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Abstract

This thesis concerns the development of a finite element model for analyzing cold bent glass
panels. The finite element model predicts the nonlinear deformations, stresses, and reaction
forces which arise from bending a flat panel to a curved shape. The finite element model is
implemented in the MATLAB programming language and subsequently deployed as a stand
alone application called PBA (Plate Bending Application). The application is user friendly,
demands little input, and requires short computation times. PBA is available on the Internet
and can be used freely by others. For downloads see: http://www.mechanics.citg.tudelft.nl/pba/

A major part of the performed activities concentrated on developing a finite element formulation
that describes the behavior of flat plates subjected to large displacements. To this end the classic
membrane theory is combined with the Reissner-Mindlin bending theory. In order to solve the
coupled membrane-bending formulation an iterative linear stiffness method is developed and
examined for various influential parameters.

PBA is able to present accurate results for the nonlinear deformations, stresses, and reaction
forces of moderately strong curved plates. For strongly curved plates, the implemented solution
method does not find a converged solution. It is found that this occurs after transgression of
realistic design criteria.
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1. Introduction

1.1 Background

In modern architecture, complex building shapes are made possible due to the increasing use of
advanced 3D computer modeling applications. These applications have accelerated the develop-
ment of free form design, also known as fluid design, in which curved surfaces are an important
aspect (Figure 1.1). The rapid upcoming of the modeling tools have led to an increasing gap
between the designing party and the building industry [8]. Nonetheless, the building industry
has stepped in and has recognized the wishes of modern architects to come up with solutions for
making their designs possible.

Figure 1.1: Fluid design, City hall Alphen a/d Rijn (EEA architects)

The value of a building design is often judged by the appearance of its exterior, the facade.
Commonly, a large portion of the facade is occupied by transparent parts made of glass. Consid-
ering free form designs often exhibit curved surfaces, the glass parts must somehow be formed
to a prescribed shape. An approved method to achieve this is ’hot bending of glass panels’ [11].
This method, also used in the automotive industry, relies on the ability of glass to deform into
a desired shape when heated above the weakening point. A flat glass panel is heated up to 600
degrees Celsius and then pushed into a heat resistant mould. After reaching the desired shape,
the panel is cooled down in a controlled manner, resulting in a tension free end product. Panels
with very strong curvatures are feasible. When using this method to produce many different
facade panels, as one has to do for a free form design, equally many different moulds have to
be produced. As a consequence costs are very high and production time is long. Further, the
quality of the hot formed panels is a point of discussion. Due to the heating process the thickness
is affected, resulting in a decreased optical property and considerable production tolerances [17].
Although this technique has the advantage of making panels with very strong curvatures, it is
not ideal for large scale projects in which many different panels are required.

An alternative method for developing curved glass surfaces is ’cold bending of glass panels’ [11].
Hereby, flat glass panels are transported to the building site where they are forced into a curved
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Introduction 2

shape by cold bending. A frame or several fixed points are required to keep the panel in place,
hence during its lifetime the panel is under constant stress. The advantage of this method
compared to the hot bending method is the omitting of heating and moulding. As a result, costs
are low by savings in time- and energy consumption. In addition, the optical quality is better
and transportation of the (un-deformed) panels to the building site is more practical.

1.2 Problem description

In his master thesis, Staaks investigated the deformation path of a square flat panel deformed
by increasing the displacement of one of the vertical constraints [15]. He observed a transition
between an initial deformation and a final deformation. This is illustrated in Figure 1.2. The

(a) (b)

Figure 1.2: (a) First deformation pattern (b) Second deformation pattern

initial deformation pattern shows straight edges and curved diagonals. This shape is mathemat-
ically described by a hyperbolical. By increasing the vertical displacement, this double curved
shape changes to a more or less single curved shape, with one strongly curved diagonal and one
nearly straight diagonal. The plate edges do not longer remain straight. The second deforma-
tion pattern is not preferable, mainly for esthetic reasons. Strongly curved panels give undesired
reflections and due to the curved edges no clean joints are possible. With data of experiments
and finite element solutions, Staaks was able to derive a formula for determining the moment of
transition between the initial and folded pattern. This formula is given by:

wtrans = 16.8t (1.1)

Staaks formula states that the amount of torsion - expressed in the vertical displacement of one
corner node - at the moment of transition is 16.8 times the thickness of the plate. This formula
is valid for square panels only. Applying this formula to rectangular panels leads to deviations
up to 30% of the numerical solution.

Van Laar continued this research and concluded in his thesis that the deformation path is gov-
erned by a nonlinear differential equation [13]. With the aid of the finite difference method he
was able to solve this equation for square panels. Although his results were consistent with re-
sults obtained by a commercial finite element program, he was not able to derive design rules for
other non-rectangular panels. Therefore, engineers still are not able to predict the deformation
path of an arbitrarily shaped panel without the use of a comprehensive finite element program.
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1.3 Objective

The objective of this thesis is to develop a small finite element program for analyzing cold bent
glass panels. The program is intended to be used as a design tool thus requiring simple input and
short computation time. The output of the application should be concentrated on visualizing
the deformations, stresses and support reactions which arise from cold forming a flat panel to a
curved shape.

1.4 Research outline

In order to arrive at the proposed objective, some restrictions have to be introduced. In this
section the three most prominent restrictions will be dealt with separately.

The first restriction concerns the geometry. From an architectural point of view, a quadrilateral
is the most interesting family of shapes to use. Examples are a square shape, rectangular shape,
parallelogram shape and a trapezoid shape. This restriction brings forth that the geometry of a
panel is defined by the location of four corner nodes and a plate thickness. Other shapes than
quadrilateral shapes (e.g. triangles, hexagons), reach beyond the scope of this thesis.

The second restriction concerns the material model. Glass exhibits almost perfect elastic behavior
up to a point where it fails abruptly. This is mainly caused by the non-crystalline composition
of Si-O bonds and Na-O bonds [4]. Further, the fabrication process by floating molten glass
on a tin-bath assures the material to be isotropic. These properties would justify the use of a
physically linear relation. Therefore, the type of analysis can be restricted to a pure geometrical
nonlinear analysis. At this point no assumptions are made with respect to the exact strength and
stiffness values. Primarily because different types of glass (e.g. annealed glass, heat strengthened
glass, toughened glass) are available which all have different strength and stiffness properties [1].
A user of the program should be able to specify the specific material properties.

The third restriction concerns the type of support. In practice two types of supports can be used
for cold forming a flat glass panel to a curved shape. The first type of support is a point support
which can be executed as a glued spider fitting (Figure 1.3b) or a clamp fitting through the joints
(Figure 1.4b). To approximate a certain curvature, the spiders or clamps can be adjusted in the
direction perpendicular to the plate. A bolted spider fitting is not advised for cold bending since
this type of spider requires a hole in the glass panel. Drilling of the hole causes small cracks
which severely reduces the strength of the panel.
The second type of support is a frame-support (Figure 1.5b). This type of support only allows
pure torsion; three out of four corner nodes are always in one plane, the effective displacement
of the fourth corner node determines the amount of torsion. The frame support can further
be subdivided in a frame supporting all four edges and a frame supporting two opposite edges,
leaving the two other edges free. Only straight frame supports will be regarded. Curved frame
supports reach beyond the scope of this thesis.
With both the point and frame support it is possible to impose rotations. However, in case of
cold forming flat panels, imposed rotations would presumably lead to higher stresses, especially
at the supports. Therefore, the supports will be used as translational restrictions only.
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(a) (b)

Figure 1.3: (a) Glass facade panels supported by spider fittings (b) Glued spider fitting (Octatube)

(a) (b)

Figure 1.4: (a) Glass canopy supported by clamps, Zuidpoort Delft (Octatube) (b) Clamp fitting
(Octatube)

(a) (b)

Figure 1.5: (a) Glass facade supported by frames, Ford Research Center (Carbonell Figueras) (b)
Frame support (Reynolds)

1.5 Organization

In Chapter 2 a nonlinear finite element analysis is performed on several quadrilateral shaped
panels using a commercial finite element program. The objective is to clarify the need for a
geometrical nonlinear analysis when plates subjected to large displacements are to be analyzed.
Moreover, several benchmarks are generated which can be used later on for comparison with the
to develop finite element program. In Chapter 3 a first step in the development of the application
is taken by presenting the mathematical model which is used to describe the problem. This
mathematical model is translated into a finite element formulation in Chapter 4. Chapter 5
deals with the implementation of the finite element formulation into a programming language
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and presents the graphical user interface. The validation of the application is elaborated in
Chapter 6. Finally, Chapter 7 presents conclusions and recommendations.





2. Nonlinear finite element benchmarks

The objective of this chapter is to generate several benchmarks which can be used for comparison
with the developed finite element program. To this end, nonlinear finite element analyses are
performed on several characteristic panel shapes which can be deduced from a quadrilateral.
Diana version 9.3 is used to perform the analyses [19].

2.1 Geometrical properties

From the quadrilaterals family four shapes are selected which are shown in Figure 2.1. These
four shapes capture the most prominent shapes to be used for practical application. All panels
are given a constant thickness of 5 [mm].

1000

1000

(a) Square

1000

1400

(b) Rectangle

1000

1000 500

(c) Parallelogram

1000

1000

400400 200

(d) Trapezoid

Figure 2.1: Benchmark panels

2.2 Material properties

For all benchmarks a linear material model is used. The specific property values for the elasticity
modulus and Poisson’s ratio are set to: E = 72000 [N/mm2] and ν = 0.0 [-].

2.3 Modeling aspects

2.3.1 Modeling environment

All benchmarks are modeled with 2D curved shell elements. These elements assume the stress
component perpendicular to the plate is zero (σzz = 0). For modeling a flat surface with a
relatively thin thickness, this is a valid assumption.
In contrast to the 2D flat shell element - another 2D shell element provided by Diana - the
curved shell element incorporates membrane-bending coupling behavior. The flat shell element
is essentially a combination of a bending element and a membrane element but without the
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membrane-bending coupling behavior and therefore not suitable for a geometrically nonlinear
analysis.

2.3.2 Element selection

A four node quadrilateral curved shell element with 2 × 2 Gauss integration is selected. This
integration scheme is the only possible integration scheme for this particular 2D curved shell
element. A preliminary analysis proved that higher order curved shell elements do not yield any
significant differences compared to linear curved shell elements.

2.3.3 Mesh parameters

The mesh is set to dimensions of b × h = 50 × 50 [mm]. These dimensions assure a sufficiently
fine mesh for all panels.

2.3.4 Iteration procedure and norm tolerance

The iterative procedure is set to the Regular Newton Raphson method. This method assures a
fully converged solution*. For the convergence criterium the displacement norm is chosen with a
(default) convergence tolerance of ε = 0.01 and the maximum number of iterations is set to 10.
The loading is imposed in a number of steps. In order to obtain a smooth displacement diagram
the number of steps is set to 100.

2.4 Boundary conditions

The most elementary method of cold forming a quadrilateral flat panel to a curved shape is by
supporting three corner nodes and giving the fourth corner node a vertical displacement. Panels
supported by a frame and panels supported by more than four points are not regarded in this
chapter.
All panels are supported as illustrated for the square panel in Figure 2.2. The bottom left corner
node is given a vertical displacement equal to 100 [mm] for the square, rectangle and parallelo-
gram and 150 [mm] for the trapezoid.

1

2

3

4

M

Figure 2.2: Boundary conditions

*The Newton Secant methods also performed well and appeared to yield the exact same solution as was
obtained with the Regular Newton Raphson method. Other iterative methods, the constant stiffness method
and the Modified Newton Raphson method, did not result in a fully converged solution and were not further
examined.
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2.5 Evaluation of results

For each plate the displacement path is represented by plotting the prescribed displacement
against the observed displacement of the middle node, which is defined by the intersection of the
diagonal lines*. In addition, the membrane stresses and the deformed shape is plotted.

