,elem'

352
353 self.content = self.content.replace('!input_imperfections ', imperfection_string)

354
355 def add_upgeomcommand(self,designpoint , scale =1):

356
357 linbuc_string = 'ALLSEL\n/SOL\nANTYPE , static\npstres , on\neqslv , sparse\nSOLVE\n\nFINI\n\nn_modes =1\n\n' \

358 '/SOL\nantype ,buckle\nbucopt ,lanb ,n_modes\nmxpand ,n_modes ,,,yes\nSOLVE\n\nFINI\n\n/PREP7\n'

359 upgeom_string = f'/PREP7\nupgeom ,AMP ,1,1,{ designpoint.name},rst\n\n'

360
361 self.content = self.content.replace('!input_upgeom_command ', upgeom_string)

362
363 def add_writeinputparameters(self, project):

364 write_strings = []

365 for key in project.parameters_free:

366 write_strings.append('*VWRITE , \'{},\', {} \n(A, F)\n'.format(key , key))

367 for key in project.parameters_fixed:

368 write_strings.append('*VWRITE , \'{},\', {} \n(A, F)\n'.format(key , key))

369 self.content = self.content.replace('!input_writeinputparameters ', ''.join(write_strings))

370
371 def add_delete_commands(self, filename , extensions):

372 self.delete_commands = []

373 for ext in extensions:

374 self.delete_commands.append('/DELETE , {}, {},, \n'.format(filename , ext))

375 self.content = self.content.replace('!input_delete_commands ', ''.join(self.delete_commands))

376
377 def add_inputline(self, designpoint):

378 newline = '/INPUT , \'{}\', \'inp\', \'{}\', , 0 \n'.format(designpoint.inputfilename ,

379 designpoint.folder.path)

380 self.content.append(newline)

381
382
383 class BatchFile(File):

384 def __init__(self, directory , name , extension):

385 super (). __init__(directory , name , extension)

386 self.content = []

387
388 def add_settings(self, ansyspath , license , num_cores , memory):

389 self.ansyspath = ansyspath

390 self.license = license

391 self.num_cores = num_cores

392 self.memory = memory

393
394 def add_inputfile(self, working_directory , inputfile):

395 newstring = ("\"{}\" -p \"{}\" -np {} -m {}"

396 " -dir \"{}\" -j \"{}\" -s noread"

397 " -b -i \"{}\" -o \"{}\" \n"). format(self.ansyspath , self.license , self.num_cores , self.memory ,

398 working_directory ,

399 inputfile.name ,

400 inputfile.path ,

401 os.path.join(self.directory , 'main_outputfile.out'))

402 self.content.append(newstring)

403

139

404
405
406
407
408
409
410 main_database = Folder(directory=r'C:\Users\Thomas\Documents\Master Thesis ', name='main_database_final ')

411 database_apdl_files = Folder(main_database.path , 'database_apdl_files ')

412 database_apdl_results = Folder(main_database.path , 'database_apdl_results ')

413 database_traindata = Folder(main_database.path , 'database_traindata ')

414 main_apdl_inputfolder = Folder(database_apdl_files.path , name='main_apdl_input ')

415 apdl_templates = Folder(os.getcwd(), name='apdl_templates ')

416
417 batchfile = BatchFile(main_apdl_inputfolder.path , 'batchfile ', '.bat')

418 batchfile.add_settings(ansyspath=r'C:\ Program Files\ANSYS Inc\v192\ansys\bin\winx64\MAPDL.exe',

419 license='aa_t_a ', num_cores=8, memory='2056')

420
421 # Create project objects

422 projects = initialize_projects_from_file(excel_path='project_definition_finalann.xlsx',

423 destination_folderpath=database_apdl_files.path)

424
425
426
427
428
429 if __name__ == "__main__":

430 # ===

431 # Create DOE's, input files and let ANSYS run the analyses

432 # ===

433
434 # Generate a DOE's for each project and write individual inputfiles

435 print('Create DOEs')

436 for project in projects:

437 project.DOE_list = create_designofexperiments(project.samples ,

438 project.parameters_free ,

439 project.parameters_fixed ,

440 project.parameter_constraints)

441 for doe in project.DOE_list:

442 for designpoint in doe.designpoints:

443 designpoint.create_inputfile(project , apdl_templates.path)

444 batchfile.add_inputfile(working_directory=designpoint.folder.path ,

445 inputfile=designpoint.inputfile)

446
447 print('Write batchfiles ')

448 batchfile.write()

449
450
451
452 # # # ===

453 # # # Export the results and create training datasets

454 # # # ===

455
456 # Export the raw results from the ANSYS analyses as csv file

457 print('Export raw results ')

458 for project in projects:

459 copyfolder = Folder(database_apdl_results.path , project.name)

460 project.resultsfiles_folder = copyfolder

461 for doe in project.DOE_list:

462 # doe.create_resultsfile(destination_folderpath=project.folder.path)# Choose this if to use direct dp objects

463 # doe.create_resultsfile(destination_folderpath=copyfolder.path)

464 doe.create_resultsfile_directfolder(destination_folderpath=copyfolder.path) # Choose this to read from DOE folder

465 project.extract_outputparameters_from_results(doe) # Add list of output parameters to project object

466
467
468 # Modify the raw ANSYS results to clean training data files

469 # TODO: Make Data class and PrepareTraindata class more convenient and logical. Maybe combine to one class

470 for project in projects:

471 project.traindata_files = []

472
473 for doe in project.DOE_list:

474 traindata = PrepareTrainData(doe , project)

140 D. APDL classes

475 traindata.standard_modification(traindata.selected_output[project.number])

476 traindata.export(database_traindata)

477 project.traindata_files.append(traindata.traindatafile)

E
Data classes

Script containing classes used for convenient data handling

1 import os

2 import pandas as pd

3 from sklearn.model_selection import train_test_split

4 import sklearn.preprocessing as preprocessing

5
6
7
8 class Folder:

9 def __init__(self, directory , name):

10 self.directory = directory

11 self.name = name

12 self.path = os.path.join(self.directory , self.name)

13
14 self.subfolders = []

15 self.files = []

16
17
18 if not os.path.exists(self.path):

19 os.makedirs(self.path)

20
21 def add_subfolder(self, folder):

22 self.subfolders.append(folder)

23
24
25 class File:

26 def __init__(self, directory , name , extension):

27 self.directory = directory

28 self.name = name

29 self.extension = extension

30 self.path = os.path.join(self.directory , self.name + self.extension)

31 self.content = ''

32
33 def write(self):

34 with open(self.path , 'w') as f:

35 if type(self.content) is str:

36 f.write(self.content)

37 elif type(self.content) is list:

38 self.content = ''.join(self.content)

39 f.write(self.content)

40 else:

41 print('Invalid file content. Not able to write file.')

42
43
44 class PrepareTrainData:

45
46 selected_output = {

47 '0-0-0-0': 'ux_max ',

48 '1-1-1-1': 'ux_max ',

141

142 E. Data classes

49 '1-2-1-1': 'ux_max ',

50 '1-3-1-1': 'ux_max ',

51 '1-4-1-1': 'ux_max ',

52 '1-5-1-1': 'ux_max ',

53 '2-1-1-1': 'L1',

54 '2-2-1-1': 'L1',

55 '2-3-1-1': 'L1',

56 '2-4-1-1': 'L1',

57 '2-5-1-1': 'L1',

58 '3-1-2-1': 'SIGMXALL ',

59 '3-1-2-2': 'UXMXALL ',

60 '3-1-2-3': 'SIGMXPLM ',

61 '3-1-2-4': 'SIGMXSTM ',

62 '3-1-2-5': 'L1',

63 '4-0-1-1': 'SIGMXAL ',

64 '4-0-1-2': 'FY',

65 '4-0-2-1': 'SIGMXAL ',

66 '4-1-1-1': 'SGMXPL ',

67 '4-1-1-2': 'FY',

68 '4-2-1-1': 'SGMXPL ',

69 '4-2-1-2': 'FY',

70 '5-1-1-1': 'EPMXPL ',

71 '5-1-1-2': 'FY',

72 '5-2-1-1': 'EPMXPL ',

73 '5-2-1-2': 'FY',

74 '6-1-1-1': 'SGMXPL ',

75 '6-1-1-2': 'SGMXST ',

76 '6-1-1-3': 'FY',

77 '6-2-1-1': 'SGMXPL ',

78 '6-2-1-2': 'SGMXST ',

79 '6-2-1-3': 'FY'

80 }

81
82 def __init__(self, DOE , project):

83 self.DOE = DOE

84 self.doe_name = DOE.name

85 self.project = project

86 self.resultsframe = self.DOE.resultsframe

87 self.newframe = self.DOE.resultsframe.copy()

88
89 def keep_free_parameters(self):

90 fixed_parameters = list(self.project.parameters_fixed.keys ())

91 self.newframe.drop(labels=fixed_parameters , axis=1, inplace=True)

92
93 def select_output_parameters(self, selected_output_parameters):

94 output_parameters_to_drop = []

95 for parameter in self.project.outputparameters:

96 if parameter not in selected_output_parameters:

97 output_parameters_to_drop.append(parameter)

98 self.newframe.drop(labels=output_parameters_to_drop , axis=1, inplace=True)

99
100 def set_new_project_number(self, modnum):

101 self.mod_project_name = self.project.name [:-1] + str(modnum)

102
103 def export(self, database_traindata):

104 self.traindatafilename = 'traindata_ {}_{}'.format(self.project.name , self.doe_name)

105 self.traindata_projectfolder = Folder(database_traindata.path , self.project.name)

106 self.traindatafile = File(self.traindata_projectfolder.path , self.traindatafilename , '.csv')

107
108 self.newframe.to_csv(self.traindatafile.path)

109
110 def standard_modification(self, selected_output_parameters):

111 self.keep_free_parameters ()

112 self.select_output_parameters ([selected_output_parameters])

113 self.set_new_project_number (1)

114
115
116 class Data:

117 def __init__(self):

118 pass

119

143

120 def insert_data(self, X, Y):

121 self.X = X

122 self.Y = Y

123
124 def read_datafile(self, data_filepath):

125 self.dataframe = pd.read_csv(data_filepath , comment='#', index_col =0)

126
127 def set_output_dim(self, output_dim):

128 self.output_dim = output_dim

129 self.X = self.dataframe.to_numpy ()[:, :-output_dim]

130 self.Y = self.dataframe.to_numpy ()[:, -output_dim]

131
132 def split(self, test_size =0.2, seed =0):

133 X_train , X_test , Y_train , Y_test = train_test_split(self.X, self.Y, test_size=test_size , random_state=seed)

134
135 self.X_train = X_train

136 self.X_test = X_test

137 self.Y_train = Y_train

138 self.Y_test = Y_test

139
140 def scale(self, scaler='minmax '):

141 scaler_options = {

142 'minmax ': preprocessing.MinMaxScaler(feature_range =(0,1)),

143 'standard ': preprocessing.StandardScaler (),

144 'robust ': preprocessing.RobustScaler ()

145 }

146 scaler = scaler_options[scaler]

147 scaler.fit(self.X)

148 self.X_train = scaler.transform(self.X_train)

149 self.X_test = scaler.transform(self.X_test)

150 self.X = scaler.transform(self.X)

151 return scaler

F
Summary classes

Script written for summarizing results of all predictions

1 import pandas as pd

2 import os

3 import matplotlib.pyplot as plt

4 import numpy as np

5 import scipy.stats as stats

6
7 import sklearn.metrics.regression as metrics

8
9

10
11 from data import Folder , File

12
13
14
15
16 class Summary:

17 def __init__(self):

18 self.predictions = []

19 self.dataframe = pd.DataFrame ()

20
21 def addrow(self, prediction):

22 self.predictions.append(prediction)

23 newrow = pd.DataFrame ({

24 'Project number ': [prediction.project_num],

25 'Mechanical problem ': [prediction.index_mech_problem],

26 'Index num vars': [prediction.index_num_vars],

27 'Index value range ': [prediction.index_var_range],

28 'Index data modification ': [prediction.index_data_mod],

29 'Num. variables ': [prediction.num_vars],

30 'Variable names': [prediction.var_names],

31 'Fitting type': [prediction.fitting_type],

32 'Num. Design points ': [prediction.num_dp],

33 'Num. Validation points ': [prediction.num_vp],

34 'Skewness output ': [prediction.skewness_train],

35 'Kurtosis output ': [prediction.kurtosis_train],

36 'Std. output ': [''],

37 'Transformation ': ['None'],

38 'Scaling ': ['None'],

39 'Filtering ': ['None'],

40 'MSE train': [prediction.MSE_train],

41 'MSE validation ': [prediction.MSE_test],

42 'RMSE train': [prediction.RMSE_train],

43 'RMSE validation ': [prediction.RMSE_test],

44 'R2 train': [prediction.R2_train],

45 'R2 validation ': [prediction.R2_test],

46 'MAE train': [prediction.MAE_train],

47 'MAE validation ': [prediction.MAE_test]

48 })

145

146 F. Summary classes

49 self.dataframe = self.dataframe.append(newrow , ignore_index=True)

50
51 def export(self, directory):

52 summaryfile_csv = File(directory , 'summary ', '.csv')

53 summaryfile_excel = File(directory , 'summary ', '.xlsx')

54
55 self.dataframe.to_csv(summaryfile_csv.path)

56 self.dataframe.to_excel(summaryfile_excel.path)

57
58 class Prediction:

59 def __init__(self):

60 pass

61
62 def read_scatterdata(self, prediction_filepath):

63 self.prediction_filepath = prediction_filepath

64 self.Y_train_true = pd.read_csv(self.prediction_filepath , comment='#')['Y_train_true ']. to_numpy ()

65 self.Y_train_predicted = pd.read_csv(self.prediction_filepath , comment='#')['Y_train_predicted ']. to_numpy ()

66 self.Y_test_true = pd.read_csv(self.prediction_filepath , comment='#')['Y_test_true ']. dropna (). to_numpy ()

67 self.Y_test_predicted = pd.read_csv(self.prediction_filepath , comment='#')['Y_test_predicted ']. dropna (). to_numpy ()

68
69 def compute_errors(self):

70 self.MSE_train = metrics.mean_squared_error(self.Y_train_true , self.Y_train_predicted)

71 self.MSE_test = metrics.mean_squared_error(self.Y_test_true , self.Y_test_predicted)

72 self.RMSE_train = np.sqrt(self.MSE_train)

73 self.RMSE_test = np.sqrt(self.MSE_test)

74 self.MAE_train = metrics.mean_absolute_error(self.Y_train_true , self.Y_train_predicted)

75 self.MAE_test = metrics.mean_absolute_error(self.Y_test_true , self.Y_test_predicted)

76 self.R2_train = metrics.r2_score(self.Y_train_true , self.Y_train_predicted)

77 self.R2_test = metrics.r2_score(self.Y_test_true , self.Y_test_predicted)

78
79 def compute_statistics(self):

80 self.skewness_train = stats.skew(self.Y_train_true)

81 self.skewness_test = stats.skew(self.Y_test_true)

82 self.kurtosis_train = stats.kurtosis(self.Y_train_true)

83 self.kurtosis_test = stats.kurtosis(self.Y_test_true)

84 self.std_train = np.std(self.Y_train_true , axis =0)

85 self.std_train = np.std(self.Y_train_true)

86
87 def add_projectinfo(self, project , prediction_filename):

88 self.project_num = project.number

89 self.index_mech_problem = self.project_num.split('-')[0]

90 self.index_num_vars = self.project_num.split('-')[1]

91 self.index_var_range = self.project_num.split('-')[2]

92 self.index_data_mod = self.project_num.split('-')[3]

93 self.description = project.keyword

94 self.num_vars = len(project.parameters_free)

95 self.var_names = list(project.parameters_free.keys ())

96 self.data_mod = project.data_mod

97
98 self.fitting_type = prediction_filename.split('_')[0]. split('-')[1]

99
100 self.num_dp = len(self.Y_train_true)

101 self.num_vp = len(self.Y_test_true)

102
103 def plot_scatter(self, unit):

104 plt.close('all')

105 fig = plt.figure ()

106 ax = fig.add_subplot (111)

107 ax.set(title='Scatterplot true vs. predicted\n{}, n={}'.format(self.fitting_type , self.num_dp),

108 xlabel='True value {}'.format(unit), ylabel='Predicted value {}'.format(unit))

109 ax.plot(self.Y_train_true , self.Y_train_true , color='g')

110 ax.scatter(self.Y_train_true , self.Y_train_predicted , marker='o')

111 ax.scatter(self.Y_test_true , self.Y_test_predicted , marker='x')

112 plt.show()

113
114 def plot_output_boxplot(self):

115 plt.close('all')

116 fig = plt.figure ()

117 ax = fig.add_subplot (111)

118 ax.boxplot(self.Y_train_true)

119

147

120
121
122
123
124
125
126
127
128 from apdl import initialize_projects_from_file

129
130
131 main_database = Folder(directory=r'C:\Users\Thomas\Documents\Master Thesis ', name='main_database_final ')

132 database_apdl_files = Folder(main_database.path , 'database_apdl_files ')

133 projects = initialize_projects_from_file(excel_path='project_definition_finalann.xlsx',

134 destination_folderpath=database_apdl_files.path)

135
136
137
138 database_optimization = Folder(main_database.path , 'database_optimization ')

139
140
141
142 project_nums = [

143 '4-1-1-1', '4-1-1-2', '4-2-1-1', '4-2-1-2',

144 '5-1-1-1', '5-1-1-2', '5-2-1-1', '5-2-1-2',

145]

146
147
148
149 from files import *

150
151 if __name__ == "__main__":

152 summary = Summary ()

153 for project in projects:

154 project.prediction_files = []

155 print(project.name)

156 for filepath in get_files(os.path.join(database_optimization.path , project.name), '.csv'):

157 if 'prediction ' in filepath:

158 print(filepath)

159 project.prediction_files.append(filepath)

160 for prediction_filepath in project.prediction_files:

161 prediction = Prediction ()

162 prediction.read_scatterdata(prediction_filepath=prediction_filepath)

163 prediction.compute_errors ()

164 prediction.compute_statistics ()

165 name = prediction_filepath.split(os.path.join(database_optimization.path , project.name))[-1]

166 name = name.strip(r"\\")

167 prediction.add_projectinfo(project , prediction_filename=name)

168 summary.addrow(prediction)

169 summary.export(directory=database_optimization.path)

G
APDL template file non-linear buckling

analysis stiffened plates

Parts of the commands are re-used from the own produced internship report [31].

1
2 !===

3 ! Start

4 !===

5
6 /CLEAR ,NOSTART

7
8 ! --- Load document settings

9 !input_document_settings

10
11
12
13
14 !===

15 ! Input parameters

16 !===

17
18 ! ---

19 ! Geometry

20 ! ---

21
22 ! --- Load input parameters

23
24 !input_parameters

25
26
27
28
29
30 ! --- Fixed parameters

31 E=210000

32 rho =0.3

33 sigma_y =355

34 density =7850

35
36
37
38
39
40
41 ! --- Compute derived parameters

42
43 *IF ,NOTS ,GT ,0,THEN

44 CTC_T = SPH/(NOTS +1) ! CTC distance t stiffeners

45 FOTS = 1.0* CTC_T ! First offset T stiffeners

149

150 G. APDL template file non-linear buckling analysis stiffened plates

46
47 *ELSEIF ,NOTS ,EQ ,0,THEN

48 CTC_T=SPH

49 *ENDIF

50
51
52 ! Edge displacements computed from stresses

53 Uyy = Syy *0.5* SPW/E

54 Uzz = Szz *0.5* SPH/E

55
56
57
58
59 ! --- Define pi

60 *afun ,rad

61 pi=acos(-1)

62
63
64
65 ! --- Identification numbers necessary for making named selections

66 SPID = 1 ! Skin Plate ID

67 TSWID = 2 ! T stiffener web ID

68 TSFID = 3 ! T stiffener flange ID

69 CWID = 4 ! Column web ID

70 CFID = 5 ! Column flange ID

71
72
73
74
75
76
77
78 !===

79 ! Preprocessor

80 !===

81 /PREP7

82
83 ! Add shell elements: Element Type - Add

84 ET ,1,SHELL181 ! type 1: 4 node shell

85
86
87 ! Set to structural

88 /NOPR

89 KEYW ,PR_SET ,1

90 KEYW ,PR_STRUC ,1

91 KEYW ,PR_THERM ,0

92 KEYW ,PR_FLUID ,0

93 KEYW ,PR_MULTI ,0

94 /GO

95
96
97 ! Set material properties: Material Props - Material Models

98 MPTEMP ,,,,,,,,

99 MPTEMP ,1,0

100 MPDATA ,EX ,1,,E ! Youngs modulus

101 MPDATA ,PRXY ,1,,rho ! Poissons Ratio

102
103
104 ! Select element key options

105 ETCON ,off ! Let not automatically select applicable keyopts

106 KEYOPT ,1,3,2

107 KEYOPT ,1,8,2

108
109
110
111 !--

112 ! Define element thickness and properties

113 !--

114 !EXPLANATION SHELL/MESH ATTRIBUTES

115 ! sect ,sectionID ,elementType ,,sectionName

116 ! secdata , Thickness ,MaterialID ,0, NumberofIntegrationPoints

151

117 ! secoffset ,MID

118 ! seccontrol ,0,0,0, mass/unit area , 1, 1, 1

119
120 sect ,SPID ,shell ,,Skin Plate

121 secdata , SPT ,1,0.0,3

122 secoffset ,MID

123 seccontrol ,,,,0 , , ,

124
125 *IF ,NOTS ,GT ,0,THEN

126 sect ,TSWID ,shell ,,T-webs

127 secdata , TSWT ,1,0,3

128 secoffset ,MID

129 seccontrol ,,,,0 , , ,

130
131 *IF ,TSFW ,GT ,0,THEN

132 sect ,TSFID ,shell ,,T-flanges

133 secdata , TSFT ,1,0,3

134 secoffset ,MID

135 seccontrol ,,,,0 , , ,

136 *ENDIF

137 *ENDIF

138
139
140 sect ,CWID ,shell ,,Column -webs

141 secdata , CWT ,1,0,3

142 secoffset ,MID

143 seccontrol ,,,,0 , , ,

144
145 sect ,CFID ,shell ,,Column -flanges

146 secdata , CFT ,1,0,3

147 secoffset ,MID

148 seccontrol ,,,,0 , , ,

149
150
151
152
153
154
155
156 !===

157 ! Create 3D model

158 !===

159
160 !input_geometry_codes

161
162
163
164
165 !--

166 ! Assign elements to selected components and MESHING

167 !--

168 AATT , MAT , REAL , ELEMENT TYPE , ESYS , SECTION NUMBER

169
170 CMSEL ,S,SP ! Select component

171 AATT , 1, , 1, 0, SPID

172
173 *IF ,NOTS ,GT ,0,THEN

174 CMSEL ,S,TSW

175 AATT , 1, , 1, 0, TSWID

176
177 *IF ,TSFW ,GT ,0,THEN

178 CMSEL ,S,TSF

179 AATT , 1, , 1, 0, TSFID

180 *ENDIF

181 *ENDIF

182
183
184 *IF ,geometry ,EQ ,3,THEN

185 CMSEL ,S,CW

186 AATT , 1, , 1, 0, CWID

187

152 G. APDL template file non-linear buckling analysis stiffened plates

188 CMSEL ,S,CF

189 AATT , 1, , 1, 0, CFID

190 *ENDIF

191
192
193
194
195 ! --- Meshing

196 ! - Set mesh options

197 MSHKEY ,2 ! Use mapped meshing if possible; otherwise , use free meshing

198 MOPT ,split ,2 ! Quad splitting option for non -mapped meshing. If Value = 2 or WARN ,

quadrilateral

199 ! elements in violation of either shape error or

warning limits are split into triangles.