2.5.1 Benchmark 1: square

Figure 2.3 shows the load-displacement diagram of the square panel. As van Laar [13] and
Staaks [15] concluded, the deformation path follows the linear branch fairly well up to a point
where it changes abruptly. Figure 2.4 shows the deformations of the panel.
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Figure 2.3: Load-displacement diagram square panel

(a) (b)

Figure 2.4: (a) Deformation linear analysis (b) Deformation nonlinear analysis at wtrans [mm]

From Figure 2.4b can be seen that the plate shows slightly S-curved edges. This is mainly caused
by the in z direction projected components of the shear stresses.

*An alternative way of mapping out the nonlinear behavior of plates subjected to large displacements is by
plotting the prescribed displacements against the internal forces. As will be clarified in Chapter 6 this appears
less illustrative for the behavior of the plate
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(a) σxx (b) σyy (c) σxy

Figure 2.5: Membrane stresses [N/mm2]

These components are a function of the torsion (2κxy) and the shear stresses (Figure 2.5c).
The other stresses do not influence the displacements that significantly because their projection
perpendicular to the plate is negligible due to the virtually zero curvatures κxx and κyy.

2.5.2 Benchmark 2: rectangle

Figure 2.6 shows the load-displacement diagram of a rectangular panel. Also for rectangular
panels a rather abrupt moment of transition is observed.
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Figure 2.6: Load-displacement diagram rectangular panel

(a) (b)

Figure 2.7: (a) Deformation linear analysis (b) Deformation nonlinear analysis at wtrans [mm]
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The components in z direction of the shear stresses are again causing the S-curved edges (Figure
2.7b).

(a) σxx (b) σyy (c) σxy

Figure 2.8: Membrane stresses [N/mm2]

The normal stresses σxx and σyy do not influence the behavior of the plate because also for
rectangular panels the curvatures κxx and κyy can be neglected.

2.5.3 Benchmark 3: parallelogram

Figure 2.9 shows the displacement path of a parallelogram. Right from the start the nonlinear
analysis deviates from the linear analysis. Also, there is no sudden change in the deformation
path observed.
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Figure 2.9: Load-displacement diagram rectangular panel
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(a) (b)

Figure 2.10: (a) Deformation linear analysis (b) Deformation nonlinear analysis at wtrans [mm]

Unlike with square and rectangular panels, displacing one corner node of a parallelogram does
not merely result in torsion (2κxy). The plate is also ’bent’ resulting in the curvatures κxx

and κyy. Therefore the membrane stresses σxx and σyy have components in z direction which
influence the displacement field.

(a) σxx (b) σyy (c) σxy

Figure 2.11: Membrane stresses [N/mm2]

The membrane stresses (Figure 2.11) show some resemblance with the stresses of the square and
rectangular panel but their influence on the displacement field is rather significant and difficult
to predict.

2.5.4 Benchmark 4: trapezoid

As with the parallelogram, the trapezoid shows a deformation path which deviates considerably
from the linear branch.
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Figure 2.12: Load-displacement diagram trapezoid panel

(a) (b)

Figure 2.13: (a) Deformation linear analysis (b) Deformation nonlinear analysis at wtrans [mm]

The curvatures and membrane stresses (Figure 2.14) are difficult to predict and therefore a
nonlinear finite analysis is needed to achieve a reliable solution.

(a) σxx (b) σyy (c) σxy

Figure 2.14: Membrane stresses [N/mm2]

2.6 Conclusions

Conclusions regarding square and rectangular shaped plates:
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� The deformed shape can be approximated with a linear analysis. However at a certain
imposed displacement the deformation path changes abruptly. For square panels, this
moment can be approximated with empirical formulas like Staaks formula: wtrans = 16.8t.

� The edges of the panels show S-curved edges due to the z components of the shear mem-
brane stresses.

� The curvatures κxx and κyy can be neglected. The torsion 2κxy is more or less constant
over the plate.

� In order to quantify the membrane stresses a nonlinear finite element analysis is needed.
There are no empirical formulas available to approximate the nonlinear membrane stresses.

Conclusions regarding parallelogram and trapezoid shaped plates:

� The load-displacement diagram immediately starts to deviate from the linear branch. No
abrupt changes in the diagram are observed.

� In addition to torsion the curvatures κxx and κyy are present.

� Quantifying both deformations and membrane stresses requires a nonlinear finite element
analysis. There are no empirical formulas available to approximate the nonlinear deforma-
tions and membrane stresses.

From the results presented in this chapter it can be concluded that quantifying the deformations
and stresses for arbitrarily shaped plates subjected to large displacements requires a nonlinear
analysis.



3. Large deformation mechanics

In this chapter a first step in the development of the design tool is taken by presenting a math-
ematical description for plates subjected to large displacements. The mathematical description
is obtained by combining a bending theory with a membrane theory.

3.1 Reissner-Mindlin bending theory

The Reissner-Mindlin theory is a plate bending theory suitable for describing both thick and
thin plates, as it takes into account shear deformations [2]. Although we are mostly interested in
analyzing thin plates, this theory has some advantages over other theories like the classic Kirch-
hoff theory. The Kirchhoff theory is applicable for thin plates only, because shear deformations
are assumed to be negligible. A problem that is inherent to this theory is that the governing
equation for equilibrium exhibit derivatives of order two. When casting the bending problem
into a finite element model, this feature demands for C1 interpolations, meaning that the second
derivative of the interpolating functions defined on the finite elements need to exist [18]. Higher
order interpolating functions could be used to satisfy C1 continuity, however these functions
cannot be used for isoparametric mappings. In addition, applying numerical integration over the
elements becomes very cumbersome. The Reissner-Mindlin theory does allow for C0 continuity
and is therefore much easier to cast into a finite element model. In chapter 4 the prior notice
will be explained in more detail. For now the kinematic equations, constitutive model and equi-
librium equations will be presented for the Reissner-Mindlin theory for plates subjected to large
displacements.

3.1.1 Kinematics

The kinematic equations for the Reissner-Mindlin theory are divided in a bending part and a
shear part. The curvatures are related to the rotations through:

κxx =
∂θx

∂x
(3.1)

κyy =
∂θy

∂y
(3.2)

ρxy =
∂θx

∂y
+

∂θy

∂x
(3.3)

The shear strains are given by:

γx = θx +
∂w

∂x
(3.4)

γy = θy +
∂w

∂y
(3.5)

15
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3.1.2 Constitutive relation

The constitutive model is also divided in a bending part and a shear part. The equations relating
the curvatures and moments are:

mxx = Db(κxx + νκyy) (3.6)

myy = Db(κyy + νκxx) (3.7)

mxy = Db
1− ν

2
ρxy (3.8)

where Db is the plate bending stiffness given by:

Db =
Et3

12(1− ν2)
(3.9)

The equations relating the shear strains and shear forces are:

vx = Cγx (3.10)

vy = Cγy (3.11)

where C is the plate shear stiffness given by:

C =
Et

2(1 + ν)
(3.12)

3.1.3 Equilibrium equations

The third set of equations needed to describe the Reissner-Mindlin theory are the equilibrium
equations. Consider a small plate element as given in Figure 3.1a.

mxx +
∂mxx

∂x
dx

mxy +
∂mxy

∂x
dx

vx +
∂vx

∂x
dx

myx +
∂myx

∂y
dy

myy +
∂myy

∂y
dy

vy +
∂vy

∂y
dy

myx

myy

vy

vx

mxx
mxy

pz

dx

dy

(a)

nxx +
∂nxx

∂x
dx

nxy +
∂nxy

∂x
dx

nyx +
∂nyx

∂y
dy

nyy +
∂nyy

∂y
dy

nyx

nyy

nxy

nxx

dx

dy

nxx +
∂nxx

∂x
dx

nxx

px

py

(b)

Figure 3.1: (a) Equilibrium of a bending element (b) Equilibrium of a membrane element
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Equilibrium of moments gives *

∂mxx

∂x
+

∂myx

∂y
= vx (3.13)

∂myy

∂y
+

∂mxy

∂x
= vy (3.14)

−∂vx

∂x
− ∂vy

∂y
= pz (3.15)

In addition to the load pz, the lateral forces px and py are assumed to be present in the middle
surface of the plate (Figure 3.1b). For small displacements these forces can be neglected. For large
displacements the components perpendicular to the plate influence the equilibrium significantly
[7].
Equilibrium of the membrane forces gives:

∂nxx

∂x
+

∂nxy

∂y
+ px = 0 (3.16)

∂nyy

∂y
+

∂nxy

∂x
+ py = 0 (3.17)

The components of the membrane forces in z direction are formulated as:

nxx
∂θx

∂x
(3.18)

nyy
∂θy

∂y
(3.19)

2nxy(
∂θx

∂y
+

∂θy

∂x
) (3.20)

Adding these components to the right hand side of (3.15) gives the equilibrium equations of the
Reissner-Mindlin theory for plates subjected to large displacements.

∂mxx

∂x
+

∂myx

∂y
= vx (3.21)

∂myy

∂y
+

∂mxy

∂x
= vy (3.22)

−∂vx

∂x
− ∂vy

∂y
= pz + nxx

∂θx

∂x
+ nyy

∂θy

∂y
+ 2nxy(

∂θx

∂y
+

∂θy

∂x
) (3.23)

3.2 Membrane theory

In the previous section the assumption is made that the membrane forces are applied externally.
In this section it will be elaborated how membrane forces arise from large displacements [16].

*As can be seen from (3.13) to (3.15) only derivatives of order 1 are present, thus the Reissner-Mindlin
theory allows for C0 continuity. This way of formulating the equilibrium equations demands from the kinematic
equations and the constitutive model to take into account shear strains and shear forces.
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3.2.1 Kinematics

The kinematic equations of a plate subjected to large displacements can be formulated as:

εxx =
∂ux

∂x
+

1
2
(
∂w

∂x
)2 (3.24)

εyy =
∂uy

∂y
+

1
2
(
∂w

∂y
)2 (3.25)

γxy =
∂ux

∂y
+

∂uy

∂x
+

∂w

∂x

∂w

∂y
(3.26)

For εxx this is illustrated in Figure 3.2a and for γxy in Figure 3.2b.

u

∂w

∂x
dx

w

dx

x

z

u +
∂u

∂x
dx

(a)

x

z

dx

dy

∂w

∂x
dx

w

∂w

∂y

∂w

∂x

∂w

∂x

(b)

Figure 3.2: (a) Large displacements x direction (b) Large displacements xy direction

Assume that relatively thin plates are to be analyzed:

γx = 0 → θx = −∂w

∂x
(3.27)

γy = 0 → θy = −∂w

∂y
(3.28)

The kinematic relation becomes:

εxx =
∂ux

∂x
+

1
2
θ2

x (3.29)

εyy =
∂uy

∂y
+

1
2
θ2

y (3.30)

γxy =
∂ux

∂y
+

∂uy

∂x
+ θxθy (3.31)

3.2.2 Constitutive relation

The constitutive equations relating the membrane strains to the membrane forces are formulated
as:

nxx = Dm(εxx + νεyy) (3.32)

nyy = Dm(εyy + νεxx) (3.33)

nxy = Dm
1− ν

2
γxy (3.34)
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where Dm is the membrane stiffness given by:

Dm =
Et

(1− ν2)
(3.35)

3.2.3 Equilibrium equations

Setting the lateral loads px and py to zero, equilibrium of a small membrane element (Figure
3.1b) gives:

∂nxx

∂x
+

∂nyx

∂y
= 0 (3.36)

∂nyy

∂y
+

∂nxy

∂x
= 0 (3.37)

Although the lateral loads px and py are zero, the membrane forces can be non-zero due to the
extra terms appearing in the kinematic equations.

3.3 Summary

A mathematical description for a plate subjected to large displacements can be formulated using
the Reissner-Mindlin theory and the classic membrane theory. To this end two modifications are
needed:

� The Reissner-Mindlin theory is modified by adding the components in z direction of the
membrane stresses to the equilibrium equations

� The membrane theory is modified by adding an extra contribution due to large rotations
to the kinematic equations

It is emphasized that for the Reissner-Mindlin theory the kinematic and constitutive equations
remain unchanged and for the membrane theory the constitutive and equilibrium equations
remain unchanged.