200 MSHAPE ,0,2d ! Mesh with quadrilateral -shaped elements when Dimension = 2D

201
202
203 ! - Set mesh size and mesh areas

204 ESIZE ,40

205 ALLSEL

206 AMESH ,ALL

207
208
209 seltol ,0.0005

210
211 ALLSEL

212
213 ! --- Node components

214 CMSEL ,S, TSF

215 CMSEL ,A, TSW

216 CMSEL ,A, SP

217 NSLA , S, 1

218 NSEL , R, LOC , Y, 0

219 CM, RightEdge , Node

220 NSEL , S, LOC , Y, 0.5* SPW

221 CM, MidEdge , Node

222 NSEL , S, LOC , Z, 0

223 CM, BottomEdge , Node

224 NSEL , S, LOC , Z, SPH

225 CM, TopEdge , Node

226
227 CMSEL , S, RightEdge , Node

228 NSEL , R, LOC , X, 0

229 CM, RightEdgePlate , Node

230 CMSEL , S, MidEdge , Node

231 NSEL , R, LOC , X, 0

232 CM, MidEdgePlate , Node

233 CMSEL , S, BottomEdge , Node

234 NSEL , R, LOC , X, 0

235 CM, BottomEdgePlate , Node

236 CMSEL , S, TopEdge , Node

237 NSEL , R, LOC , X, 0

238 CM, TopEdgePlate , Node

239
240 CMSEL , S, RightEdge , Node

241 NSEL ,U,LOC ,X,0

242 CM,RightEdgeSection ,Node

243 CMSEL , S, MidEdge , Node

244 NSEL ,U,LOC ,X,0

245 CM,MidEdgeSection ,Node

246 CMSEL , S, BottomEdge , Node

247 NSEL ,U,LOC ,X,0

248 CM,BottomEdgeSection ,Node

249 CMSEL , S, TopEdge , Node

250 NSEL ,U,LOC ,X,0

251 CM,TopEdgeSection ,Node

252
253
254 ! - Create node components for reading displacements from eigenmodes in order to apply

right imperfection

255 NSEL ,S,LOC ,X,0

153

256 CM,PlateNodes ,Node

257
258 CMSEL ,S,TSW ,AREA

259 NSLA ,S,1

260 NSEL ,R,LOC ,X,0

261 CM,BottomStiffenersNodes ,Node

262
263 CMSEL ,S,TSW ,AREA

264 NSLA ,S,1

265 NSEL ,R,LOC ,X,TSWH

266 CM,TopStiffenersNodes ,Node

267
268
269
270
271
272 !=======================================

273 ! Enter solution processor

274 !=======================================

275 /SOL

276
277 ALLSEL

278 ! --- Add Boundary conditions

279
280 ! - Fix horizontal edges in x direction

281 D, TopEdge ,UX, 0

282 D, BottomEdge ,UX , 0

283
284 ! - Apply deformations

285 D, RightEdgePlate , UY, Uyy

286 D, RightEdgeSection , UY, Uyy

287
288 ! Support column cross sections in y direction

289 ALLSEL

290 D, TopEdgeSection , UY, Uyy

291 D, BottomEdgeSection , UY, Uyy

292
293
294 ! Apply Szz as a displacement

295 D,TopEdge ,Uz,-Uzz

296 D,BottomEdge ,Uz,Uzz

297
298
299 ! Apply Szz as a stress onto the plate and column section

300 !CMSEL ,S,BottomEdgePLate ,Node

301 !SF ,ALL ,Pres ,Szz*SPT

302 !CMSEL ,S,BottomEdgeSection ,Node

303 !SF ,ALL ,Pres ,Szz*CFT

304
305 !CMSEL ,S,TopEdgePLate ,Node

306 !SF ,ALL ,Pres ,Szz*SPT

307 !CMSEL ,S,TopEdgeSection ,Node

308 !SF ,ALL ,Pres ,Szz*CFT

309
310
311
312
313 ! Support in Z direction at a point halfway column web at flange

314 NSEL ,S,LOC ,X,CWH

315 NSEL ,R,LOC ,Y,0

316 NSEL ,R,LOC ,Z,0.5*SPH -25, 0.5* SPH+25

317 D,ALL ,UZ ,0

318
319
320
321 ! - Apply symmetric boundary conditions

322 CMSEL ,S,MidEdge ,NODE

323 DSYMM ,SYMM ,Y

324
325
326

154 G. APDL template file non-linear buckling analysis stiffened plates

327 ! --- Add surface loads

328 sfcum ,pres ,add

329
330 ! ----- Load contribution number 1 -----!

331 Z0 = 0 $ P0 = Q0

332 Z1 = SPH $ P1 = Q1

333 delta_p = (P1 - P0)/(Z1 - Z0)

334 ESEL ,S,SEC ,,SPID

335 ESEL ,R,CENT ,Z,Z0,Z1

336 SFGRAD ,PRES ,0,Z,Z0 ,delta_p

337 SFE ,ALL ,1,PRES ,0, Q0

338 !----------------

339 /psf ,pres ,norm ,3,1

340
341
342
343 ! - When a nonlinear analysis is performed with an updated geometry following from an

eigenvalue analysis ,

344 ! the commands will be loaded here

345
346 ALLSEL

347 /SOL

348 ANTYPE , static

349 pstres , on

350 eqslv , sparse

351 SOLVE

352
353 FINI

354
355 n_modes =1

356
357 /SOL

358 antype ,buckle

359 bucopt ,lanb ,n_modes

360 mxpand ,n_modes ,,,yes

361 SOLVE

362 FINI

363
364
365 /post1

366 !Retrieve eigenvalues and store in parameters

367 *DO ,mode ,1,n_modes

368 SET ,1,mode

369 *GET ,lambda_%mode%,FREQ

370 *ENDDO

371
372
373
374
375 !input_upgeom_command

376
377
378
379
380
381 ALLSEL

382 ! Perform nonlinear analysis

383 /SOLU

384 ANTYPE , static

385 OUTRE , all , all

386 NLGEOM , on

387 AUTOTS ,auto

388 NSUBST ,1000 ,1000 ,10

389 SOLVE

390
391
392
393
394
395
396

155

397
398 !=======================================

399 ! Enter postprocessor

400 !=======================================

401
402
403 /POST1

404 set , last

405
406
407 ! Set view

408 /VIEW ,1,1,1,-0.50

409 /ANGLE ,1 ,180

410 /VUP ,1,Z

411 /REPLOT

412
413
414
415
416 ! ------------------------------------ Store all results in one array

417 ALLSEL

418 *GET ,numNd ,NODE ,0,COUNT

419 *DIM ,selstat ,ARRAY ,numNd ,1

420 *DIM ,allresults ,ARRAY ,numNd ,7

421 *VGET ,allresults (1,1),NODE ,1,LOC ,X

422 *VGET ,allresults (1,2),NODE ,1,LOC ,Y

423 *VGET ,allresults (1,3),NODE ,1,LOC ,Z

424 *VGET ,allresults (1,4),NODE ,1,U,X

425 *VGET ,allresults (1,5),NODE ,1,U,Y

426 *VGET ,allresults (1,6),NODE ,1,U,Z

427 *VGET ,allresults (1,7),node ,1,S,EQV

428
429
430
431
432
433
434 ! ------------------------------------ Take min -max values of results

435
436 ! --- ALL

437 ALLSEL

438 *VSCFUN ,SIGMXALL ,max ,allresults (1,7)

439 *VSCFUN ,UXMXALL ,max ,allresults (1,4)

440
441
442
443 ! --- PLATE

444
445 CMSEL ,s,PlateNodes ,Node ! Select plate

446 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

447 *VMASK ,selstat (1,1) ! Create masking vector

448 *VSCFUN ,SIGMXPL ,max ,allresults (1,7) ! Store max SEQV of plate

449 *VMASK ,selstat (1,1)

450 *VSCFUN ,UXMXPL ,max ,allresults (1,4) ! Store max UX of plate

451
452
453 CMSEL ,s,PlateNodes ,Node ! Select plate

454 NSEL ,R,LOC ,Y,0 ,0.1* SPW ! Reselect 10% of plate width

next to column

455 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

456 *VMASK ,selstat (1,1) ! Create masking vector

457 *VSCFUN ,SIGMXPLE ,max ,allresults (1,7) ! Store max SEQV of plate along column

458
459 CMSEL ,s,PlateNodes ,Node ! Select plate

460 NSEL ,R,LOC ,Y,0.1*SPW , 0.5* SPW ! Reselect 40% of plate width

461 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

462 *VMASK ,selstat (1,1) ! Create masking vector

463 *VSCFUN ,SIGMXPLM ,max ,allresults (1,7)

464
465
466 ! --- STIFFENERS

156 G. APDL template file non-linear buckling analysis stiffened plates

467
468 CMSEL ,s,TSW ,AREA

469 CMSEL ,a,TSF ,AREA

470 NSLA ,s,1 ! Select

Stiffeners nodes

471 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

472 *VMASK ,selstat (1,1)

473 *VSCFUN ,SIGMXST ,max ,allresults (1,7) ! Store max SEQV of stiffeners

474 *VMASK ,selstat (1,1)

475 *VSCFUN ,UXMXST ,max ,allresults (1,4) ! Store max ux of stiffeners

476
477
478 CMSEL ,s,TSW ,AREA

479 CMSEL ,a,TSF ,AREA

480 NSLA ,s,1

481 NSEL ,R,LOC ,Y,0 ,0.1* SPW

482 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

483 *VMASK ,selstat (1,1)

484 *VSCFUN ,SIGMXSTE ,max ,allresults (1,7) ! Store max SEQV of stiffeners next to

column

485
486 CMSEL ,s,TSW ,AREA

487 CMSEL ,a,TSF ,AREA

488 NSLA ,s,1

489 NSEL ,R,LOC ,Y,0.1*SPW ,0.5* SPW

490 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

491 *VMASK ,selstat (1,1)

492 *VSCFUN ,SIGMXSTM ,max ,allresults (1,7) ! Store max SEQV of stiffeners

midsection

493
494
495
496
497
498 ! --- Create and fill output file with input -output parameters

499 *cfopen ,parametervalues ,csv ,,

500 !input_writeinputparameters

501 *VWRITE , 'L1,', lambda_1

502 (A,F)

503 *VWRITE ,'UXMXALL ,', UXMXALL

504 (A,F)

505 *VWRITE ,'UXMXPL ,', UXMXPL

506 (A,F)

507 *VWRITE ,'UXMXST ,', UXMXST

508 (A,F)

509 *VWRITE ,'SIGMXALL ,', SIGMXALL

510 (A,F)

511 *VWRITE ,'SIGMXPL ,', SIGMXPL

512 (A,F)

513 *VWRITE ,'SIGMXPLM ,', SIGMXPLM

514 (A,F)

515 *VWRITE ,'SIGMXPLE ,', SIGMXPLE

516 (A,F)

517 *VWRITE ,'SIGMXST ,', SIGMXST

518 (A,F)

519 *VWRITE ,'SIGMXSTM ,', SIGMXSTM

520 (A,F)

521 *VWRITE ,'SIGMXSTE ,', SIGMXSTE

522 (A,F)

523 *CFclose

524
525
526 FINI

527
528 ! --- Delete unneccesary files in order to save disk space

529 !input_delete_commands

H
APDL template file non-linear buckling

analysis unstiffened plates

Parts of the commands are re-used from the own produced internship report [31].

1
2 !===

3 ! Start

4 !===

5
6
7
8 /CLEAR ,NOSTART

9
10 ! --- Load document settings

11 !input_document_settings

12
13
14
15
16
17
18 !===

19 ! Input parameters

20 !===

21
22 ! ---

23 ! Geometry

24 ! ---

25
26 ! --- Load input parameters

27
28 !input_parameters

29
30
31
32
33
34 ! --- Fixed parameters

35 E=210000

36 rho =0.3

37 sigma_y =355

38 density =7850

39
40
41 ! Edge displacements computed from stresses

42 Uyy = Syy *0.5* SPW/E

43 Uzz = Szz *0.5* SPH/E

44
45

157

158 H. APDL template file non-linear buckling analysis unstiffened plates

46
47
48
49
50
51 ! --- Define pi

52 *afun ,rad

53 pi=acos(-1)

54
55
56
57 ! --- Identification numbers necessary for making named selections

58 SPID = 1 ! Skin Plate ID

59
60
61
62
63
64
65
66 !===

67 ! Preprocessor

68 !===

69 /PREP7

70
71 ! Add shell elements: Element Type - Add

72 ET ,1,SHELL181 ! type 1: 4 node shell

73
74
75 ! Set to structural

76 /NOPR

77 KEYW ,PR_SET ,1

78 KEYW ,PR_STRUC ,1

79 KEYW ,PR_THERM ,0

80 KEYW ,PR_FLUID ,0

81 KEYW ,PR_MULTI ,0

82 /GO

83
84
85 ! Set material properties: Material Props - Material Models

86 MPTEMP ,,,,,,,,

87 MPTEMP ,1,0

88 MPDATA ,EX ,1,,E ! Youngs modulus

89 MPDATA ,PRXY ,1,,rho ! Poissons Ratio

90
91
92 *IF ,MATNONL ,EQ ,1,THEN

93 TB,BISO ,1,1,2,

94 TBTEMP ,0

95 TBDATA ,,355,4.7619047,,,,

96 *ENDIF

97
98
99

100 ! Select element key options

101 ETCON ,off ! Let not automatically select applicable keyopts

102 KEYOPT ,1,3,2

103 KEYOPT ,1,8,2

104
105
106
107 !--

108 ! Define element thickness and properties

109 !--

110 !EXPLANATION SHELL/MESH ATTRIBUTES

111 ! sect ,sectionID ,elementType ,,sectionName

112 ! secdata , Thickness ,MaterialID ,0, NumberofIntegrationPoints

113 ! secoffset ,MID

114 ! seccontrol ,0,0,0, mass/unit area , 1, 1, 1

115
116 sect ,SPID ,shell ,,Skin Plate

159

117 secdata , SPT ,1,0.0,3

118 secoffset ,MID

119 seccontrol ,,,,0 , , ,

120
121
122
123
124
125
126
127 !===

128 ! Create 3D model

129 !===

130
131 !input_geometry_codes

132
133
134
135
136 !--

137 ! Assign elements to selected components and MESHING

138 !--

139 AATT , MAT , REAL , ELEMENT TYPE , ESYS , SECTION NUMBER

140
141 CMSEL ,S,SP ! Select component

142 AATT , 1, , 1, 0, SPID

143
144
145
146
147 ! --- Meshing

148 ! - Set mesh options

149 MSHKEY ,2 ! Use mapped meshing if possible; otherwise , use free meshing

150 MOPT ,split ,2 ! Quad splitting option for non -mapped meshing. If Value = 2 or WARN ,

quadrilateral

151 ! elements in violation of either shape error or

warning limits are split into triangles.

152 MSHAPE ,0,2d ! Mesh with quadrilateral -shaped elements when Dimension = 2D

153
154
155 ! - Set mesh size and mesh areas

156 ESIZE ,MSHSIZE

157 ALLSEL

158 AMESH ,ALL

159
160
161 seltol ,0.0005

162
163
164
165 ALLSEL

166
167
168
169
170 ALLSEL

171 !Create arrays to store node information , create array for displacements for each node

in case of applied imperfection.

172 *get ,ntot ,node ,,count

173 *dim ,nodes ,array ,ntot ,4

174 *vget ,nodes (1,1),node ,0,nlist

175
176 *do ,i,1,ntot

177 nodes(i,2) = nx(nodes(i,1))

178 nodes(i,3) = ny(nodes(i,1))

179 nodes(i,4) = nz(nodes(i,1))

180 *enddo

181
182
183 *dim ,DISPL ,array ,ntot ,4

184 *vget ,nodes (1,1),node ,0,nlist

160 H. APDL template file non-linear buckling analysis unstiffened plates

185
186
187
188
189
190
191
192
193
194
195 ! -----------------------

196 ! BEGIN IMPERFECTION 2

197 ! -----------------------

198
199
200 ! Input parameters for imperfection

201 !userinput_ImperfectionParameters

202
203 A = SPW

204 B = SPH

205
206 wave_y = 0.5

207 wave_z = 0.5

208
209 ! Eurocode requirement for selecting amplitude of imperfection 2

210 ! The lowest value of (A/400, B/400) is to be selected as maximum displacement of the

sine and stored as factor C

211 ! In this case A and B represent the total plate width and height respectively

212
213 *DIM ,amp_opts ,array ,2,1

214 amp_opts (1,1) = A/400

215 amp_opts (2,1) = B/400

216 *VSCFUN ,C,min ,amp_opts

217
218 C = C*EQVIMP

219
220 *do ,i,1,ntot

221 x = nodes(i,2)

222 y = nodes(i,3)

223 z = nodes(i,4)

224
225 ! - Skin plate modification

226 *IF ,x,EQ ,0,THEN

227 wx = C*sin(2* wave_y*pi*y/A)*sin(2* wave_z*pi*z/B)

228 wy = 0

229 wz = 0

230
231 DISPL(i,2) = DISPL(i,2) + wx

232 DISPL(i,3) = DISPL(i,3) + wy

233 DISPL(i,4) = DISPL(i,4) + wz

234 *ENDIF

235
236
237
238 *enddo

239 ! -----------------------

240 ! END IMPERFECTION 2

241 ! -----------------------

242
243
244
245
246
247
248
249
250
251
252
253
254

161

255 ALLSEL

256 EWRITE ,elementsfile ,elem

257 ALLSEL

258 ACLEAR ,all

259 ADELE ,all

260
261 ! - Redraw nodes with imperfections

262 *do ,i,1,ntot

263 nodenum = nodes(i,1)

264 x_new = nodes(i,2) + DISPL(i,2)

265 y_new = nodes(i,3) + DISPL(i,3)

266 z_new = nodes(i,4) + DISPL(i,4)

267 N, nodenum , x_new , y_new , z_new

268 *enddo

269
270 ! Read elements file

271 EREAD ,elementsfile ,elem

272
273
274
275
276
277
278
279
280 ! --- Node components

281 NSEL , S, LOC , Y, 0

282 CM, RightEdge , Node

283 NSEL , S, LOC , Y, 0.5* SPW

284 CM, MidEdge , Node

285 NSEL , S, LOC , Z, 0

286 CM, BottomEdge , Node

287 NSEL , S, LOC , Z, SPH

288 CM, TopEdge , Node

289
290
291
292
293
294
295
296 !=======================================

297 ! Enter solution processor

298 !=======================================

299 /SOL

300
301 ALLSEL

302 ! --- Add Boundary conditions

303
304 ! - Fix horizontal edges in x direction

305 *IF ,LONGSUP ,EQ ,1,THEN

306 D, TopEdge ,UX, 0

307 D, BottomEdge ,UX , 0

308 *ENDIF

309
310 D, RightEdge ,UX , 0

311
312
313 ! - Apply deformations

314 *IF ,DY,NE ,0,THEN ! Case displacement applied drectly

315 D, RightEdge , UY, DY

316 *ELSE ! Case displacement derived from applied stress

317 D, RightEdge , UY, Uyy

318 *ENDIF

319
320
321 ! Fix in z-direction

322 D,BottomEdge ,Uz ,0

323
324
325 ! Apply Szz as a stress onto the plate and column section

162 H. APDL template file non-linear buckling analysis unstiffened plates

326 !CMSEL ,S,BottomEdgePLate ,Node

327 !SF ,ALL ,Pres ,Szz*SPT

328
329
330 !CMSEL ,S,TopEdgePLate ,Node

331 !SF ,ALL ,Pres ,Szz*SPT

332
333
334
335
336 ! - Apply symmetric boundary conditions

337 CMSEL ,S,MidEdge ,NODE

338 DSYMM ,SYMM ,Y

339
340
341
342
343
344
345 ALLSEL

346 ! Perform nonlinear analysis

347 /SOLU

348 ANTYPE , static

349 OUTRES , all , all

350 NLGEOM , on

351 AUTOTS ,auto

352 NSUBST ,1000 ,1000 ,10

353 SOLVE

354
355
356
357
358
359
360
361
362
363
364 !=======================================

365 ! Enter postprocessor

366 !=======================================

367
368
369 /POST1

370 set , last

371
372
373 ! Set view

374 /VIEW ,1,1,1,-0.50

375 /ANGLE ,1 ,180

376 /VUP ,1,Z

377 /REPLOT

378
379
380
381
382 /graphics ,FULL

383 ! ------------------------------------ Store all results in one array

384 ALLSEL

385 *GET ,numNd ,NODE ,0,COUNT

386 *DIM ,selstat ,ARRAY ,numNd ,1

387 *DIM ,allresults ,ARRAY ,numNd ,12

388 *VGET ,allresults (1,1),NODE ,1,LOC ,X

389 *VGET ,allresults (1,2),NODE ,1,LOC ,Y

390 *VGET ,allresults (1,3),NODE ,1,LOC ,Z

391 *VGET ,allresults (1,4),NODE ,1,U,X

392 *VGET ,allresults (1,5),NODE ,1,U,Y

393 *VGET ,allresults (1,6),NODE ,1,U,Z

394 SHELL ,TOP

395 *VGET ,allresults (1,7),node ,1,S,EQV

396 SHELL ,BOT

163

397 *VGET ,allresults (1,8),node ,1,S,EQV

398 SHELL ,MID

399 *VGET ,allresults (1,9),node ,1,S,EQV

400 SHELL ,TOP

401 *VGET ,allresults (1,10),node ,1,EPTO ,EQV

402 SHELL ,BOT

403 *VGET ,allresults (1,11),node ,1,EPTO ,EQV

404 SHELL ,MID

405 *VGET ,allresults (1,12),node ,1,EPTO ,EQV

406
407
408
409
410
411 ! ----PLATE

412 ESEL ,S,sec ,,1

413 NSLE

414 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

415
416 *VMASK ,selstat (1,1) ! Create masking vector

417 *VSCFUN ,SGMXPLT ,max ,allresults (1,7)

418 *VMASK ,selstat (1,1) ! Create masking vector

419 *VSCFUN ,SGMXPLB ,max ,allresults (1,8)

420 *VMASK ,selstat (1,1) ! Create masking vector

421 *VSCFUN ,SGMXPLM ,max ,allresults (1,9)

422 *VMASK ,selstat (1,1) ! Create masking vector

423 *VSCFUN ,EPMXPLT ,max ,allresults (1,10)

424 *VMASK ,selstat (1,1) ! Create masking vector

425 *VSCFUN ,EPMXPLB ,max ,allresults (1,11)

426 *VMASK ,selstat (1,1) ! Create masking vector

427 *VSCFUN ,EPMXPLM ,max ,allresults (1,12)

428
429
430 ! Get maximum of top/bot/mid stresses

431 *DIM ,maxpl ,ARRAY ,3

432 maxpl (1)=SGMXPLT

433 maxpl (2)=SGMXPLB

434 maxpl (3)=SGMXPLM

435 *VSCFUN ,SGMXPL ,max ,maxpl

436
437 ! Get maximum of top/bot/mid strains

438 *DIM ,maxep ,ARRAY ,3

439 maxep (1)=EPMXPLT

440 maxep (2)=EPMXPLB

441 maxep (3)=EPMXPLM

442 *VSCFUN ,EPMXPL ,max ,maxep

443
444
445
446 *VSCFUN ,UXMXALL ,max ,allresults (1,4)

447
448
449
450 ! Get reaction force

451
452 NSEL ,s,loc ,y,0

453 FSUM

454 *GET ,FY,fsum ,0,item ,fy

455
456 FY = -1*FY /1000000 ! From N to MN

457
458
459
460 ! --- Create and fill output file with input -output parameters

461 *cfopen ,parametervalues ,csv ,,

462 !input_writeinputparameters

463 *VWRITE , 'L1,', lambda_1

464 (A,F)

465 *VWRITE ,'UXMXALL ,', UXMXALL

466 (A,F)

467 *VWRITE ,'SGMXPLT ,', SGMXPLT

164 H. APDL template file non-linear buckling analysis unstiffened plates

468 (A,F)

469 *VWRITE ,'SGMXPLB ,', SGMXPLB

470 (A,F)

471 *VWRITE ,'SGMXPLM ,', SGMXPLM

472 (A,F)

473 *VWRITE ,'SGMXPL ,', SGMXPL

474 (A,F)

475 *VWRITE ,'EPMXPLT ,', EPMXPLT

476 (A,F)

477 *VWRITE ,'EPMXPLB ,', EPMXPLB

478 (A,F)

479 *VWRITE ,'EPMXPLM ,', EPMXPLM

480 (A,F)

481 *VWRITE ,'EPMXPL ,', EPMXPL

482 (A,F)

483 *VWRITE ,'FY,', FY

484 (A,F)

485 *CFclose

486
487
488
489
490
491
492
493 ! =======================================

494 ! Store load displacement data in TABLE

495
496
497 *IF ,DY,NE ,0,THEN ! Case displacement applied drectly

498 Uymax = Dy

499 *ELSE ! Case displacement derived from applied stress

500 Uymax = Uyy

501 *ENDIF

502
503
504
505
506 SET ,last

507 *GET ,numSubst ,active ,0,set ,sbst ! Store number of substeps in parameter

numSubst

508 *DIM ,LoadDisp ,TABLE ,numSubst ,2,,TIME ! Initialize table

509
510 *DO ,i,1,numSubst

511 SET ,1,i ! Set to loadstep i

512 *GET ,tt,ACTIVE ,0,SET ,Time ! Get time value

513 U = tt*Uymax ! Get applied displacement value at

time tt ! Get applied displacement value at

time tt

514 LoadDisp(i,0) = tt ! Store time in table row

515 LoadDisp(i,1) = U ! Store time in table row

516
517
518 NSEL ,s,loc ,y,0

519 FSUM

520 *GET ,FY,fsum ,0,item ,fy

521 FY = ABS(FY /1000000) ! From N to MN

522
523 LoadDisp(i,2) = Fy

524
525
526 *ENDDO

527 ! =======================================

528
529
530 ! Write table to csv file

531
532 *cfopen ,loaddisp ,csv ,,

533 *VWRITE , 'T,', 'Uy ,', 'Fy'

534 (A, A, A)

535 *VWRITE , LoadDisp (1,1) ,', ', LoadDisp (1,2) ,', ', LoadDisp (1,3)

165

536 (F, A, F, A, F)

537 *CFCLOSE

538
539
540
541 FINI

542
543 ! --- Delete unneccesary files in order to save disk space

544 !input_delete_commands

I
APDL template file geometry

Parts of the commands are re-used from the own produced internship report [31].