4. Finite element formulation

In this chapter the mathematical description from the previous chapter is cast into a finite
element formulation. First a short overview of the finite element method is given. Further the
development of an element with combined membrane-bending behavior is presented. Finally,
the solution algorithm needed to solve the nonlinear finite element formulation is given.

4.1 Overview

The finite element method is a numerical procedure for obtaining approximate solutions to the
governing equations that describe the response of a physical system [12]. In other words, a
physical problem, cast in a mathematical formulation, can be solved using the finite element
method. A key component of the finite element method is the discretization of the problem into
finite elements. For each element the governing equations are transformed into algebraic element
equations which are an approximation of the governing equations. These element equations are
assembled into the system equations that characterize the response of the entire system. Thus,
application of the finite element method leads to a (often large) system of equations.

4.2 Element development

First a linear Reissner-Mindlin bending element and a linear membrane element is developed.
Combination of both elements results in the desired formulation for plates subjected to large
displacements.

4.2.1 Reissner-Mindlin bending elements

The kinematic equations for the Reissner-Mindlin theory (3.1) to (3.5) reveal that two unknown
fields, the vertical displacements and the rotations, need to be determined. For an element both
fields can be written in terms of shape functions and nodal values.

w = Nwaw (4.1)

θ = Nθaθ (4.2)

The matrix N contains the shape functions and the vectors aw and aθ the nodal values of resp.
displacements and rotations.
Taking the derivatives of (4.1) gives:

w,xy = Bwaw (4.3)

κ = Bθaθ (4.4)

21
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For the finite element method it is essential that the governing equations for equilibrium (3.13)
to (3.15) are transformed into their weak form, also known as the variational form. To this
end, equation (3.13) and equation (3.14) are multiplied by a virtual rotation δθ and (3.15) by a
virtual displacement field δw. Both equations are subsequently integrated over the domain A.

δθT fθ =
∫

A

δκT m dA−
∫

A

δθv dA (4.5)

δwT fw =
∫

A

δwT
, v dA (4.6)

Inserting the discretized fields into (4.5) yields:

fθ =
∫

A

BθT

DbB
θ dAaθ −

∫

A

NθT

CBw dAaw +
∫

A

N θT

CN θ dAaθ (4.7)

fw =
∫

A

BwT

CBw dAaw −
∫

A

BwT

CN θ dAaθ (4.8)

For an element this can be expressed as:


 kww kwθ

kθw kθθ








aw

aθ



 =





fw

fθ



 (4.9)

where

kww =
∫

A

BwT

CBw dA (4.10)

kwθ = −
∫

A

BwT

CN θ dA (4.11)

kθw = −
∫

A

NwT

CBw dA (4.12)

kθθ =
∫

A

BθT

DbB
θ dA +

∫

A

NθT

CN θ dA (4.13)

4.2.2 Membrane elements

The displacement field for the membrane elements can be represented by a collection of shape
functions and discrete nodal values as:

u = Nuau (4.14)

Taking the derivatives gives:

ε = Buau (4.15)

To arrive at the variational form of the governing equations for equilibrium, equations (3.16)
and (3.17) are multiplied by a virtual displacement δu and integrated over the domain A.

δuT fu =
∫

A

δεT σ dA (4.16)
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Inserting the discretized fields into (4.16) gives:

fu =
∫

A

BuT

DmBu dAau (4.17)

For an element this can be expressed as:

fu = Kuau (4.18)

where

Ku =
∫

A

BuT

DmBu dA (4.19)

4.2.3 Coupling the membrane and bending elements

The Reissner-Mindlin bending element and the membrane element are now coupled by two
operations:

� For the membrane element: Adding an extra contribution to the strains due to large
displacements

� For the bending element: Adding the nodal force components in z direction of the mem-
brane stresses

The above operations renders the problem nonlinear; the extra strain contribution is dependent of
the vertical displacement field and the vertical displacement field is influenced by the membrane
stresses resulting from the extra strain contribution. Due to this dependency it is not possible
to simply superimpose the membrane element and the bending element to a single membrane-
bending element. Both membrane element and bending element are kept separate but must
share the same element configuration. Figure 4.1 shows a four node element which is used as a
bending element as well as a membrane element.

w

w

w

w

θxθx

θxθx

θy

θy

θy

θy
ux

ux

ux

ux

uy

uy

uy

uy

Figure 4.1: A four node element for a membrane element and a bending element
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First regard the membrane element. Analogous to equations (3.29) to (3.31) the discretized
strain field can be written as

ε = Buau + θ∗ (4.20)

where

θ∗ =





1
2
θ2

x

1
2
θ2

y

θxθy





(4.21)

The variational form of the governing equilibrium equations becomes

fu =
∫

A

BuT

DmBu dAau +
∫

A

BuT

Dmθ∗ dA (4.22)

When no external membrane forces are imposed on the membrane part, the displacement field
can be calculated from

Kuau = fint,θ∗ (4.23)

where

fint,θ∗ = −
∫

A

BuT

Dmθ∗ dA (4.24)

Ku =
∫

A

BuT

DmBu dA (4.25)

If fint,θ∗ which is a function of θ∗ is calculated, the displacement field au can be determined by
solving the system of equations. From au the membrane stresses can subsequently be calculated
using:

σ = Dm(Buau + θ∗) (4.26)

For the bending part the membrane forces in z direction must be added to the governing equations
to complete the coupling behavior. Analogous to (3.23) this contribution extends (4.8) to

fw =
∫

A

BwT

CBw dAaw −
∫

A

BwT

CN θ dAaθ +
∫

A

σ∗ dA (4.27)

where

σ∗ = nxxκxx + nyyκyy + nxy2κxy (4.28)

For convenience the membrane forces in z direction are gathered in

fint,σ∗ =
∫

A

σ∗ dA (4.29)
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Equation (4.9) can be extended to:


 kww kwθ

kθw kθθ








aw

aθ



 =





fw

fθ



 +





fint,σ∗

0



 (4.30)

or

Kwθawθ = fwθ + fint,σ∗ (4.31)

In total two systems of equations are formulated which describe the behavior of an element
subjected to large displacements.

Kuau = fint,θ∗ (4.32)

Kwθawθ = fwθ + fint,σ∗ (4.33)

In appendix A a four node element and a nine node element are developed from the matrix
notation presented in this section.

4.3 Solution techniques

4.3.1 Incremental formulation

Due to the mutual dependency of (4.32) and (4.33) no direct solution method is possible. This
can be overcome by casting (4.33) in its incremental form:

Kwθ∆awθ = f t+∆t
ext − f t

int (4.34)

The internal force vector fint at time t is represented by

f t
int = Kwθawθt − f t

int,σ∗ (4.35)

The internal force vector at time t is generally not in equilibrium with the external loads, thus
the solution of (4.34) is likely to diverge from the true equilibrium path, especially when large
loading steps are employed. This is illustrated in Figure 4.2.

External loading

Load increment

Equilibrium path

Numerical solution

Displacement

Figure 4.2: Incremental solution procedure
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4.3.2 Incremental-iterative formulation

By adding equilibrium iterations within each loading step the drifting away from the equilibrium
path can be prevented. There are several iteration schemes available to obtain equilibrium:
(1) the Newton Raphson methods, (2) the Secant Newton methods and (3) the linear stiffness
method. The most effective schemes are the Newton methods. These methods require some
form of updating of the stiffness matrix, either within a loading step or for the next iteration.
The linear stiffness method, or constant stiffness method, computes a stiffness matrix at the
beginning of the first load step and uses it throughout the following increments (Figure 4.3).

External loading

Displacement

Figure 4.3: Incremental iterative linear stiffness method

This is very robust in terms of convergence but may require many iterations to obtain a reasonable
accuracy. However since it is assumed that the stiffness matrix varies rather slow and the difficult
operations needed to construct a new tangential stiffness matrix can be omitted, the linear
stiffness method is the most suitable method to implement.

4.3.3 Iterative formulation

A merely iterative version of the linear stiffness method is expected to perform much faster
than the incremental-iterative version. This would eliminate the increments, meaning that the
load is applied in one single step. Chapter 6 will present proof of this assumption. Casting the
finite element formulation (4.32) and (4.33) into the iterative linear stiffness method yields the
following solution scheme:

1. Compute constant stiffness matrix for the bending part Kwθ and the membrane part Ku

2. Assemble external force vector for the bending part fext

3. Solve the linear system dawθ
j+1 = Kwθ−1(fext − fint,j)

4. Add the correction to the displacement vector awθ
j+1 = awθ

j + dawθ
j+1

5. Determine θ∗j+1 in order to compute fint,θ∗,j+1

6. Solve the linear system au
j+1 = Ku−1fint,θ∗,j+1

7. Compute the membrane stresses σj+1 = Dm(Buau
j+1 + θ∗j+1)

8. Compute the curvature κj+1 = Bθawθ
j+1
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9. Use the nodal membrane stresses and nodal curvatures to compute fint,σ∗,j+1

10. Compute the internal force vector fint,j+1 = Kawθ
j+1 − fint,σ∗,j+1

11. Check convergence. If the solution has converged stop, otherwise go to (3)

A graphical representation of the above iterative process is given in Figure (4.4)

External loading

Displacement

fext

fint,1

fint,2

fint,3

da1 da2 da3

a1

a2

a3

Figure 4.4: Iterative linear stiffness method

4.4 Displacement control

Up till now, no notion has been made about the way the external loading should be imposed.
Basically there exist two methods; load control and displacement control. In load control the
external forces are applied in a number of steps, or - in case of a merely iterative scheme - in
one step. In displacement control on the other hand, a prescribed displacement is applied which
causes stresses within the plate, which in turn results in nodal forces. Since we are interested in
what happens when a plate is subjected to a certain prescribed displacement rather than when it
is subjected to a certain force, displacement control is the method to be used. The next chapter
will explain in more detail how displacement control is implemented.

4.5 Convergence criteria

In order to determine convergence of the iterative procedure, a convergence criterion is needed [3].
This means that the error of a certain quantity, e.g. a force or displacement, is to be bound by
a prescribed tolerance. If the error does not become smaller than this prescribed tolerance the
iterative procedure is said not to have converged. Several criteria exist to detect convergence;
force norm, displacement norm, energy norm. Since the displacements are monitored during
each iteration, the displacement norm is the most convenient criteria to implement. This criteria
is defined as:

√
daT

j+1daj+1
√

daT
1 da1

≤ ε (4.36)

The value of the convergence tolerance ε determines in a great deal accuracy of the solution and
the computation time. This value will be determined in Chapter 6.
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4.6 Isoparametric mapping

In practice, isoparametric elements are used [18]. These are elements which are defined on a
natural coordinate system (ξ, η) and are typically of unit size. This allows for using only one
polynomial function for evaluating the shape functions of a specific element, irrespective of its
exact size or shape. Moreover, applying numerical integration over a natural coordinate system
becomes much easier. An element in the natural domain is related to the real element in the
Cartesian system via an isoparametric map, which is built from the element shape functions
(Figure 4.5).

1

2

3

4

η

ξ

(-1,-1) (1,-1)

(1,1)(-1,1)

1 2

34

y

x

x(ξ)

ξ(x)

Figure 4.5: Isoparametric mapping of a four node element

For example, the stiffness matrix of an isoparametric membrane element can be written as

∫

A

BuT

DmBu dA =
∫ 1

−1

∫ 1

−1

BuT

DmBuj dξdη (4.37)

where j is the determinant of the Jacobian which relates the Cartesian system to the natural
system. All shape functions appearing in the various matrices can be written in the natural
coordinate system. In Appendix B the isoparametric shape functions for a four node element
and a nine node element are given.