1
2 ! --- Indicate which geometry is present based on the input parameters

3
4 *IF ,NOTS ,GT ,0,AND ,TSWH ,GT ,0,THEN ! Full model

5 *IF ,CWH ,GT ,0,THEN

6 geometry = 3

7 *ENDIF

8 *endif

9 *IF ,NOTS ,GT ,0,AND ,TSWH ,GT ,0,THEN ! Stiffened plate without columns

10 *IF ,CWH ,LT ,1,THEN

11 geometry = 2

12 *ENDIF

13 *ENDIF

14 *IF ,NOTS ,EQ ,0,OR,TSWH ,EQ ,0,THEN ! Unstiffened plate , always modelled without

columns

15 geometry = 1

16 *ENDIF

17
18
19
20 ! --- General approach for each component of the structure:

21 ! Define dimensions of arrays

22 ! Create empty arrays

23 ! Fill each array with correct coordinate values

24 ! Create keypoints in a loop

25 ! Draw areas

26 ! Delete arrays

27
28
29
30
31 ! ======================================= Skin plate

== !

32 xdim = 1

33 ydim = 2

34 zdim = 2

35
36
37 *DIM ,xval ,array ,xdim ,1,1

38 *DIM ,yval ,array ,ydim ,1,1

39 *DIM ,zval ,array ,zdim ,1,1

40
41 xval(1,1,1)=0

42
43 yval(1,1,1) = 0 ! Right edge

44 yval(ydim ,1,1) = SPW ! Left edge

45
46 zval(1,1,1) = 0 ! Bottom edge

167

168 I. APDL template file geometry

47 zval(zdim ,1,1) = SPH ! Top edge

48
49
50
51 ! Create keypoints skin plate

52 *DO ,ii ,1,xdim ,1

53 *DO ,jj ,1,ydim ,1

54 *DO ,kk ,1,zdim ,1

55 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

56 *enddo

57 *enddo

58 *enddo

59
60
61 ! Create areas skin plate

62 x = xval(1,1,1)

63 *DO ,jj ,1,ydim -1,1

64 y1 = yval(jj ,1,1)

65 y2 = yval(jj+1,1,1)

66 *DO ,kk ,1,zdim -1,1

67 z1 = zval(kk ,1,1)

68 z2 = zval(kk+1,1,1)

69
70 kp_1 = KP(x,y1,z1)

71 kp_2 = KP(x,y1,z2)

72 kp_3 = KP(x,y2,z2)

73 kp_4 = KP(x,y2,z1)

74 A,kp_4 ,kp_3 ,kp_2 ,kp_1

75 *ENDDO

76 *ENDDO

77
78
79 *DEL ,xval ,,nopr

80 *DEL ,yval ,,nopr

81 *DEL ,zval ,,nopr

82
83
84
85
86
87
88 ! ======================================= T stiffeners webs

== !

89
90
91 *IF ,geometry ,NE ,1,THEN

92 xdim = 2

93 ydim = 2

94 zdim = NOTS

95
96 *DIM ,xval ,array ,ydim ,1,1

97 *DIM ,yval ,array ,ydim ,1,1

98 *DIM ,zval ,array ,zdim ,1,1

99
100 xval(1,1,1) = 0 ! Right edge

101 xval(xdim ,1,1) = TSWH ! Left edge

102
103 yval(1,1,1) = 0 ! Right edge

104 yval(ydim ,1,1) = SPW ! Left edge

105
106 ! Array z-coordinates T webs

107
108 *DO ,q,1,NOTS ,1

109 kk = q

110 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

111 *enddo

112
113 ! Create keypoints webs

114 *DO ,ii ,1,xdim ,1

115 *DO ,jj ,1,ydim ,1

116 *DO ,kk ,1,zdim ,1

169

117 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

118 *enddo

119 *enddo

120 *enddo

121
122
123 *DO ,kk ,1,zdim ,1

124 z = zval(kk ,1,1)

125 *DO ,jj ,1,ydim -1,1

126 y1 = yval(jj ,1,1)

127 y2 = yval(jj+1,1,1)

128 *DO ,ii ,1,xdim -1

129 x1 = xval(ii ,1,1)

130 x2 = xval(ii+1,1,1)

131
132 kp_1 = KP(x1 ,y1,z)

133 kp_2 = KP(x2 ,y1,z)

134 kp_3 = KP(x2 ,y2,z)

135 kp_4 = KP(x1 ,y2,z)

136 A,kp_1 ,kp_2 ,kp_3 ,kp_4

137 *ENDDO

138 *ENDDO

139 *ENDDO

140
141
142 *DEL ,xval ,,nopr

143 *DEL ,yval ,,nopr

144 *DEL ,zval ,,nopr

145 *ENDIF

146
147
148
149
150
151 ! ======================================= T stiffeners flanges

== !

152
153
154 *IF ,geometry ,NE ,1,AND ,TSFW ,GT ,0,THEN

155 xdim = 1

156 ydim = 2

157 zdim = 3*NOTS

158
159 *DIM ,xval ,array ,xdim ,1,1

160 *DIM ,yval ,array ,ydim ,1,1

161 *DIM ,zval ,array ,zdim ,1,1

162
163 xval(1,1,1)=TSWH

164
165 yval(1,1,1) = 0 ! Right edge

166 yval(ydim ,1,1) = SPW ! Left edge

167
168 ! Fill z-coordinate vector

169 *DO ,q,1,NOTS ,1

170 kk = 3*q-1

171 z_q = FOTS + (q-1)*CTC_T

172 zval(kk ,1,1) = z_q

173 zval(kk -1,1,1) = z_q - 0.5* TSFW

174 zval(kk+1,1,1) = z_q + 0.5* TSFW

175 *enddo

176
177
178 ! Create keypoints flanges

179 *DO ,ii ,1,xdim ,1

180 *DO ,jj ,1,ydim ,1

181 *DO ,kk ,1,zdim ,1

182 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

183 *enddo

184 *enddo

185 *enddo

186

170 I. APDL template file geometry

187 ! Draw areas flanges

188 x = xval(1,1,1)

189 *DO ,jj ,1,ydim -1,1

190 y1 = yval(jj ,1,1)

191 y2 = yval(jj+1,1,1)

192 *DO ,q,1,NOTS

193 kk = 3*q-1

194 z_q = zval(kk ,1,1)

195
196 z1 = z_q - 0.5* TSFW

197 z2 = z_q

198 z3 = z_q + 0.5* TSFW

199
200 kp_1 = KP(x,y1,z1)

201 kp_2 = KP(x,y1,z2)

202 kp_3 = KP(x,y2,z2)

203 kp_4 = KP(x,y2,z1)

204 A,kp_1 ,kp_2 ,kp_3 ,kp_4

205
206 kp_1 = KP(x,y1,z2)

207 kp_2 = KP(x,y1,z3)

208 kp_3 = KP(x,y2,z3)

209 kp_4 = KP(x,y2,z2)

210 A,kp_1 ,kp_2 ,kp_3 ,kp_4

211 *ENDDO

212 *ENDDO

213
214 *DEL ,xval ,,nopr

215 *DEL ,yval ,,nopr

216 *DEL ,zval ,,nopr

217
218 *ENDIF

219
220
221
222
223
224 ! ======================================= Column webs

== !

225 *IF ,geometry ,EQ ,3,THEN

226
227 xdim = 3

228 ydim = 2

229 zdim = 2+NOTS

230
231 *DIM ,xval ,array ,xdim ,1,1

232 *DIM ,yval ,array ,ydim ,1,1

233 *DIM ,zval ,array ,zdim ,1,1

234
235 xval(1,1,1) = 0

236 xval(2,1,1) = TSWH

237 xval(xdim ,1,1) = CWH

238
239 yval(1,1,1) = 0

240 yval(ydim ,1,1) = SPW

241
242 zval(1,1,1) = 0 ! Bottom edge

243 zval(zdim ,1,1) = SPH ! Top edge

244
245
246 *DO ,q,1,NOTS ,1

247 kk = q+1

248 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

249 *enddo

250
251
252 *DO ,ii ,1,xdim ,1

253 *DO ,jj ,1,ydim ,1

254 *DO ,kk ,1,zdim ,1

255 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

256 *enddo

171

257 *enddo

258 *enddo

259
260
261 *DO ,jj ,1,ydim

262 y = yval(jj ,1,1)

263 *DO ,ii ,1,xdim -1

264 x1 = xval(ii ,1,1)

265 x2 = xval(ii+1,1,1)

266
267 *DO ,kk ,1,zdim -1

268 z1 = zval(kk ,1,1)

269 z2 = zval(kk+1,1,1)

270
271 kp_1 = KP(x1 ,y,z1)

272 kp_2 = KP(x2 ,y,z1)

273 kp_3 = KP(x2 ,y,z2)

274 kp_4 = KP(x1 ,y,z2)

275 A,kp_1 ,kp_2 ,kp_3 ,kp_4

276 *ENDDO

277 *ENDDO

278 *ENDDO

279
280
281 *DEL ,xval ,,nopr

282 *DEL ,yval ,,nopr

283 *DEL ,zval ,,nopr

284 *ENDIF

285
286
287
288
289
290
291 ! ======================================= Column flanges

== !

292 *IF ,geometry ,EQ ,3,THEN

293 xdim = 1

294 ydim = 2*3 ! 2 Columns , both 3 coords in y dir

295 zdim = 2+NOTS

296
297 *DIM ,xval ,array ,xdim ,1,1

298 *DIM ,yval ,array ,ydim ,1,1

299 *DIM ,zval ,array ,zdim ,1,1

300
301 xval(1,1,1) = CWH

302
303 zval(1,1,1) = 0

304 zval(zdim ,1,1) = SPH

305
306 ! Fill y-coordinate vector

307 *DO ,q,1,2,1

308 jj = 3*q-1

309 y_q = (q-1)*SPW

310 yval(jj ,1,1) = y_q

311 yval(jj -1,1,1) = y_q - 0.5* CFW

312 yval(jj+1,1,1) = y_q + 0.5* CFW

313 *enddo

314
315 ! Fill z-coordinate vector

316 *DO ,q,1,NOTS ,1

317 kk = q+1

318 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

319 *enddo

320
321
322 ! Create keypoints flanges

323 *DO ,ii ,1,xdim ,1

324 *DO ,jj ,1,ydim ,1

325 *DO ,kk ,1,zdim ,1

326 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

172 I. APDL template file geometry

327 *enddo

328 *enddo

329 *enddo

330
331
332 ! Draw areas flanges

333 x = xval(1,1,1)

334 *DO ,kk ,1,zdim -1

335 z1 = zval(kk ,1,1)

336 z2 = zval(kk+1,1,1)

337 *DO ,q,1,2

338 y_q =(q-1)*SPW

339
340 y1 = y_q - 0.5* CFW

341 y2 = y_q

342 y3 = y_q + 0.5* CFW

343
344 kp_1 = KP(x,y1,z1)

345 kp_2 = KP(x,y1,z2)

346 kp_3 = KP(x,y2,z2)

347 kp_4 = KP(x,y2,z1)

348 A,kp_1 ,kp_2 ,kp_3 ,kp_4

349
350 kp_1 = KP(x,y2,z1)

351 kp_2 = KP(x,y2,z2)

352 kp_3 = KP(x,y3,z2)

353 kp_4 = KP(x,y3,z1)

354 A,kp_1 ,kp_2 ,kp_3 ,kp_4

355 *ENDDO

356 *ENDDO

357
358
359 *DEL ,xval ,,nopr

360 *DEL ,yval ,,nopr

361 *DEL ,zval ,,nopr

362 *ENDIF

363
364
365
366
367
368
369 ! ================= FINISH GEOMETRY

370 ! --- Merge areas and keypoints

371 ALLSELL

372 *IF ,geometry ,NE ,1,THEN

373 AGLUE ,all

374 NUMMRG ,all

375 *ENDIF

376
377
378
379 ! --- Cut model in half in order to create symmetric model

380 WPOFFS ,,0.5*SPW , ! Translate working plane to half of the span

at Y=0.5* SPW

381 WPROTA ,,-90, ! Rotate working plane around x-axis

382 ASBW ,all ! Cut model in half at working plane

383 wpcsys ,-1,0 ! Reset working plane (?)

384
385 ASEL ,s,loc ,y,0.5*SPW ,SPW +0.5* CFW

386 ADELE ,all ,,1

387 ALLSEL

388
389
390 ! --- CREATE COMPONENTS

391
392 ASEL ,s,loc ,x,0 ! Skin Plate

393 CM,SP,Area

394
395 *IF ,geometry ,NE ,1,THEN

396 ASEL ,None

173

397 *DO ,q,1,NOTS ,1

398 zval = FOTS + (q-1)*CTC_T

399 ASEL ,A,loc ,z,zval

400 *enddo

401 ASEL ,U,LOC ,X,TSWH

402 CM,TSW ,area

403
404 *IF ,TSFW ,GT ,0,THEN

405 ASEL ,S,loc ,x,TSWH

406 CM,TSF ,area

407 *ENDIF

408 *ENDIF

409
410 *IF ,geometry ,EQ ,3,THEN

411 ASEL ,none

412 ASEL ,A,loc ,y,0

413 ASEL ,A,loc ,y,SPW

414 CM,CW,area

415
416 ASEL ,S,loc ,x,CWH ,

417 CM,CF,area

418 *ENDIF

J
APDL template file imperfection type 2

Parts of the commands are re-used from the own produced internship report [31].

1
2 ! -----------------------

3 ! BEGIN IMPERFECTION 2

4 ! -----------------------

5
6
7 ! Input parameters for imperfection

8 !userinput_ImperfectionParameters

9
10 A = SPW

11 B = SPH

12
13 wave_y = 0.5

14 wave_z = 0.5

15
16 ! Eurocode requirement for selecting amplitude of imperfection 2

17 ! The lowest value of (A/400, B/400) is to be selected as maximum displacement of the

sine and stored as factor C

18 ! In this case A and B represent the total plate width and height respectively

19
20 *DIM ,amp_opts ,array ,2,1

21 amp_opts (1,1) = A/400

22 amp_opts (2,1) = B/400

23 *VSCFUN ,C,min ,amp_opts

24
25
26 *do ,i,1,ntot

27 x = nodes(i,2)

28 y = nodes(i,3)

29 z = nodes(i,4)

30
31 ! - Skin plate modification

32 *IF ,x,EQ ,0,THEN

33 wx = C*sin(2* wave_y*pi*y/A)*sin(2* wave_z*pi*z/B)

34 wy = 0

35 wz = 0

36
37 DISPL(i,2) = DISPL(i,2) + wx

38 DISPL(i,3) = DISPL(i,3) + wy

39 DISPL(i,4) = DISPL(i,4) + wz

40 *ENDIF

41
42
43
44 ! - T-stiffener webs modification

45 *IF ,x,GT ,0,AND ,x,LT,TSWH ,THEN

46 wx = C*sin(2* wave_y*pi*y/A)*sin(2* wave_z*pi*z/B)

47 wy = 0

175

176 J. APDL template file imperfection type 2

48 wz = 0

49
50 DISPL(i,2) = DISPL(i,2) + wx

51 DISPL(i,3) = DISPL(i,3) + wy

52 DISPL(i,4) = DISPL(i,4) + wz

53 *ENDIF

54
55
56
57 ! - T-stiffener flanges modification

58 *IF ,x,EQ,TSWH ,THEN

59 z_0 = 0.5* CTC_T

60 z_1 = SPH - 0.5* CTC_T

61 *DO ,z_web ,z_0 ,z_1 ,CTC_T

62 *IF ,z,GE,z_web -0.5*TSFW ,AND ,z,LE,z_web +0.5* TSFW ,THEN

63 z = z_web

64 wx = C*sin(2* wave_y*pi*y/A)*sin(2* wave_z*pi*z/B)

65 wy = 0

66 wz = 0

67
68 DISPL(i,2) = DISPL(i,2) + wx

69 DISPL(i,3) = DISPL(i,3) + wy

70 DISPL(i,4) = DISPL(i,4) + wz

71 *ENDIF

72 *ENDDO

73 *ENDIF

74
75
76 *enddo

77 ! -----------------------

78 ! END IMPERFECTION 2

79 ! -----------------------

K
Complete APDL file nonlinear analysis FEA

example

1
2
3
4 ! To Do list:

5 ! Make mesh sizes dependent on size of component

6 ! Verify that min -max values in results file are equal to the plotted values

7 ! Add separate results for separate components

8
9 !===

10 ! Start

11 !===

12
13
14
15 /CLEAR ,NOSTART

16
17 ! --- Load document settings

18 /FILNAME , dp0

19 /CWD , 'C:\Users\Thomas\Documents\Master Thesis\Report\apdl_demos\new_benchmark_zone_A '

20 /TITLE , project3 -1-2-1

21
22
23
24
25
26
27
28 !===

29 ! Input parameters

30 !===

31
32 ! ---

33 ! Geometry

34 ! ---

35
36 ! --- Load input parameters

37
38 SPT = 12

39 NOTS = 6 ! NOT Modified to match CTC distance of approx 510 mm, instead ,

increase DISTANCE FROM EDGES (SEE BELOW)

40 TSWH = 220

41 TSWT = 9

42 TSFW = 50

43 TSFT = 20

44 Q0 = 0.05

45 Syy = 200

177

178 K. Complete APDL file nonlinear analysis FEA example

46 Szz = 75

47 SPH = 3570.0 ! Based on measuring between 2 keypoints

48 SPW = 3100

49 CWH = 515.0

50 CWT = 12.0

51 CFW = 250.0

52 CFT = 15.0

53 Q1 = 0.03

54
55 AMP =10

56
57
58
59
60
61
62 ! --- Fixed parameters

63 E=210000

64 rho =0.3

65 sigma_y =355

66 density =7850

67
68
69
70
71
72
73 ! --- Compute derived parameters

74
75 *IF ,NOTS ,GT ,0,THEN

76 CTC_T = SPH/(NOTS +1) ! CTC distance t stiffeners

77 FOTS = 1.0* CTC_T ! First offset T stiffeners

78
79 *ELSEIF ,NOTS ,EQ ,0,THEN

80 CTC_T=SPH

81 *ENDIF

82
83
84 ! Edge displacements computed from stresses

85 Uyy = Syy *0.5* SPW/E

86 Uzz = Szz *0.5* SPH/E

87
88
89
90
91 ! --- Define pi

92 *afun ,rad

93 pi=acos(-1)

94
95
96
97 ! --- Identification numbers necessary for making named selections

98 SPID = 1 ! Skin Plate ID

99 TSWID = 2 ! T stiffener web ID

100 TSFID = 3 ! T stiffener flange ID

101 CWID = 4 ! Column web ID

102 CFID = 5 ! Column flange ID

103
104
105
106
107
108
109
110 !===

111 ! Preprocessor

112 !===

113 /PREP7

114
115 ! Add shell elements: Element Type - Add

116 ET ,1,SHELL181 ! type 1: 4 node shell

179

117
118
119 ! Set to structural

120 /NOPR

121 KEYW ,PR_SET ,1

122 KEYW ,PR_STRUC ,1

123 KEYW ,PR_THERM ,0

124 KEYW ,PR_FLUID ,0

125 KEYW ,PR_MULTI ,0

126 /GO

127
128
129 ! Set material properties: Material Props - Material Models

130 MPTEMP ,,,,,,,,

131 MPTEMP ,1,0

132 MPDATA ,EX ,1,,E ! Youngs modulus

133 MPDATA ,PRXY ,1,,rho ! Poissons Ratio

134
135
136 ! Select element key options

137 ETCON ,off ! Let not automatically select applicable keyopts

138 KEYOPT ,1,3,2

139 KEYOPT ,1,8,2

140
141
142
143 !--

144 ! Define element thickness and properties

145 !--

146 !EXPLANATION SHELL/MESH ATTRIBUTES

147 ! sect ,sectionID ,elementType ,,sectionName

148 ! secdata , Thickness ,MaterialID ,0, NumberofIntegrationPoints

149 ! secoffset ,MID

150 ! seccontrol ,0,0,0, mass/unit area , 1, 1, 1

151
152 sect ,SPID ,shell ,,Skin Plate

153 secdata , SPT ,1,0.0,3

154 secoffset ,MID

155 seccontrol ,,,,0 , , ,

156
157 *IF ,NOTS ,GT ,0,THEN

158 sect ,TSWID ,shell ,,T-webs

159 secdata , TSWT ,1,0,3

160 secoffset ,MID

161 seccontrol ,,,,0 , , ,

162
163 *IF ,TSFW ,GT ,0,THEN

164 sect ,TSFID ,shell ,,T-flanges

165 secdata , TSFT ,1,0,3

166 secoffset ,MID

167 seccontrol ,,,,0 , , ,

168 *ENDIF

169 *ENDIF

170
171
172 sect ,CWID ,shell ,,Column -webs

173 secdata , CWT ,1,0,3

174 secoffset ,MID

175 seccontrol ,,,,0 , , ,

176
177 sect ,CFID ,shell ,,Column -flanges

178 secdata , CFT ,1,0,3

179 secoffset ,MID

180 seccontrol ,,,,0 , , ,

181
182
183
184
185
186
187

180 K. Complete APDL file nonlinear analysis FEA example

188
189 !===

190 ! Create 3D model

191 !===

192
193
194 ! --- Indicate which geometry is present based on the input parameters

195
196 *IF ,NOTS ,GT ,0,AND ,TSWH ,GT ,0,THEN ! Full model

197 *IF ,CWH ,GT ,0,THEN

198 geometry = 3

199 *ENDIF

200 *endif

201 *IF ,NOTS ,GT ,0,AND ,TSWH ,GT ,0,THEN ! Stiffened plate without columns

202 *IF ,CWH ,LT ,1,THEN

203 geometry = 2

204 *ENDIF

205 *ENDIF

206 *IF ,NOTS ,EQ ,0,OR,TSWH ,EQ ,0,THEN ! Unstiffened plate , always modelled without

columns

207 geometry = 1

208 *ENDIF

209
210
211
212 ! --- General approach for each component of the structure:

213 ! Define dimensions of arrays

214 ! Create empty arrays

215 ! Fill each array with correct coordinate values

216 ! Create keypoints in a loop

217 ! Draw areas

218 ! Delete arrays

219
220
221
222
223 ! ======================================= Skin plate

== !

224 xdim = 1

225 ydim = 2

226 zdim = 2

227
228
229 *DIM ,xval ,array ,xdim ,1,1

230 *DIM ,yval ,array ,ydim ,1,1

231 *DIM ,zval ,array ,zdim ,1,1

232
233 xval(1,1,1)=0

234
235 yval(1,1,1) = 0 ! Right edge

236 yval(ydim ,1,1) = SPW ! Left edge

237
238 zval(1,1,1) = 0 ! Bottom edge

239 zval(zdim ,1,1) = SPH ! Top edge

240
241
242
243 ! Create keypoints skin plate

244 *DO ,ii ,1,xdim ,1

245 *DO ,jj ,1,ydim ,1

246 *DO ,kk ,1,zdim ,1

247 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

248 *enddo

249 *enddo

250 *enddo

251
252
253 ! Create areas skin plate

254 x = xval(1,1,1)

255 *DO ,jj ,1,ydim -1,1

256 y1 = yval(jj ,1,1)

181

257 y2 = yval(jj+1,1,1)

258 *DO ,kk ,1,zdim -1,1

259 z1 = zval(kk ,1,1)

260 z2 = zval(kk+1,1,1)

261
262 kp_1 = KP(x,y1,z1)

263 kp_2 = KP(x,y1,z2)

264 kp_3 = KP(x,y2,z2)

265 kp_4 = KP(x,y2,z1)

266 A,kp_4 ,kp_3 ,kp_2 ,kp_1

267 *ENDDO

268 *ENDDO

269
270
271 *DEL ,xval ,,nopr

272 *DEL ,yval ,,nopr

273 *DEL ,zval ,,nopr

274
275
276
277
278
279
280 ! ======================================= T stiffeners webs

== !

281
282
283 *IF ,geometry ,NE ,1,THEN

284 xdim = 2

285 ydim = 2

286 zdim = NOTS

287
288 *DIM ,xval ,array ,ydim ,1,1

289 *DIM ,yval ,array ,ydim ,1,1

290 *DIM ,zval ,array ,zdim ,1,1

291
292 xval(1,1,1) = 0 ! Right edge

293 xval(xdim ,1,1) = TSWH ! Left edge

294
295 yval(1,1,1) = 0 ! Right edge

296 yval(ydim ,1,1) = SPW ! Left edge

297
298 ! Array z-coordinates T webs

299
300 *DO ,q,1,NOTS ,1

301 kk = q

302 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

303 *enddo

304
305 ! Create keypoints webs

306 *DO ,ii ,1,xdim ,1

307 *DO ,jj ,1,ydim ,1

308 *DO ,kk ,1,zdim ,1

309 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

310 *enddo

311 *enddo

312 *enddo

313
314
315 *DO ,kk ,1,zdim ,1

316 z = zval(kk ,1,1)

317 *DO ,jj ,1,ydim -1,1

318 y1 = yval(jj ,1,1)

319 y2 = yval(jj+1,1,1)

320 *DO ,ii ,1,xdim -1

321 x1 = xval(ii ,1,1)

322 x2 = xval(ii+1,1,1)

323
324 kp_1 = KP(x1 ,y1,z)

325 kp_2 = KP(x2 ,y1,z)

326 kp_3 = KP(x2 ,y2,z)

182 K. Complete APDL file nonlinear analysis FEA example

327 kp_4 = KP(x1 ,y2,z)

328 A,kp_1 ,kp_2 ,kp_3 ,kp_4

329 *ENDDO

330 *ENDDO

331 *ENDDO

332
333
334 *DEL ,xval ,,nopr

335 *DEL ,yval ,,nopr

336 *DEL ,zval ,,nopr

337 *ENDIF

338
339
340
341
342
343 ! ======================================= T stiffeners flanges

== !