4.7 Numerical integration

After converting all elements to the natural coordinate system, Gauss integration is used to
evaluate the (still analytical) integrals. As an example the stiffness matrix of an membrane
element is considered to illustrated how numerical integration is applied:

∫ 1

−1

∫ 1

−1

BuT

DmBuj dξdη '
n∑

i

BuT

(ξi, ηi)DmBuj(ξi, ηi)wi (4.38)

Here n is the number of integration points within an element and wi the weight related to the
specific integration point. In Appendix C the integration scheme for 2× 2 Gauss integration and
3× 3 Gauss integration is given.
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4.8 Summary

In this chapter the mathematical description from Chapter 3 is translated into a finite element
formulation. In Appendix A this formulation is used to develop a membrane and a bending
element for both a four node configuration and a nine node configuration. Due to the coupling
of the membrane and bending elements an iterative solution method is needed. A merely iterative
constant stiffness method is expected to be the most suitable for implementation since it does
not require a form of updating of the stiffness matrices. In order to determine convergence
of the iterative constant stiffness method, the displacement norm is chosen as the convergence
criterium.
To make the elements suitable for implementation in a computer program, isoparametric shape
functions are chosen. This makes formulating the shape functions more practical and allows
using Gauss integration to evaluate the integrals.
At this stage the framework of the application is established. The next chapter will deal with the
implementation of this framework into a programming language. The element order, convergence
tolerance ε and type of Gauss integration scheme will be established in Chapter 6.





5. PBA design

In the previous chapter a finite element formulation and solution algorithm for plates subjected
to large displacements was presented. This chapter deals with the implementation of the finite
element formulation in the MATLAB programming language [14].

5.1 Application setup

PBA is a graphical application, meaning that users do not have to know anything about the
MATLAB programming language in order to use it. The Graphical User Interface (GUI) on
startup is shown in Figure 5.1.

Figure 5.1: Graphical user interface on startup

The input screen is divided in three panels: the Geometry panel, the Material properties panel
and the Boundary conditions panel. In the Geometry panel a user can input the geometry of
the plate by defining the locations of the four corner nodes and a plate thickness (Figure 5.2).
Also an approximate element size must be set in order to generate a preliminary mesh which is
needed later on for defining the boundary conditions.

31



PBA design 32

Figure 5.2: Geometry panel

By pressing the Redraw button, the user can verify graphically that the geometrical parameters
are correct.
In the Material properties panel a user can specify the Young’s modulus E and the Poisson’s
ratio ν depending on the type of glass to be used for the plate (Figure 5.3).

Figure 5.3: Material properties panel

A user can save the geometry and material properties by pressing the save button in the
toolbar. The input fields for geometry and material properties are automatically set to the saved
values when the application is restarted.
In the Boundary conditions panel a user can choose between two types of boundary conditions
(Figure 5.4)

(a) Points (b) Frame

Figure 5.4: Boundary conditions panel
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When choosing ’Points’ (Figure 5.4a), a user can select nodes by clicking on the geometry plot
in the Geometry panel. For every new node an input field is enabled where the displacement of
the node can be prescribed.
When selecting ’Frame’ (Figure 5.4b) a button group is enabled where a user can further specify
the frame type. Three types are possible: (1) supported on the top and bottom edge , (2)
supported on the left and right edge and (3) supported on all four edges . Selecting one
of the frame types enables four input fields, each representing the vertical displacements of the
four corner nodes. Clearing the boundary conditions is done by pressing the ’Redraw’ button.
By pressing the Calculate button an object InputData containing the information of all input
fields is created and - after checking its validity - is passed to the function startFEMCode.
The function startFEMCode inflicts the actual finite element calculation. It is divided in three
parts; the preprocessor, the kernel and the postprocessor. The source code of each part is
given in the next sections. If the finite element calculation is successfully finished, the function
startFEMCode returns the objects containing the vertical displacement field, the stresses and
the reaction forces. These results can be viewed in the Results panel (Figure 5.5).

Figure 5.5: Results panel

As can be seen from the radio button group in Figure 5.5, the stresses are divided over three
surfaces; the top surface, the middle surface and the bottom surface. For each layer, the normal
stresses σxx and σyy, the shear stresses σxy and the largest principal stress P1 and smallest
principal stress P2 can be selected.



PBA design 34

5.2 Preprocessor

The preprocessor generates several objects from the input data. These objects contain informa-
tion which is needed for the calculation process. The source code of the preprocessor reads:

% set element type

ElementData = setElementData();

% generate mesh

Mesh = generateMesh(InputData, ElementData);

% set material model

ModelData = setModelData(InputData);

% generate boundary conditions

BcData = generateBoundaryConditions(InputData, Mesh, ElementData);

% generate points for extrapolation

EpData = generateExtrapolationPoints(Mesh, ElementData);

All the functions within the preprocessor will be dealt with separately in the next subsections.

5.2.1 Set element type

The function setElementData returns the object ElementData in which information is
stored about the order of the elements and the type of Gauss integration scheme. This in-
formation includes the number of nodes and the number of integration points. The specific order
of the elements and integration scheme will be determined in the next chapter. The source code
of the function setElementData is given in Appendix D.1.1.

5.2.2 Generating a mesh

The function generateMesh generates an object Mesh containing the locations of the nodes
and a connectivity matrix. In the following example an arbitrarily plate geometry - defined by
by the locations of four corner nodes and an element size - is meshed with a nine node element*.
Consider the plate in Figure 5.6b. The nodes of the mesh are numbered from the bottom left
corner to the top right corner. For each row of nodes a plate length li is defined and for each
column of nodes a plate width bi is defined. The distance in x direction between the nodes within
each row can be computed from:

dxi =
li
2n

(5.1)

where n is the number of elements over the length of the plate defined by:

n =
l1
el

(5.2)

*Generating a mesh with a four node element is done in an almost similar fashion and will therefore not be
elaborated.
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Figure 5.6: (a) Arbitrary plate geometry (b) Mesh with the nine node element configuration

The distance between the nodes in y direction is computed in a similar manner:

dyi =
bi

2k
(5.3)

with

k =
b1

el
(5.4)

The x locations of the nodes on the first row are:

node1x = x1

node2x = x1 + dx1

node3x = x1 + 2dx1

...

nodenx = x1 + 2ndx1

The y locations of the nodes on the first row are:

node1y = y1

node2y = y1 +
∆y1
2k

node3y = y1 + 2
∆y1
2k

...

nodeky = y1 + 2n
∆y1
2k
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For the second row the x locations of the nodes are:

node10x = x1 +
∆x1
2n

node11x = x1 +
∆x1
2n

+ dx2

node12x = x1 +
∆x1
2n

+ 2dx2

...

node(10+2n)x = x1 +
∆x1
2n

+ 2ndx2

For the second row the y locations of the nodes are:

node10y = y1 + dy1

node11y = y1 +
∆y1
2k

+ dy2

node12y = y1 + 2
∆y1
2k

+ dy2

...

node(10+2k)y = y1 + 2k
∆y1
2k

+ dy2

The method described above can easily be implemented in a loop resulting in a matrix containing
the locations of the nodes:

Mesh.x =


 node1x node2x node3x node4x node5x · · · node2n+1×2k+1x

node1y node2y node3y node4y node5y · · · node2n+1×2k+1y


 (5.5)

This is shown in the first part of the source code of generateMesh given in Appendix D.1.2
The second important part of the function generateMesh is constructing the connectivity
matrix. This matrix contains the node numbers of each separate element and is especially
important for assembling the system matrices and system vectors from the element matrices and
element vectors. Starting again at the bottom left corner, for each element the nodenumbers
are stored in a separate row of the connectivity matrix. For a nine node element, first the
element corner nodes are gathered, then the mid nodes and finally the middle node, all in a
counterclockwise manner. For the mesh given in Figure 5.6b the connectivity matrix reads:

Mesh.connect =




1 3 21 19 2 12 20 10 11

3 5 23 21 4 14 22 12 13

...
...

...
...

...
...

...
...

...




(5.6)

Again this can easily be implemented in a loop. The source code of constructing the connectivity
matrix is given in the second part of generateMesh in Appendix D.1.2.
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5.2.3 Set material model

The function setModelData generates the plate stiffness matrices (for both bending and shear)
and the membrane stiffness matrix and stores them in the object ModelData. The source code
of this function is given in Appendix D.1.3

5.2.4 Generate boundary conditions

The function generateBoundaryConditions returns BcData in which the boundary con-
ditions for both the membrane part and the plate part are stored. For the membrane part the
boundary conditions are set conform Figure 5.7.

y

x

Figure 5.7: Boundary conditions for membrane

Irrespective of the geometry of the panel or the locations of the user prescribed vertical dis-
placements, no horizontal reaction forces can emerge and displacements in x and y direction are
prevented.
The boundary conditions for the plate part are obtained from the InputData object. Depending
on the boundary condition (points or frame) a matrix is filled with the prescribed nodes and the
corresponding prescribed displacement. The source code of the function generateBoundaryConditions
is given in Appendix D.1.4.

5.2.5 Generate extrapolation points

The function generateExtrapolationPoints returns an object EpData in which three
’rings’ of nodes are stored. This information is needed later on in the kernel to extrapolate some
results that cannot be calculated directly. In Figure 5.8 the tree rings, colored in red blue and
green, are shown for the nine node element*.

*Generating the object EpData with a four node element is done in an almost similar fashion and will therefore
not be elaborated.
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Figure 5.8: Nodes to be stored for extrapolation purposes

The source code of this function is given in D.1.5

5.3 Kernel

When the preprocessor has processed the input data, the kernel is started. In this part of the
application the actual finite element calculation takes place. The source code of the kernel is
given by:

% assemble constant stiffness matrix plate

K p = assembleMatrixPlate(Mesh, ElementData, ModelData);

% assemble constant stiffness matrix membrane

K m = assembleMatrixMembrane(Mesh, ElementData, ModelData);

% assemble external displacement vector plate

F ext = assembleVectorPlate(Mesh, ElementData);

% apply boundary conditions plate

[K p1, F ext] = applyBoundaryConditions(K p, F ext, BcData.plate, ElementData.dof p);

% set maximum number of iterations

it = 100;

% set convergence tolerance

eps = 1e−4;

% set counter

jj = 0;

% iterations

while jj==0 | | norm(da p)/norm(a p 1)>eps && jj<it

% solve system of equations for plate

da p = K p1\(F ext−F int);

% add the correction to the displacement vector

a p = a p + da p;

% assemble extra strain vector A star
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A star = assembleA star(Mesh, a p);

% compute extra force vector

F t star = computeF t star(Mesh, ElementData, ModelData, A star);

% apply boundary conditions membrane

[K m1, F t star] = applyBoundaryConditions(K m, F t star, BcData.membrane, ElementData.dof m);

% solve system of equations for membrane

a m = K m1\−F t star;

% compute membrane stresses

Sigma m = computeMembraneStress(Mesh, ElementData, a m , A star, ModelData, EpData);

% compute curvature

Kappa = computeCurvature(Mesh, ElementData, EpData, a p);

% compute membrane forces in z direction

F s star = computeF s star(Mesh, ModelData, ElementData, Sigma m, Kappa, BcData, EpData);

% compute internal forcevector

F int = K p1*a p − F s star;

% save internal force vector 1st iteration

if jj==0

a p 1 = a p;

end

jj=jj+1;

end

The source code for the kernel corresponds to the iterative solution scheme presented in section
4.3. The next subsections will outline the functions appearing in the kernel.

5.3.1 Assembling the system stiffness matrices

The function assembleMatrixPlate assembles the system stiffness matrix from the element
stiffness matrices. First an empty system matrix is set up. The nodes of the plate part each
have 3 degrees of freedom thus the system stiffness matrix has dimensions of 3n × 3n, where n

resembles the number of nodes of the complete system [10]. Filling this system stiffness matrix
is done by looping over all the elements in order to compute each element stiffness matrix and
subsequently adding each contribution to the complete system. Computing each specific element
stiffness matrix again requires a loop. This loop takes place over the Gauss points within each
element in behalf of numerical integration. The previous assertion is clarified in Figure 5.9 for a
four node element with 2× 2 integration.
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Figure 5.9: Assembling matrices for a four node element with 2× 2 integration

In Appendix D.2.1, the source code for this procedure is given.
The same procedure may be applied to the membrane elements, with the difference that the
element stiffness matrices have 2 degrees of freedom per node. In Appendix D.2.2, the source
code for this procedure is given.