344
345
346 *IF ,geometry ,NE ,1,AND ,TSFW ,GT ,0,THEN

347 xdim = 1

348 ydim = 2

349 zdim = 3*NOTS

350
351 *DIM ,xval ,array ,xdim ,1,1

352 *DIM ,yval ,array ,ydim ,1,1

353 *DIM ,zval ,array ,zdim ,1,1

354
355 xval(1,1,1)=TSWH

356
357 yval(1,1,1) = 0 ! Right edge

358 yval(ydim ,1,1) = SPW ! Left edge

359
360 ! Fill z-coordinate vector

361 *DO ,q,1,NOTS ,1

362 kk = 3*q-1

363 z_q = FOTS + (q-1)*CTC_T

364 zval(kk ,1,1) = z_q

365 zval(kk -1,1,1) = z_q - 0.5* TSFW

366 zval(kk+1,1,1) = z_q + 0.5* TSFW

367 *enddo

368
369
370 ! Create keypoints flanges

371 *DO ,ii ,1,xdim ,1

372 *DO ,jj ,1,ydim ,1

373 *DO ,kk ,1,zdim ,1

374 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

375 *enddo

376 *enddo

377 *enddo

378
379 ! Draw areas flanges

380 x = xval(1,1,1)

381 *DO ,jj ,1,ydim -1,1

382 y1 = yval(jj ,1,1)

383 y2 = yval(jj+1,1,1)

384 *DO ,q,1,NOTS

385 kk = 3*q-1

386 z_q = zval(kk ,1,1)

387
388 z1 = z_q - 0.5* TSFW

389 z2 = z_q

390 z3 = z_q + 0.5* TSFW

391
392 kp_1 = KP(x,y1,z1)

393 kp_2 = KP(x,y1,z2)

394 kp_3 = KP(x,y2,z2)

395 kp_4 = KP(x,y2,z1)

396 A,kp_1 ,kp_2 ,kp_3 ,kp_4

183

397
398 kp_1 = KP(x,y1,z2)

399 kp_2 = KP(x,y1,z3)

400 kp_3 = KP(x,y2,z3)

401 kp_4 = KP(x,y2,z2)

402 A,kp_1 ,kp_2 ,kp_3 ,kp_4

403 *ENDDO

404 *ENDDO

405
406 *DEL ,xval ,,nopr

407 *DEL ,yval ,,nopr

408 *DEL ,zval ,,nopr

409
410 *ENDIF

411
412
413
414
415
416 ! ======================================= Column webs

== !

417 *IF ,geometry ,EQ ,3,THEN

418
419 xdim = 3

420 ydim = 2

421 zdim = 2+NOTS

422
423 *DIM ,xval ,array ,xdim ,1,1

424 *DIM ,yval ,array ,ydim ,1,1

425 *DIM ,zval ,array ,zdim ,1,1

426
427 xval(1,1,1) = 0

428 xval(2,1,1) = TSWH

429 xval(xdim ,1,1) = CWH

430
431 yval(1,1,1) = 0

432 yval(ydim ,1,1) = SPW

433
434 zval(1,1,1) = 0 ! Bottom edge

435 zval(zdim ,1,1) = SPH ! Top edge

436
437
438 *DO ,q,1,NOTS ,1

439 kk = q+1

440 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

441 *enddo

442
443
444 *DO ,ii ,1,xdim ,1

445 *DO ,jj ,1,ydim ,1

446 *DO ,kk ,1,zdim ,1

447 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

448 *enddo

449 *enddo

450 *enddo

451
452
453 *DO ,jj ,1,ydim

454 y = yval(jj ,1,1)

455 *DO ,ii ,1,xdim -1

456 x1 = xval(ii ,1,1)

457 x2 = xval(ii+1,1,1)

458
459 *DO ,kk ,1,zdim -1

460 z1 = zval(kk ,1,1)

461 z2 = zval(kk+1,1,1)

462
463 kp_1 = KP(x1 ,y,z1)

464 kp_2 = KP(x2 ,y,z1)

465 kp_3 = KP(x2 ,y,z2)

466 kp_4 = KP(x1 ,y,z2)

184 K. Complete APDL file nonlinear analysis FEA example

467 A,kp_1 ,kp_2 ,kp_3 ,kp_4

468 *ENDDO

469 *ENDDO

470 *ENDDO

471
472
473 *DEL ,xval ,,nopr

474 *DEL ,yval ,,nopr

475 *DEL ,zval ,,nopr

476 *ENDIF

477
478
479
480
481
482
483 ! ======================================= Column flanges

== !

484 *IF ,geometry ,EQ ,3,THEN

485 xdim = 1

486 ydim = 2*3 ! 2 Columns , both 3 coords in y dir

487 zdim = 2+NOTS

488
489 *DIM ,xval ,array ,xdim ,1,1

490 *DIM ,yval ,array ,ydim ,1,1

491 *DIM ,zval ,array ,zdim ,1,1

492
493 xval(1,1,1) = CWH

494
495 zval(1,1,1) = 0

496 zval(zdim ,1,1) = SPH

497
498 ! Fill y-coordinate vector

499 *DO ,q,1,2,1

500 jj = 3*q-1

501 y_q = (q-1)*SPW

502 yval(jj ,1,1) = y_q

503 yval(jj -1,1,1) = y_q - 0.5* CFW

504 yval(jj+1,1,1) = y_q + 0.5* CFW

505 *enddo

506
507 ! Fill z-coordinate vector

508 *DO ,q,1,NOTS ,1

509 kk = q+1

510 zval(kk ,1,1) = FOTS + (q-1)*CTC_T

511 *enddo

512
513
514 ! Create keypoints flanges

515 *DO ,ii ,1,xdim ,1

516 *DO ,jj ,1,ydim ,1

517 *DO ,kk ,1,zdim ,1

518 k,, xval(ii ,1,1), yval(jj ,1,1), zval(kk ,1,1)

519 *enddo

520 *enddo

521 *enddo

522
523
524 ! Draw areas flanges

525 x = xval(1,1,1)

526 *DO ,kk ,1,zdim -1

527 z1 = zval(kk ,1,1)

528 z2 = zval(kk+1,1,1)

529 *DO ,q,1,2

530 y_q =(q-1)*SPW

531
532 y1 = y_q - 0.5* CFW

533 y2 = y_q

534 y3 = y_q + 0.5* CFW

535
536 kp_1 = KP(x,y1,z1)

185

537 kp_2 = KP(x,y1,z2)

538 kp_3 = KP(x,y2,z2)

539 kp_4 = KP(x,y2,z1)

540 A,kp_1 ,kp_2 ,kp_3 ,kp_4

541
542 kp_1 = KP(x,y2,z1)

543 kp_2 = KP(x,y2,z2)

544 kp_3 = KP(x,y3,z2)

545 kp_4 = KP(x,y3,z1)

546 A,kp_1 ,kp_2 ,kp_3 ,kp_4

547 *ENDDO

548 *ENDDO

549
550
551 *DEL ,xval ,,nopr

552 *DEL ,yval ,,nopr

553 *DEL ,zval ,,nopr

554 *ENDIF

555
556
557
558
559
560 ! ================= FINISH GEOMETRY

561 ! --- Merge areas and keypoints

562 ALLSELL

563 *IF ,geometry ,NE ,1,THEN

564 AGLUE ,all

565 NUMMRG ,all

566 *ENDIF

567
568
569
570 ! --- Cut model in half in order to create symmetric model

571 WPOFFS ,,0.5*SPW , ! Translate working plane to half of the span

at Y=0.5* SPW

572 WPROTA ,,-90, ! Rotate working plane around x-axis

573 ASBW ,all ! Cut model in half at working plane

574 wpcsys ,-1,0 ! Reset working plane (?)

575
576 ASEL ,s,loc ,y,0.5*SPW ,SPW +0.5* CFW

577 ADELE ,all ,,1

578 ALLSEL

579
580
581 ! --- CREATE COMPONENTS

582
583 ASEL ,s,loc ,x,0 ! Skin Plate

584 CM,SP,Area

585
586 *IF ,geometry ,NE ,1,THEN

587 ASEL ,None

588 *DO ,q,1,NOTS ,1

589 zval = FOTS + (q-1)*CTC_T

590 ASEL ,A,loc ,z,zval

591 *enddo

592 ASEL ,U,LOC ,X,TSWH

593 CM,TSW ,area

594
595 *IF ,TSFW ,GT ,0,THEN

596 ASEL ,S,loc ,x,TSWH

597 CM,TSF ,area

598 *ENDIF

599 *ENDIF

600
601 *IF ,geometry ,EQ ,3,THEN

602 ASEL ,none

603 ASEL ,A,loc ,y,0

604 ASEL ,A,loc ,y,SPW

605 CM,CW,area

606

186 K. Complete APDL file nonlinear analysis FEA example

607 ASEL ,S,loc ,x,CWH ,

608 CM,CF,area

609 *ENDIF

610
611
612
613
614 !--

615 ! Assign elements to selected components and MESHING

616 !--

617 AATT , MAT , REAL , ELEMENT TYPE , ESYS , SECTION NUMBER

618
619 CMSEL ,S,SP ! Select component

620 AATT , 1, , 1, 0, SPID

621
622 *IF ,NOTS ,GT ,0,THEN

623 CMSEL ,S,TSW

624 AATT , 1, , 1, 0, TSWID

625
626 *IF ,TSFW ,GT ,0,THEN

627 CMSEL ,S,TSF

628 AATT , 1, , 1, 0, TSFID

629 *ENDIF

630 *ENDIF

631
632
633 *IF ,geometry ,EQ ,3,THEN

634 CMSEL ,S,CW

635 AATT , 1, , 1, 0, CWID

636
637 CMSEL ,S,CF

638 AATT , 1, , 1, 0, CFID

639 *ENDIF

640
641
642
643
644 ! --- Meshing

645 ! - Set mesh options

646 MSHKEY ,2 ! Use mapped meshing if possible; otherwise , use free meshing

647 MOPT ,split ,2 ! Quad splitting option for non -mapped meshing. If Value = 2 or WARN ,

quadrilateral

648 ! elements in violation of either shape error or

warning limits are split into triangles.

649 MSHAPE ,0,2d ! Mesh with quadrilateral -shaped elements when Dimension = 2D

650
651
652 ! - Set mesh size and mesh areas

653 ESIZE ,40

654 ALLSEL

655 AMESH ,ALL

656
657
658 seltol ,0.0005

659
660 ALLSEL

661
662 ! --- Node components

663 CMSEL ,S, TSF

664 CMSEL ,A, TSW

665 CMSEL ,A, SP

666 NSLA , S, 1

667 NSEL , R, LOC , Y, 0

668 CM, RightEdge , Node

669 NSEL , S, LOC , Y, 0.5* SPW

670 CM, MidEdge , Node

671 NSEL , S, LOC , Z, 0

672 CM, BottomEdge , Node

673 NSEL , S, LOC , Z, SPH

674 CM, TopEdge , Node

675

187

676 CMSEL , S, RightEdge , Node

677 NSEL , R, LOC , X, 0

678 CM, RightEdgePlate , Node

679 CMSEL , S, MidEdge , Node

680 NSEL , R, LOC , X, 0

681 CM, MidEdgePlate , Node

682 CMSEL , S, BottomEdge , Node

683 NSEL , R, LOC , X, 0

684 CM, BottomEdgePlate , Node

685 CMSEL , S, TopEdge , Node

686 NSEL , R, LOC , X, 0

687 CM, TopEdgePlate , Node

688
689 CMSEL , S, RightEdge , Node

690 NSEL ,U,LOC ,X,0

691 CM,RightEdgeSection ,Node

692 CMSEL , S, MidEdge , Node

693 NSEL ,U,LOC ,X,0

694 CM,MidEdgeSection ,Node

695 CMSEL , S, BottomEdge , Node

696 NSEL ,U,LOC ,X,0

697 CM,BottomEdgeSection ,Node

698 CMSEL , S, TopEdge , Node

699 NSEL ,U,LOC ,X,0

700 CM,TopEdgeSection ,Node

701
702
703 ! - Create node components for reading displacements from eigenmodes in order to apply

right imperfection

704 NSEL ,S,LOC ,X,0

705 CM,PlateNodes ,Node

706
707 CMSEL ,S,TSW ,AREA

708 NSLA ,S,1

709 NSEL ,R,LOC ,X,0

710 CM,BottomStiffenersNodes ,Node

711
712 CMSEL ,S,TSW ,AREA

713 NSLA ,S,1

714 NSEL ,R,LOC ,X,TSWH

715 CM,TopStiffenersNodes ,Node

716
717
718
719
720
721 !=======================================

722 ! Enter solution processor

723 !=======================================

724 /SOL

725
726 ALLSEL

727 ! --- Add Boundary conditions

728
729 ! - Fix horizontal edges in x direction

730 D, TopEdge ,UX, 0

731 D, BottomEdge ,UX , 0

732
733 ! - Apply deformations

734 D, RightEdgePlate , UY, Uyy

735 D, RightEdgeSection , UY, Uyy

736
737 ! Support column cross sections in y direction

738 ALLSEL

739 D, TopEdgeSection , UY, Uyy

740 D, BottomEdgeSection , UY, Uyy

741
742
743 ! Apply Szz as a displacement

744 D,TopEdge ,Uz,-Uzz

745 D,BottomEdge ,Uz,Uzz

188 K. Complete APDL file nonlinear analysis FEA example

746
747
748 ! Apply Szz as a stress onto the plate and column section

749 !CMSEL ,S,BottomEdgePLate ,Node

750 !SF ,ALL ,Pres ,Szz*SPT

751 !CMSEL ,S,BottomEdgeSection ,Node

752 !SF ,ALL ,Pres ,Szz*CFT

753
754 !CMSEL ,S,TopEdgePLate ,Node

755 !SF ,ALL ,Pres ,Szz*SPT

756 !CMSEL ,S,TopEdgeSection ,Node

757 !SF ,ALL ,Pres ,Szz*CFT

758
759
760
761
762 ! Support in Z direction at a point halfway column web at flange