5.3.2 Assembling the external load vector

In function assembleF ext the external load vector F ext is assembled. This is done by
setting up an empty system vector of size 3n × 1. The external force vector F ext is filled
with the external loading in terms of prescribed displacements when it is passed to the function
applyBoundaryConditions. This will be explained in the next subsection.

5.3.3 Apply boundary conditions for the plate

The functions applyBoundaryConditions adjusts the stiffness matrices and the force vectors
to comply with the boundary conditions adopted in the object BcData. Suppose a constant
system stiffness matrix (for either the plate part or the membrane part) is given by:




k11 k12 · · · k1i · · · k1n

k21 k22 · · · k2i · · · k2n

...
...

. . .
...

. . .
...

ki1 ki2 · · · kii · · · kin

...
...

. . .
...

. . .
...

kn1 kn2 · · · kni · · · knn




(5.7)
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If at node i a certain displacement is prescribed, all elements in row number i of the system
stiffness matrix are set to 0, except for element kii, which is set to 1. The system stiffness matrix
now reads:




k11 k12 · · · k1i · · · k1n

k21 k22 · · · k2i · · · k2n

...
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0

...
...

. . .
...

. . .
...

kn1 kn2 · · · kni · · · knn




(5.8)

All elements of the external load vector now represent imposed forces, except for the element on
row i which represents an imposed displacement.




f1

f2

...

fi

...

fn




(5.9)

Since no externally applied forces are present all identities, except for identity i, remain (as con-
structed in assembleF ext) zero. Solving the system yields a displacement vector containing
the displacements of the free nodes af as well as the displacements of the prescribed nodes ap.




af1

af2

...

api

...

afn




=




k11 k12 · · · k1i · · · k1n

k21 k22 · · · k2i · · · k2n

...
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0

...
...

. . .
...

. . .
...

kn1 kn2 · · · kni · · · knn




−1 


0

0

...

fi

...

0




(5.10)
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For the iterative form, the previous example transforms to:




daf1,j+1

daf2,j+1

...

dapi,j+1

...

dafn,j+1




=




k11 k12 · · · k1i · · · k1n

k21 k22 · · · k2i · · · k2n

...
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0

...
...

. . .
...

. . .
...

kn1 kn2 · · · kni · · · knn




−1 





0

0

...

fi,ext

...

0




−




f1,int,j

f2,int,j

...

fi,int,j

...

fn,int,j







After the first iteration the internal force vector fi,int at node i represents the reaction force
at that specific node. This value must be set to zero for all iterations. The source code of the
function applyBoundaryConditions is given in Appendix D.2.3.

5.3.4 Iterations

After assembling the constant stiffness matrices for the plate part and the membrane part, the
iteration process commences. The iterative procedure imposed by the while loop is repeated until
the force norm has fulfilled the convergence tolerance or the maximum number of iterations is
exceeded. In order to loop over the iteration process at least once, the counter jj may not be
equal to 0.

First, the system of equations for the plate part is solved. The obtained displacement vector
da p contains the nodal displacements and nodal rotations within an iteration. This contribu-
tion is subsequently added to the total displacement vector a p

The extra strain vector A star due to large deformations is assembled in assembleA star.
Conform equation (4.21) the elements of A star are a function of the rotations which are known
from the plate displacement vector a p. The procedure is given in Appendix D.2.4.
The function computeF t star computes the extra force vector on the membrane part F t star

from the extra strain vector A star. This operation is analogous to (4.24). As in assembling the
stiffness matrices, the procedure in computeF t star also requires looping over the elements
and for each element looping over the Gauss points. The source code for this procedure is given
in Appendix D.2.5.
From the extra force vector F t star the membrane displacement vector a m can be determined
by solving the system of equations for the membrane part. Next, the function computeMembraneStress
computes the nodal values of the membrane stresses Sigma m from the membrane displacement
vector u m. This is done analogous to (4.26). In order to obtain the nodal membrane stresses
instead of the element membrane stresses, the value in the each Gauss point is interpolated to
the nodes. This is illustrated in Figure 5.10a for a nine node element.
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Figure 5.10: (a) Interpolation in the plate (b) Interpolation near the edges

As can be seen from Figure 5.10b interpolation near the edges will result in an underestimation
of the node values. This can be corrected by applying extrapolation for the outer most nodes.
To this end the (correct) values of the nodes of the second ring and third ring - obtained from the
object EpData - are linearly extrapolated to the first ring. The source code for this procedure
is given in Appendix D.2.6.
Analogous to equation (4.4), the curvatures are computed from the rotational part of the plate
displacement vector a p. Again transforming the element curvatures to nodal values requires
interpolation and extrapolation. The source code for computing the nodal curvatures Kappa is
given in Appendix D.2.7.
With the aid of the nodal membrane stresses Sigma m and the nodal curvatures Kappa the
membrane forces in z direction F s star can be computed. This is equivalent to the procedure
in equation (4.29). The source code is given in Appendix D.2.8. The final step in the iteration
loop is to compute the internal force vector F int for the next iteration. In behalf of the
displacement norm, the displacement vector of the first iteration is stored in a p 1 and the
counter jj is raised by 1.

5.4 Postprocessor

When the while loop of the kernel has stopped, the solution is checked for convergence. If this is
not the case, the conv flag is set to false, else the conv flag is set to true and the reaction
forces and various stresses are computed. The source code of the postprocessor is given by:

% check convergence

if jj≥it | | (norm(da p)/norm(a p 1))>eps

% no convergence

conv = false;

else

% convergence

conv = true;

% compute reaction forces
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Reactions = computeReactions(Mesh, K p, BcData, a p);

% compute bending stresses

Sigma b = computeBendingStress(Mesh, ModelData, Kappa);

% compute total of membrane and bending stresses for each layer

Sigma t = computeTotalStress(Sigma m, Sigma b);

% compute principal stresses for each layer

Sigma p = computePrincipalStress(Mesh, Sigma m, Sigma b);

end

5.4.1 Compute reaction forces

In computeReactions the reaction forces are computed. This is equivalent to computing
the internal forces at the prescribed nodes. Suppose node i is prescribed, the internal force is
computed by multiplying row i of the plate stiffness matrix by the displacement vector a p.
It is emphasized that only vertical reaction forces arise because: (1) no external membrane
forces are applied and (2) the boundary conditions shown in Figure 5.7 on the membrane part
do not allow the internal membrane stresses to develop reaction forces. The source code of
computeReactions is given in Appendix D.3.1.

5.4.2 Compute stresses

The function computeBendingStress computes the bending stresses Sigma b using the cur-
vature Kappa and the constitutive model which is stored in ModelData. The source code is
given in Appendix D.3.2. Next, in computeTotalStress the membrane stresses Sigma m are
added to the bending stresses Sigma b to form the total stress Sigma t. This procedure is
given in Appendix D.3.3.
In computePrincipalStress the nodal principal stresses are computed from the membrane
stresses Sigma m and bending stresses Sigma b. The source code for this function is given in
Appendix D.3.4.

5.5 Deployment

The source code of PBA is deployed to a stand alone application with Mathworks MATLAB
Builder. A great advantage is that users do not need to install MATLAB in order to use PBA.
However, users do need to have the MATLAB Component Runtime (MCR) installed on their
computer. The MCR is a free redistributable that allows users to run programs written in a
specific version of MATLAB without installing the MATLAB version itself.
PBA and the MCR are available on the internet and can be used freely by others. For more
information see: http://www.mechanics.citg.tudelft.nl/pba/
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5.6 Summary

The finite element formulation presented in Chapter 4 was implemented in the MATLAB pro-
gramming language. The source code of the various functions are collected in Appendix D.
PBA is deployed to a stand alone application which, in combination with the MCR, can be used
without installing MATLAB.





6. Validation of PBA

In the previous chapter the source code for PBA was presented. At that stage no choice was
made regarding: (1) the order of the elements and Gauss integration scheme, (2) the convergence
tolerance ε and (3) the maximum number of iterations needed. In this chapter these variables
will be determined on basis of a comparison between results obtained with PBA and results
obtained with Diana version 9.3.

6.1 Element order and mesh size

The performance of the linear element and the quadratic element is evaluated for bending ac-
tion only *. Further, a recommendation for the mesh size is established. In order to assess the
influence of the element order and mesh size a geometrical linear analysis is performed on the
four benchmark geometries of Chapter 2. To this end linear displacement field of the diagonal
line for each of the four geometries is examined for a relatively coarse mesh (200 × 200 [mm])
and a relatively fine mesh (50× 50 [mm]).

From Figure 6.1 and 6.2 it can be concluded that both the linear and quadratic Reissner-Mindlin
element show accurate results in comparison with Diana. For the other panels, displayed in Fig-
ure 6.3 and Figure 6.4, some differences are observed. The linear element shows an overly stiff
behavior. This locking behavior is a well known problem for linear Reissner-Mindlin elements [6].
Since a quadratic element is up to 30 times more expensive in terms of computational time than
a linear element�, some effort is put into improving the linear element by applying a form of
reduced integration. This will be explained in more detail in the next subsection. Because this
effect is not observed for the square and rectangular panel it is thought that the element distor-
tion plays a key component in this locking behavior.

Another conclusion drawn from Figure 6.1 to Figure 6.4 is that the mesh size has a minor
influence on the accuracy of the solution at the nodes. However, a finer mesh means more data
points and therefore a better representation of the deformed shape.

*The linear membrane element and quadratic membrane element both show no deviations with Diana what-
soever, hence the assessment of membrane action is omitted

�This is caused by: (1) a larger system of equations need to be solved and (2) evaluating the quadratic shape
functions requires more time

47
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(b) Quadratic RM and Diana
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(c) Linear red. int. RM and Diana

Figure 6.1: Displacement diagrams square panel
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(a) Linear RM and Diana
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(b) Quadratic RM and Diana
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(c) Linear red. int. RM and Diana

Figure 6.2: Displacement diagrams rectangular panel
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(a) Linear RM and Diana
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(b) Quadratic RM and Diana
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(c) Linear red. int. RM and Diana

Figure 6.3: Displacement diagrams parallelogram panel

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

x [mm]

D
is

pl
ac

em
en

t [
m

m
]

 

 
Diana
PBA mesh 200x200
PBA mesh 50x50

(a) Linear RM and Diana
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Figure 6.4: Displacement diagrams trapezoid panel
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6.1.1 Reduced integration

The stiff response of linear Reissner-Mindlin element is presumably caused by shear locking.
This phenomenon is observed when relatively thin plates are analyzed. The contribution of the
shear deformations to the energy should vanish but this is not necessarily always the case. To
overcome this problem one can apply reduced integration to one or more terms of the stiffness
matrix [5]. These terms are integrated using a Gauss scheme of one order lower than is used
normally. There are two forms of reduced integration possible: full reduced integration and
selective reduced integration. In full reduced integration both the bending and shear terms
are under-integrated. In selective reduced integration at least one of the shear terms is under-
integrated. In order to enhance the performance of the linear element a number of different
reduced integration schemes are examined in this section.
As stated in Chapter 4, the stiffness matrix of the Reissner-Mindlin element is given by:

Kwθ =


 kww kwθ

kθw kθθ


 (6.1)

where

kww =
∫

A

BwT

CBw dA (6.2)

kwθ = −
∫

A

BwT

CN θ dA (6.3)

kθw = −
∫

A

NwT

CBw dA (6.4)

kθθ =
∫

A

BθT

DbB
θ dA +

∫

A

NθT

CN θ dA (6.5)

For convenience kθθ is subdivided in kθθ1
for the first term and kθθ2

for the second term. The
various reduced integration schemes to examine are presented in Table 6.1

kww kwθ kθw kθθ1
kθθ2

Full red. 1× 1 1× 1 1× 1 1× 1 1× 1
Sel. red. 1 1× 1 1× 1 1× 1 2× 2 1× 1
Sel. red. 2 2× 2 2× 2 2× 2 2× 2 1× 1
Sel. red. 3 2× 2 1× 1 1× 1 2× 2 1× 1

Table 6.1: Various reduced integration schemes

The performance of the linear Reissner-Mindlin element for the various reduced integration
schemes is displayed in Figure 6.5. This figure shows the displacement of the diagonal line for
the parallelogram.
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Figure 6.5: Displacement field of parallelogram with various reduced integration schemes applied on
the linear Reissner-Mindlin element

As can be observed from Figure 6.5, most of the reduced integration schemes show an improved
behavior in comparison with the normal integrated linear Reissner-Mindlin element which is
displayed in Figure 6.3a. However, the total deformation of the plate show radical differences.
Figure 6.6 displays the deformations of the parallelogram for the various reduced integration
schemes.
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Figure 6.6: Deformations w [mm] of parallelogram shaped panel for different reduced integration
schemes

When full reduced integration is applied, the displacement field shows an oscillating pattern.
This is caused by a poorly conditioned stiffness matrix meaning that very small and very large
identities are present in the matrix [9]. Inversion of the poorly conditioned stiffness matrix -
needed to solve the system of equations - results in an almost singular matrix. The displacement
field for the second integration scheme (Figure 6.6b) shows the same pattern though with less
extreme spikes. This pattern is also caused by a poorly conditioned stiffness matrix.
From the displacement field presented in Figure 6.6c it may be concluded that spurious modes
arise. This means deformations can occur which do not contribute to the energy. Spurious modes
are often encountered when reduced integration is applied.
Combination of Figure 6.5 and 6.6 reveals that only selective reduced integration scheme 3
improves the performance of the Reissner-Mindlin element. Applying this integration scheme
to all panels gives the displacement of the diagonal lines presented in Figure 6.1c to 6.4c. The
reduced integrated linear element shows an improvement for all panels, still a somewhat stiff
behavior is observed for the trapezoid.
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6.1.2 Computational expense

As stated before, the quadratic element is up to 30 times more expensive than the linear element
in terms of computation time. This raises the question weather to choose the less accurate -
but still reasonable - reduced integrated linear element over the quadratic element. However,
the absolute computation time for the benchmark geometries, presented in Table 6.2, is still
within reasonable limits. These values are obtained by running the application on a moderately
standard machine with an element size of 100× 100 [mm].

Square Rectangle Parallelogram Trapezoid

Linear element 0.009 0.002 0.009 0.013
Quadratic element 0.3 0.7 0.3 0.4

Table 6.2: Absolute computational time [s]

6.1.3 Concluding remarks

From the linear analysis performed in this section it can be concluded that the quadratic Reissner-
Mindlin element with a normal 3 × 3 Gauss integration scheme is preferred over the linear
Reissner-Mindlin element and the reduced integrated linear element. The computational time
remains within acceptable limits and moreover, the performance is in better agreement with
Diana. The linear and quadratic element is not examined for membrane action because both
elements perform exactly similar to Diana.
The mesh size seems to have a minor influence on the accuracy of the solution at the nodes.
However, changing to a geometrical nonlinear analysis, at some stage in the calculation process,
extrapolation to the edges is required *. When a very coarse mesh is used, the extrapolation
process returns inaccurate results near the edges. To illustrate this effect, a plot is made of the
largest membrane stress σxx for a square panel (Figure 6.7).
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Figure 6.7: Membrane stress σxx for square panel for different mesh size

*The extrapolation process was explained in Section 5.3.4
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From this figure is concluded that a fine mesh is always preferred over a coarse mesh when
the accuracy of the solution is to be optimized. However, Figure 6.7 shows that a reasonable
accuracy can be achieved with a division of approximately 10 elements over the longest edge.

6.2 Iteration process

In the previous section a quadratic element for both bending and membrane action proved to
render accurate results for a geometrical linear analysis. Further, a spatial discretization of
approximately 10 elements over the longest edge was recommended. In this section the iteration
process is evaluated in order to determine the convergence tolerance and the maximum number
of iterations needed.

6.2.1 Convergence tolerance

The value of convergence tolerance of the displacement norm is determined by examining the
load-displacement diagrams of the benchmark geometries from Chapter 2.
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(b) Rectangle
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(c) Parallelogram
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Figure 6.8: Load-displacement diagram of the benchmark geometries for different ε
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Figure 6.8 shows the load-displacement diagrams of the four geometries for different convergence
tolerances *. For all benchmarks the strictest tolerance (ε = 0.0001) renders the best load-
displacement curves. However, for large imposed displacements the solution algorithm does not
find convergence anymore. For all panels, except for the square panel, this appears to happen
at the limit point of the load-displacement curves. Another way of mapping out the nonlinear
behavior of a plate subjected to large displacements is by plotting the prescribed displacement
against the internal (reaction) force at the prescribed node. Figure 6.9 shows this diagram for
the square and the parallelogram shaped panel.
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Figure 6.9: Load-internal force diagram

Examining the internal reaction forces does not seem to explain why the solution algorithm fails
to find convergence. Moreover, the limit point, which is clearly made visible in Figure 6.8, cannot
be determined from a load-internal force diagram.
To further investigate divergence of the iterative process of PBA, the norm value is assessed.
In Figure 6.10 the characteristic iteration patterns of the four benchmark panels for different
imposed displacements are presented. These plots display the evolvement of the iteration process.

*The graphs in Figure 6.8 may suggest that an incremental-iterative calculation has been performed while
this is not the case. The load-displacement diagrams are simply constructed by gathering data of a large amount
of merely iterative calculations
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(c) Parallelogram
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Figure 6.10: Displacement norm value of the benchmarks for different imposed displacements

From Figure 6.10 can be concluded that the geometry of the plate has a great influence on the
behavior of the norm value. However, there are some overall similarities observed. For all plate
geometries holds that the convergence speed is rather large for the first couple of iterations.
Also, when divergence arises - that is when the norm value increases - the solution method is not
likely to find convergence in the following iterations. Only the graphs of the square panel and
trapezoid panel show some resilience. For these panels the norm value may show a slight increase
after which it decreases again. Why the solution method fails to find convergence beyond the
limit point remains unclear. It is presumed that applying the load in one single step may cause a
problem and that an incremental-iterative version of the linear stiffness method is more capable
of dealing with local or global limit points. To verify this presumption PBA is modified to an
incremental-iterative version. In addition a merely incremental version is constructed. Figure
6.11 displays the load-displacement diagrams of the four benchmark panels for an incremental
scheme, an incremental-iterative scheme and the original iterative scheme.
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(b) Rectangle
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(c) Parallelogram
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(d) Trapezoid

Figure 6.11: Load-displacement diagram of the benchmarks for different solution methods

The incremental-iterative version shows no improvement to the original iterative version what-
soever. Still the solution diverges at the limit point of the load-displacement diagrams. An
incremental analysis proves to be capable of overcoming the limit point. However, the omitting
of the equilibrium iterations leads to a meaningless solution since equilibrium is not satisfied at
all time. From the previous statements can be concluded that it is the iterative process - with
or without increments - that causes divergence. Some acceleration techniques exist to improve
the convergence rate (e.g. arc length control, line search technique). Implementation of these
techniques reach beyond the scope of this thesis and are therefore not attended.
It is assumed that for the majority of plate bending problems encountered in practice, the it-
erative version will suffice. Although this method is not suitable to map out the complete post
buckling behavior, it yields good results up to divergence.

6.2.2 Number of iterations

In order to prevent PBA from continuously searching for a solution, a maximum number of
iterations should be set. In Figure 6.12 the norm value is plotted for the benchmarks just before
divergence arises.
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Figure 6.12: Norm value of the benchmark panels and convergence tolerance

The maximum number of iterations observed is for the trapezoid. Setting the maximum number
of iterations in PBA to 100 is thought to be sufficient for solving the majority of plate bending
problems encountered in practice.

6.2.3 Concluding remarks

From the geometrical nonlinear analysis performed on the benchmark panels is concluded that
an iterative process with a convergence tolerance for the displacement norm set to ε = 0.0001
yields a solution which is in agreement with Diana. Although for large imposed displacements the
solution algorithm is not able to find convergence, many of the practical plate bending problems
can be solved. Further, it is established that a maximum number of iterations set to 100 is
sufficient.

6.3 Verification of stresses

In this section the output of PBA for the stresses is validated. To this end the membrane stresses
of the four benchmark geometries are compared to the membrane stresses obtained with Diana.
The output of other stresses, i.e. the bending stresses and principal stresses, are not regarded.
Figure 6.13 to 6.24 displays the membrane stresses obtained with PBA next to the membrane
stresses obtained with Diana. In addition the membrane stresses over the indicated cross-section
is shown. All membrane stresses are obtained from an analysis where the imposed displacement
is maximized to a point where the solution method is just able to find convergence.
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Figure 6.13: Membrane stress σxx [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.14: Membrane stress σyy [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.15: Membrane stress σxy [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.16: Membrane stress σxx [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.17: Membrane stress σyy [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.18: Membrane stress σxy [N/mm2] (a) Diana (b) PBA (c) Cross-section



Validation of PBA 60

(a) σxx

 

 

−0.5

0

0.5

1

1.5

2

2.5

(b) σxx

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

y [mm]

σ xx
 [N

/m
m

2 ]

 

 
Diana
PBA

(c) σxx

Figure 6.19: Membrane stress σxx [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.20: Membrane stress σyy [N/mm2] (a) Diana (b) PBA (c) Cross-section

(a) σxy

 

 

−0.5

0

0.5

1

(b) σxy

0 500 1000 1500
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x [mm]

σ xy
 [N

/m
m

2 ]

 

 
Diana
PBA

(c) σxy

Figure 6.21: Membrane stress σxy [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.22: Membrane stress σxx [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.23: Membrane stress σyy [N/mm2] (a) Diana (b) PBA (c) Cross-section
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Figure 6.24: Membrane stress σxy [N/mm2] (a) Diana (b) PBA (c) Cross-section

The largest deviations are detected near the edges. Dependent on the geometry of the plate,
deviations up to 20% are observed. This is primarily caused by the linear extrapolation process.
It is presumed that these deviations decrease when a finer mesh is used than the recommended
division of ten elements. Needless to say, the computational cost increases with a finer mesh.
Doubling the number of elements increases the accuracy near the edges with approximately 10%
but the computational cost becomes over 30 times larger.





7. Conclusions and recommendations

7.1 Conclusions

7.1.1 Mathematical model

A mathematical description for plates subjected to large displacements can be formulated using
the classic membrane theory and the Reissner-Mindlin bending theory. The membrane-bending
coupling behavior is achieved by two operations. For the membrane theory an extra contribution
to the strains is added. For the Reissner-Mindlin theory the out of plane membrane forces are
added to the equilibrium. The analytical description can be simply translated to a finite element
formulation from which various elements can be developed. Other theories like the shell theory
are more complex to translate to a finite element formulation since they are described in a
three dimensional space. The developed membrane-bending theory is therefore an attractive
alternative to model the behavior of flat plates subjected to large displacements.

7.1.2 Element performance

Two types of elements are developed: a four node linear element and a nine node quadratic
element. For membrane action, both the linear and quadratic element with respectively 2 × 2
and 3×3 Gauss integration proves to perform well. Moreover, comparing the results with results
obtained with Diana no deviations are observed whatsoever. For bending action the linear
element shows an overly stiff behavior. The stiff behavior is caused by shear locking, meaning
that for thin plates the contribution of the shear deformations to the energy does not vanish.
Applying a form of reduced integration improves the performance but a slightly stiff response
remains present. For bending action, the quadratic element with 3× 3 Gauss integration proved
to be the most accurate when compared to results obtained with Diana. For both the bending
element and membrane element the quadratic element is selected to be implemented in PBA.