763 NSEL ,S,LOC ,X,CWH

764 NSEL ,R,LOC ,Y,0

765 NSEL ,R,LOC ,Z,0.5*SPH -25, 0.5* SPH+25

766 D,ALL ,UZ ,0

767
768
769
770 ! - Apply symmetric boundary conditions

771 CMSEL ,S,MidEdge ,NODE

772 DSYMM ,SYMM ,Y

773
774
775
776 ! --- Add surface loads

777 sfcum ,pres ,add

778
779 ! ----- Load contribution number 1 -----!

780 Z0 = 0 $ P0 = Q0

781 Z1 = SPH $ P1 = Q1

782 delta_p = (P1 - P0)/(Z1 - Z0)

783 ESEL ,S,SEC ,,SPID

784 ESEL ,R,CENT ,Z,Z0,Z1

785 SFGRAD ,PRES ,0,Z,Z0 ,delta_p

786 SFE ,ALL ,1,PRES ,0, Q0

787 !----------------

788 /psf ,pres ,norm ,3,1

789
790
791
792 ! - When a nonlinear analysis is performed with an updated geometry following from an

eigenvalue analysis ,

793 ! the commands will be loaded here

794
795 ALLSEL

796 /SOL

797 ANTYPE , static

798 pstres , on

799 eqslv , sparse

800 SOLVE

801
802 FINI

803
804 n_modes =1

805
806 /SOL

807 antype ,buckle

808 bucopt ,lanb ,n_modes

809 mxpand ,n_modes ,,,yes

810 SOLVE

811 FINI

812
813
814 /post1

815 !Retrieve eigenvalues and store in parameters

189

816 *DO ,mode ,1,n_modes

817 SET ,1,mode

818 *GET ,lambda_%mode%,FREQ

819 *ENDDO

820
821
822 /PREP7

823 upgeom ,AMP ,1,1,dp0 ,rst

824
825
826
827 ALLSEL

828 ! Perform nonlinear analysis

829 /SOLU

830 ANTYPE , static

831 OUTRE , all , all

832 NLGEOM , on

833 AUTOTS ,auto

834 NSUBST ,1000 ,1000 ,10

835 SOLVE

836
837 !=======================================

838 ! Enter postprocessor

839 !=======================================

840
841
842 /POST1

843 set , last

844
845
846 ! Set view

847 /VIEW ,1,1,1,-0.50

848 /ANGLE ,1 ,180

849 /VUP ,1,Z

850 /REPLOT

851
852
853
854
855 ! ------------------------------------ Store all results in one array

856 ALLSEL

857 *GET ,numNd ,NODE ,0,COUNT

858 *DIM ,selstat ,ARRAY ,numNd ,1

859 *DIM ,allresults ,ARRAY ,numNd ,7

860 *VGET ,allresults (1,1),NODE ,1,LOC ,X

861 *VGET ,allresults (1,2),NODE ,1,LOC ,Y

862 *VGET ,allresults (1,3),NODE ,1,LOC ,Z

863 *VGET ,allresults (1,4),NODE ,1,U,X

864 *VGET ,allresults (1,5),NODE ,1,U,Y

865 *VGET ,allresults (1,6),NODE ,1,U,Z

866 *VGET ,allresults (1,7),node ,1,S,EQV

867
868
869
870
871
872
873 ! ------------------------------------ Take min -max values of results

874
875 ! --- ALL

876 ALLSEL

877 *VSCFUN ,SIGMXALL ,max ,allresults (1,7)

878 *VSCFUN ,UXMXALL ,max ,allresults (1,4)

879
880
881
882 ! --- PLATE

883
884 CMSEL ,s,PlateNodes ,Node ! Select plate

885 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

886 *VMASK ,selstat (1,1) ! Create masking vector

190 K. Complete APDL file nonlinear analysis FEA example

887 *VSCFUN ,SIGMXPL ,max ,allresults (1,7) ! Store max SEQV of plate

888 *VMASK ,selstat (1,1)

889 *VSCFUN ,UXMXPL ,max ,allresults (1,4) ! Store max UX of plate

890
891
892 CMSEL ,s,PlateNodes ,Node ! Select plate

893 NSEL ,R,LOC ,Y,0 ,0.1* SPW ! Reselect 10% of plate width

next to column

894 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

895 *VMASK ,selstat (1,1) ! Create masking vector

896 *VSCFUN ,SIGMXPLE ,max ,allresults (1,7) ! Store max SEQV of plate along column

897
898 CMSEL ,s,PlateNodes ,Node ! Select plate

899 NSEL ,R,LOC ,Y,0.1*SPW , 0.5* SPW ! Reselect 40% of plate width

900 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

901 *VMASK ,selstat (1,1) ! Create masking vector

902 *VSCFUN ,SIGMXPLM ,max ,allresults (1,7)

903
904
905 ! --- STIFFENERS

906
907 CMSEL ,s,TSW ,AREA

908 CMSEL ,a,TSF ,AREA

909 NSLA ,s,1 ! Select

Stiffeners nodes

910 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

911 *VMASK ,selstat (1,1)

912 *VSCFUN ,SIGMXST ,max ,allresults (1,7) ! Store max SEQV of stiffeners

913 *VMASK ,selstat (1,1)

914 *VSCFUN ,UXMXST ,max ,allresults (1,4) ! Store max ux of stiffeners

915
916
917 CMSEL ,s,TSW ,AREA

918 CMSEL ,a,TSF ,AREA

919 NSLA ,s,1

920 NSEL ,R,LOC ,Y,0 ,0.1* SPW

921 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

922 *VMASK ,selstat (1,1)

923 *VSCFUN ,SIGMXSTE ,max ,allresults (1,7) ! Store max SEQV of stiffeners next to

column

924
925 CMSEL ,s,TSW ,AREA

926 CMSEL ,a,TSF ,AREA

927 NSLA ,s,1

928 NSEL ,R,LOC ,Y,0.1*SPW ,0.5* SPW

929 *VGET ,selstat (1,1),NODE ,1,nsel ! Fill selection status array

930 *VMASK ,selstat (1,1)

931 *VSCFUN ,SIGMXSTM ,max ,allresults (1,7) ! Store max SEQV of stiffeners

midsection

932
933
934
935
936
937
938
939 ! --- Create and fill output file with input -output parameters

940 *cfopen ,parametervalues ,csv ,,

941 *VWRITE , 'SPH ,', SPH

942 (A, F)

943 *VWRITE , 'SPW ,', SPW

944 (A, F)

945 *VWRITE , 'SPT ,', SPT

946 (A, F)

947 *VWRITE , 'NOTS ,', NOTS

948 (A, F)

949 *VWRITE , 'TSWH ,', TSWH

950 (A, F)

951 *VWRITE , 'TSWT ,', TSWT

952 (A, F)

953 *VWRITE , 'TSFW ,', TSFW

191

954 (A, F)

955 *VWRITE , 'TSFT ,', TSFT

956 (A, F)

957 *VWRITE , 'Q0,', Q0

958 (A, F)

959 *VWRITE , 'Q1,', Q1

960 (A, F)

961 *VWRITE , 'Syy ,', Syy

962 (A, F)

963 *VWRITE , 'Szz ,', Szz

964 (A, F)

965 *VWRITE , 'AMP ,', AMP

966 (A, F)

967 *VWRITE , 'CWH ,', CWH

968 (A, F)

969 *VWRITE , 'CWT ,', CWT

970 (A, F)

971 *VWRITE , 'CFW ,', CFW

972 (A, F)

973 *VWRITE , 'CFT ,', CFT

974 (A, F)

975
976 *VWRITE , 'L1,', lambda_1

977 (A,F)

978 *VWRITE ,'UXMXALL ,', UXMXALL

979 (A,F)

980 *VWRITE ,'UXMXPL ,', UXMXPL

981 (A,F)

982 *VWRITE ,'UXMXST ,', UXMXST

983 (A,F)

984 *VWRITE ,'SIGMXALL ,', SIGMXALL

985 (A,F)

986 *VWRITE ,'SIGMXPL ,', SIGMXPL

987 (A,F)

988 *VWRITE ,'SIGMXPLM ,', SIGMXPLM

989 (A,F)

990 *VWRITE ,'SIGMXPLE ,', SIGMXPLE

991 (A,F)

992 *VWRITE ,'SIGMXST ,', SIGMXST

993 (A,F)

994 *VWRITE ,'SIGMXSTM ,', SIGMXSTM

995 (A,F)

996 *VWRITE ,'SIGMXSTE ,', SIGMXSTE

997 (A,F)

998 *CFclose

	List of Figures
	List of Tables
	Summary
	Introduction
	Background and motivation
	Objectives
	Scope
	Report outline

	Machine Learning theory
	Introduction to Machine Learning
	Artificial Neural Networks
	Network architecture: The building blocks of the ANN
	Matrix notation
	Training process of the network
	Hyperparameters

	Genetic algorithms
	Why Genetic Algorithms
	Main process
	Fitness evaluation
	Selection
	Variation

	Mechanical model and FE analysis
	Introduction main mechanical problem
	Geometry
	Material
	Boundary conditions
	Loading conditions
	Out of plane loading
	In-plane loading

	Limit state criteria
	Mesh
	Element type
	Mesh quality
	Mesh size

	Non-linear FE analysis
	Geometrical nonlinearities
	Material non-linearities

	Encountered difficulties
	Divergence
	Stress singularities

	Summary and example FE analysis

	Approach
	Introduction
	Software
	Python
	Finite element software
	Considerations Ansys Workbench or APDL

	Simplified mechanical models
	Generation of data
	Create parametric models
	Define projects
	Create design of experiments
	Run FE analyses and collect the results

	Preparation of data
	Split data
	Scale data
	Modify input data

	Predictive modeling using Artificial Neural Networks
	Create the ANN model
	Choose hyper parameters
	Training the ANN on data
	Validation

	Hyperparameter optimization using Genetic Algorithms
	Hyperparameters to optimize
	Settings for genetic algorithm
	Custom functions

	Other methods for predictive modeling
	Kriging interpolation
	Polynomial interpolation

	Results and discussion
	Computational efforts
	Comparison of accuracies predictive models
	Comparison accuracies mechanical model 1
	Comparison accuracies mechanical model 2
	Comparison accuracies mechanical model 3

	Analyses of errors predictions Artificial Neural Networks
	Error analysis simplified mechanical models 1 and 2
	Error analysis main mechanical model 3

	Influencing parameters on accuracy
	Relation accuracy to number of training data samples
	Relation accuracy to number of design variables

	Additional results
	Modifications on Neural Networks training
	Simplified models. Non-linear analyses of unstiffened plates
	Results on existing datasets
	Results accuracies unstiffened plates

	Conclusion
	Recommendations
	FE modelling
	Training data
	Other machine learning techniques

	Bibliography
	Appendices
	Main Python script
	ANN classes
	Genetic Algorithm classes
	APDL classes
	Data classes
	Summary classes
	APDL template file non-linear buckling analysis stiffened plates
	APDL template file non-linear buckling analysis unstiffened plates
	APDL template file symmetric geometry
	APDL template file imperfection type 2
	Complete APDL file nonlinear analysis FEA example