7.1.3 Solution technique

In order to solve the coupled membrane-bending finite element formulation an iterative solution
procedure is developed based on the linear stiffness method. In order to detect convergence of
the solution, the displacement norm proves to render accurate results for a convergence tolerance
set to 0.0001 [-].
For large imposed displacements the solution method is not able to find convergence. Modifying
the solution algorithm to an incremental-iterative process does not show any improvement. For
a purely incremental method - eliminating the equilibrium iterations - a solution for large im-
posed displacements can be obtained. Since equilibrium is not satisfied at all time, this method
yields inaccurate results. The iterative version of the linear stiffness method is selected to be
implemented in PBA.
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7.1.4 Implementation

MATLAB is very suitable for developing a special purpose finite element program. Designing
a graphical user interface can be done easily. Moreover, visualizing the large amounts of data,
which is often attended in finite element analysis, is very simple.

7.1.5 Stresses

A comparison between the membrane stresses obtained with PBA and the membrane stresses
obtained with Diana is made. Deviations up to 20% are observed. This is mainly caused by
linear extrapolation of membrane stresses near the edges. Refining the mesh by doubling the
number of elements increases the accuracy by approximately 10% but the computational cost
becomes over 30 times larger. It is established that a division of approximately 10 elements over
the longest edge of an arbitrarily shaped plate gives a reasonable balance between computational
cost and accuracy.

7.1.6 Relation to practice

PBA is useful tool for designers to give a first estimate of the deformations, stresses and reaction
forces which arise from cold bending a flat panel to a curved shape. By having access to these
quantities in an early stage of the development process, a designer can fully employ the potential
of the used material without having to perform a comprehensive analysis. As a result, designs
can become more daring and presumably less unexpected problems are encountered later on in
the development process.

For large imposed displacements, PBA is not able to find a converged solution. This shortcoming
would imply that designers cannot search for the margins in their designs. However, it is found
that for the majority of plate bending problems encountered in practice, the maximum stress is
the determining factor. In addition, for large imposed displacements the nonlinear deformations
become excessive, causing undesired reflections.

7.2 Recommendations

PBA can be used to calculate and visualize the nonlinear deformations of a cold bent glass panel.
From the deformed shape a designer cannot make a good assessment of the to be expected reflec-
tions. Adding an option to PBA which makes reflections visible could be a valuable extension
for designers.

A possible new method for developing curved glass surfaces is cold bending of cylindrical hot bent
glass. For this method a cylindrical hot bent panel is further deformed by cold bending. This
method would open up new possibilities for developing curved glass surfaces. PBA is not able to
model these panels since only flat plates can be described by the developed membrane-bending
theory. Analyzing these plates would require a more complex shell theory.
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PBA can be used to analyze quadrilateral shaped plates only. Other shapes (e.g. triangles,
hexagons) cannot be modeled with PBA. Extending PBA to adopt other shapes requires a more
advanced mesh generator but opens up more possibilities for developing curved glass surfaces.

A solution method based on the linear stiffness method is not able to find convergence when large
displacements are imposed. A more advanced solution method which is capable of updating the
stiffness matrix would presumably give a better convergence behavior. There are several updating
methods available. Especially Newton Secant methods are of interest since they do not require
to determine the actual stiffness of the deformed shape but use a form of numerical updating of
the stiffness matrix.

The obtained stresses near the supports should be appreciated with great care, especially when
point supports are considered. These stresses are very much dependent on the geometry of the
used fitting. Unfortunately, it is not possible to model a fitting in PBA. More research could be
done towards the influence of a specific fitting on the deformations and stresses.
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A. Elements

A.1 Four node element configuration

In this section a four node element is developed from the matrix notation given in section 4.2.3.
The discretized fields for the membrane part are given by:

u = Nuau (A.1)

ε = Buau + θ∗ (A.2)

For a four-node element the matrix Nu and the matrix Bu are given by

Nu =


 N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4


 (A.3)

Bu =




N1,x 0 N2,x 0 N3,x 0 N4,x 0

0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x


 (A.4)

The various shape functions are given by:

N(x, y) = c1xy + c2y + c3x + c4 (A.5)

where c1 to c4 are constants depending on the shape and size of the element. The nodal values
for the displacement field au is given by

auT

=
[

ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4

]
(A.6)

The extra strain field in the membrane part due to bending is defined as

θ∗ = N∗a∗ (A.7)

with the matrix N∗ and the vector a∗ given by

N∗ =




N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4


 (A.8)

a∗
T

=
[

1
2
θ2

x1

1
2
θ2

y1 θx1θy1
1
2
θ2

x2

1
2
θ2

y2 θx2θy2
1
2
θ2

x3

1
2
θ2

y3 θx3θy3
1
2
θ2

x4

1
2
θ2

y4 θx4θy4

]

(A.9)
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The material matrix for the membrane part can be written as

Dm =
Et

1− ν2




1 ν 0

ν 1 0

0 0
1− ν

2




(A.10)

Using the above matrices, the internal force vector due to the extra strains fint,θ∗ can be con-
structed from:

fint,θ∗ = [
∫

A

BuT

DmN∗ dA]a∗ (A.11)

Assuming the field a∗ is known, the unknown membrane displacements can be solved from:

fint,θ∗ = Kuau (A.12)

The discretized displacement field and the discretized rotational field for the bending element
are given by

w = Nwaw (A.13)

θ = Nθaθ (A.14)

Taking the derivatives gives

w,xy = Bwaw (A.15)

κ = Bθaθ (A.16)

For a 4 node element the matrices Nw and Nθ have the form

Nw =
[

N1 0 0 N2 0 0 N3 0 0 N4 0 0
]

(A.17)

Nθ =


 0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4


 (A.18)

and the matrices Bw and Bθ

Bw =


 N1,x 0 0 N2,x 0 0 N3,x 0 0 N4,x 0 0

N1,y 0 0 N2,y 0 0 N3,y 0 0 N4,y 0 0


 (A.19)

Bθ =




0 N1,x 0 0 N2,x 0 0 N3,x 0 0 N4,x 0

0 0 N1,y 0 0 N2,y 0 0 N3,y 0 0 N4,y

0 N1,y N1,x 0 N2,y N2,x 0 N3,y N3,x 0 N4,y N4,x


 (A.20)
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The various shape functions are given by:

N(x, y) = c1xy + c2y + c3x + c4 (A.21)

The nodal values for the displacement and the nodal values for the nodal rotations aw and aθ

awT

=
[

w1 0 0 w2 0 0 w3 0 0 w4 0 0
]

(A.22)

aθT

=
[

0 θx1 θy1 0 θx2 θy2 0 θx3 θy3 0 θx4 θy4

]
(A.23)

are combined to

awθT

=
[

w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3 w4 θx4 θy4

]
(A.24)

The generalized forces fw and fθ

fwT

=
[

fw1 0 0 fw2 0 0 fw3 0 0 fw4 0 0
]

(A.25)

fθT

=
[

0 fθx1 fθy1 0 fθx2 fθy2 0 fθx3 fθy3 0 fθx4 fθy4

]
(A.26)

are combined to

fwθT

=
[

fw1 fθx1 fθy1 fw2 fθx2 fθy2 fw3 fθx3 fθy3 fw4 fθx4 fθy4

]

(A.27)

The internal force vector containing the nodal membrane forces in z direction is given by

fint,σ∗ =
[

fint,σ∗1 0 0 fint,σ∗2 0 0 fint,σ∗3 0 0 fint,σ∗4 0 0
]

(A.28)

with

fint,σ∗i =
∫

A

nxxiκxxi dA +
∫

A

nyyiκyyi dA +
∫

A

nxyi2κxyi dA (A.29)

The material matrices can be written as

Db =
Et3

12(1− ν2)




1 ν 0

ν 1 0

0 0
1− ν

2




(A.30)

C =
Et

2 + 2ν


 1 0

0 1


 (A.31)
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Assuming the vector fint,σ∗ is known, the unknown displacement field and rotational field can
be solved from:

Kawθ = fwθ + fint,σ∗ (A.32)

with

K =
∫

A

BwT

CBw dA−
∫

A

BwT

CN θ dA−
∫

A

NwT

CBw dA+ (A.33)
∫

A

BθT

DbB
θ dA +

∫

A

N θT

CN θ dA

A.2 Nine node element configuration

The exact same procedure is adopted as was done for the four node element configuration. Since
the matrices and vectors become rather large, this section will only deal with the shape functions.
The shape functions of a nine node element are given by:

N(x, y) = c1x
2y2 + c2y

2x + c3x
2y + c4y

2 + c5x
2 + c6xy + c7y + c8x + c9 (A.34)

where c1 to c9 are constants depending on the shape and size of the element.



B. Isoparametric shape functions

B.1 Four node element
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Figure B.1: Four node isoparametric element

B.2 Nine node element
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Figure B.2: Nine node isoparametric element
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C. Gauss integration

C.1 2× 2 integration scheme
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Figure C.1: Gauss integration scheme; 2× 2 integration

C.2 3× 3 integration scheme
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Figure C.2: Gauss integration scheme; 3× 3 integration
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D. Source code

D.1 Preprocessor

D.1.1 Set element type

function ElementData = setElementData()

% degrees of freedom per node Reissner−Mindlin element

ElementData.dof p = 3;

% degrees of freedom per node membrane element

ElementData.dof m = 2;

% nodes per element

ElementData.nodes = 9;

% number of integration points per element

ElementData.noInt = 9;

end

D.1.2 Mesh generator

function Mesh = generateMesh(InputData, ElementData)

% location of corner nodes

node1 x = InputData.cornerX(1);

node1 y = InputData.cornerY(1);

node2 x = InputData.cornerX(2);

node2 y = InputData.cornerY(2);

node3 x = InputData.cornerX(3);

node3 y = InputData.cornerY(3);

node4 x = InputData.cornerX(4);

node4 y = InputData.cornerY(4);

% ∆

∆ x1 = node4 x − node1 x;

∆ y1 = node2 y − node1 y;

∆ x2 = node3 x − node2 x;

∆ y2 = node3 y − node4 y;

% length 1

l 1 = node2 x − node1 x;

% width 1

b 1 = node4 y − node1 y;

% element size
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el = InputData.el;

% number of elements l1

n = round(l 1/el);

% number of elements b2

k = round(b 1/el);

% number of nodes over length

k l = 2*n+1;

% number of nodes over width

k b = 2*k+1;

% generate mesh matrix

x = zeros(k b*k l,2);

% fill

for p=1:k b

ell=(l 1+((p−1)*(∆ x2−∆ x1))/(k b−1))/(2*n);
for q=1:k l

elb=(b 1 +((q−1)*(∆ y2−∆ y1))/(k l−1))/(2*k);
x(q+p*k l−k l,1)=(q*ell) − ell + (p−1)*(∆ x1)/(k b−1) + node1 x; %x

x(q+p*k l−k l,2)=(p*elb) − elb + (q−1)*(∆ y1)/(k l−1) + node1 y; %y

end

end x=x';

% generate connectivity matrix

connect=zeros(n*k, ElementData.nodes);

for p=1:k

% column 1&2

for q=1:n

connect((p−1)*n+q,1)=(p−1)*(2*k l) +2*q−1;
connect((p−1)*n+q,2)=(p−1)*(2*k l) +2*q+1;

end

% column 3&4

for q=1:n

connect((p−1)*n+q,3)=p*(2*k l) +2*q+1;

connect((p−1)*n+q,4)=p*(2*k l) +2*q−1;
end

% column 5&6

for q=1:n

connect((p−1)*n+q,5)=(p−1)*(2*k l) +2*q;

connect((p−1)*n+q,6)=(p−1)*(2*k l) +k l+2*q+1;

end

% column 7&8

for q=1:n

connect((p−1)*n+q,7)=p*(k l+k l) +2*q;

connect((p−1)*n+q,8)=(p−1)*(2*k l) +k l+2*q−1;
end

% column 9
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for q=1:n

connect((p−1)*n+q,9)=(p−1)*(2*k l) +k l+2*q;

end

end connect=connect';

% store

Mesh.connect=connect;

Mesh.x=x;

Mesh.noNodes=size(x, 2);

Mesh.noElements=size(connect, 2);

Mesh.el=el;

Mesh.k l=k l;

Mesh.k b=k b;

Mesh.corner1=1;

Mesh.corner2=k l;

Mesh.corner3=Mesh.connect(3,end);

Mesh.corner4=Mesh.corner3−k l+1;

Mesh.midnode=round((Mesh.corner3−1)/2+1);

end

D.1.3 Set material model

function ModelData = setModelData(InputData)

% elasticity modulus

E=InputData.E; ModelData.E=E;

% Poisson's ratio

nu=InputData.nu;

% shear modulus

k=E/(2+2*nu); red=InputData.red;

% thickness

t=InputData.t; ModelData.t=t;

% bending stiffness

ModelData.D = E*tˆ3/(12*(1−nuˆ2)) *[1 nu 0

nu 1 0

0 0 (1−nu)/2];
% shear stiffness

ModelData.C = red*k*t *[1 0

0 1];

% membrane stiffness

ModelData.Dmem = E*t/(1−nuˆ2) *[1 nu 0

nu 1 0

0 0 (1−nu)/2];
end

D.1.4 Generate boundary conditions
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function BcData = generateBoundaryConditions(InputData, Mesh, ElementData)

pl=InputData.pl;

bctype=InputData.bctype;

noBc=length(InputData.bc)−1;
BcData.noBc=noBc;

% membrane part

BcData.membrane = [

Mesh.corner2 1 1 0.0

Mesh.corner2 1 2 0.0

Mesh.corner3 1 1 0.0

]';

% plate part

switch bctype

case 'points'

noBc=length(InputData.bc)−1;
BcData.noBc=noBc;

for i=1:noBc

meshPointer(i) = find(Mesh.x(1,:)==InputData.bc(1+i,1) & Mesh.x(2,:)==InputData.bc(1+i,2));

end

BcData.plate=zeros(1,1);

for i=1:noBc

BcData.plate(i,1)=meshPointer(i);

BcData.plate(i,2)=1;

BcData.plate(i,3)=1;

BcData.plate(i,4)=InputData.nodez(i);

end

BcData.plate(noBc+1,1)=Mesh.midnode;

BcData.plate(noBc+1,2)=0;

BcData.plate(noBc+1,3)=1;

BcData.plate(noBc+1,4)=pl;

case 'topbottom'

BcData.plate=zeros(1,1);

p=length(BcData.plate(:,1))−1;

for i=1:Mesh.k l

BcData.plate(p+i,1)=i;

BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(1)+

(InputData.Framez(2)−InputData.Framez(1))/(Mesh.k l−1)*(i−1);
end

p=length(BcData.plate(:,1));

for i=1:Mesh.k l

BcData.plate(p+i,1)=(i)+Mesh.corner4−1;
BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(4)+

(InputData.Framez(3)−InputData.Framez(4))/(Mesh.k l−1)*(i−1);
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end

% midnode

p=length(BcData.plate(:,1));

BcData.plate(p+1,1)=Mesh.midnode;

BcData.plate(p+1,2)=0;

BcData.plate(p+1,3)=1;

BcData.plate(p+1,4)=pl;

noBc=length(BcData.plate)−1;
BcData.noBc=noBc;

case 'leftright'

BcData.plate=zeros(1,1);

p=length(BcData.plate(:,1))−1;

for i=1:Mesh.k b

BcData.plate(p+i,1)=(i)*Mesh.k l −(Mesh.k l−1);
BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(1)+

(InputData.Framez(4)−InputData.Framez(1))/(Mesh.k b−1)*(i−1);
end

p=length(BcData.plate(:,1));

for i=1:Mesh.k b

BcData.plate(p+i,1)=(i)*Mesh.k l;

BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(2)+

(InputData.Framez(3)−InputData.Framez(2))/(Mesh.k b−1)*(i−1);
end

% midnode

p=length(BcData.plate(:,1));

BcData.plate(p+1,1)=Mesh.midnode;

BcData.plate(p+1,2)=0;

BcData.plate(p+1,3)=1;

BcData.plate(p+1,4)=pl;

noBc=length(BcData.plate)−1;
BcData.noBc=noBc;

case 'round'

BcData.plate=zeros(1,1);

p=length(BcData.plate(:,1))−1;

for i=1:Mesh.k l

BcData.plate(p+i,1)=i;

BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;
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BcData.plate(p+i,4)=InputData.Framez(1)+

(InputData.Framez(2)−InputData.Framez(1))/(Mesh.k l−1)*(i−1);
end

p=length(BcData.plate(:,1));

for i=1:Mesh.k l

BcData.plate(p+i,1)=(i)+Mesh.corner4−1;
BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(4)+

(InputData.Framez(3)−InputData.Framez(4))/(Mesh.k l−1)*(i−1);
end

p=length(BcData.plate(:,1));

for i=1:Mesh.k b

BcData.plate(p+i,1)=(i)*Mesh.k l −(Mesh.k l−1);
BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(1)+

(InputData.Framez(4)−InputData.Framez(1))/(Mesh.k b−1)*(i−1);
end

p=length(BcData.plate(:,1));

for i=1:Mesh.k b

BcData.plate(p+i,1)=(i)*Mesh.k l;

BcData.plate(p+i,2)=1;

BcData.plate(p+i,3)=1;

BcData.plate(p+i,4)=InputData.Framez(2)+

(InputData.Framez(3)−InputData.Framez(2))/(Mesh.k b−1)*(i−1);
end

% midnode

p=length(BcData.plate(:,1));

BcData.plate(p+1,1)=Mesh.midnode;

BcData.plate(p+1,2)=0;

BcData.plate(p+1,3)=1;

BcData.plate(p+1,4)=pl;

noBc=length(BcData.plate)−1;
BcData.noBc=noBc;

end

BcData.plate=BcData.plate';

end

D.1.5 Generate extrapolation data

function ExtrapolationData = generateExtrapolationPoints(Mesh)

ExtrapolationData.corner = [

Mesh.corner1
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Mesh.corner4

Mesh.corner2

Mesh.corner3

]';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ExtrapolationData.ring1=zeros(1,1);

%bc1 1e ring

p=length(ExtrapolationData.ring1(1,:))−1;

for i=1:Mesh.k l

ExtrapolationData.ring1(1,p+i)=i;

end

p=length(ExtrapolationData.ring1(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring1(1,p+i)=(i)*Mesh.k l −(Mesh.k l−1);
end

p=length(ExtrapolationData.ring1(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring1(1,p+i)=(i)*Mesh.k l;

end

p=length(ExtrapolationData.ring1(1,:));

for i=1:Mesh.k l

ExtrapolationData.ring1(1,p+i)=(i)+Mesh.corner4−1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ExtrapolationData.ring2=zeros(1,1);

%bc1 2e ring

p=length(ExtrapolationData.ring2(1,:))−1;

for i=1:Mesh.k l

ExtrapolationData.ring2(1,p+i)=i+Mesh.k l;

end

p=length(ExtrapolationData.ring2(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring2(1,p+i)=(i)*Mesh.k l −(Mesh.k l−1)+1;
end

p=length(ExtrapolationData.ring2(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring2(1,p+i)=(i)*Mesh.k l−1;
end
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p=length(ExtrapolationData.ring2(1,:));

for i=1:Mesh.k l

ExtrapolationData.ring2(1,p+i)=(i)+(Mesh.corner4−Mesh.k l)−1;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ExtrapolationData.ring3=zeros(1,1);

%bc1 3e ring

p=length(ExtrapolationData.ring3(1,:))−1;

for i=1:Mesh.k l

ExtrapolationData.ring3(1,p+i)=i+2*Mesh.k l;

end

p=length(ExtrapolationData.ring3(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring3(1,p+i)=(i)*Mesh.k l −(Mesh.k l−1)+2;
end

p=length(ExtrapolationData.ring3(1,:));

for i=1:Mesh.k b

ExtrapolationData.ring3(1,p+i)=(i)*Mesh.k l−2;
end

p=length(ExtrapolationData.ring3(1,:));

for i=1:Mesh.k l

ExtrapolationData.ring3(1,p+i)=(i)+(Mesh.corner4−2*Mesh.k l)−1;
end

end

D.2 Kernel

D.2.1 Assembling stiffness matrix for plate

function A = assembleMatrixPlate(Mesh, ElementData, ModelData)

N = Mesh.noNodes * ElementData.dof p;

n = ElementData.nodes * ElementData.dof p;

% allocate system matrix

A=zeros(N,N);

% allocate element matrix

A e = zeros(n);

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);
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% loop over all elements to assemble matrix

for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

% loop over integration points to assemble element matrix

for gauss point = gp

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

dX = gauss point(1)*j;

m = ElementData.dof p;

n = ElementData.nodes;

D = ModelData.D;

C = ModelData.C;

% form B matrix for theta

B theta = zeros(3, m*n);

B theta(1, 2:m:end) = dN(:,1)';

B theta(2, 3:m:end) = dN(:,2)';

B theta(3, 2:m:end) = dN(:,2)';

B theta(3, 3:m:end) = dN(:,1)';

% form N matrix for w

N w = zeros(1, m*n);

N w(1, 1:m:end) = N(:,1)';

% form N matrix for theta

N theta = zeros(2, m*n);

N theta(1, 2:m:end) = N(:,1)';

N theta(2, 3:m:end) = N(:,1)';

% form B matrix for w

B w = zeros(2, m*n);

B w(1, 1:m:end) = dN(:,1)';

B w(2, 1:m:end) = dN(:,2)';

% various contributions to the element stiffness matrix

ktt=B theta'*D*B theta;

kee=N theta'*C*N theta;

kvv=B w'*C*B w;

ktv=− N theta'*C*B w;

kvt=−B w'*C*N theta;

% compute element stiffness matrix

A int = (ktt+kvt+ktv+kvv+kee)*dX;

A e = A e + A int;

end

% compute dof map
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dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

% assemble

A( dof p, dof p ) = A( dof p, dof p ) + A e;

% reset element matrix

A e(:) = 0.0;

end

function [N, dN, j] = ShapeFunction(x, gp)

xi = gp(2);

eta = gp(3);

% shapefunctions Quad9

N = zeros(9,1); dN = zeros(9,2); J = zeros(2,2);

N(1) = 1/4*xi*eta*(1−xi)*(1−eta);
N(2) = −1/4*xi*eta*(1+xi)*(1−eta);
N(3) = 1/4*xi*eta*(1+xi)*(1+eta);

N(4) = −1/4*xi*eta*(1−xi)*(1+eta);
N(5) = −1/2*eta*(1−eta)*(1−xiˆ2);
N(6) = 1/2*xi*(1+xi)*(1−etaˆ2);
N(7) = 1/2*eta*(1+eta)*(1−xiˆ2);
N(8) = −1/2*xi*(1−xi)*(1−etaˆ2);
N(9) = (1−xiˆ2)*(1−etaˆ2);

dN(1,1)=1/4*eta*(1−xi)*(1−eta)−1/4*xi*eta*(1−eta);
dN(2,1)=−1/4*eta*(1+xi)*(1−eta)−1/4*xi*eta*(1−eta);
dN(3,1)=1/4*eta*(1+xi)*(1+eta)+1/4*xi*eta*(1+eta);

dN(4,1)=−1/4*eta*(1−xi)*(1+eta)+1/4*xi*eta*(1+eta);
dN(5,1)=xi*eta*(1−eta);
dN(6,1)=1/2*(1+xi)*(1−etaˆ2)+1/2*xi*(1−etaˆ2);
dN(7,1)= −xi*eta*(1+eta);
dN(8,1)=−1/2*(1−xi)*(1−etaˆ2)+1/2*xi*(1−etaˆ2);
dN(9,1)=−2*xi*(1−etaˆ2);

dN(1,2)=1/4*xi*(1−xi)*(1−eta)−1/4*xi*eta*(1−xi);
dN(2,2)=−1/4*xi*(1+xi)*(1−eta)+1/4*xi*eta*(1+xi);
dN(3,2)=1/4*xi*(1+xi)*(1+eta)+1/4*xi*eta*(1+xi);

dN(4,2)=−1/4*xi*(1−xi)*(1+eta)−1/4*xi*eta*(1−xi);
dN(5,2)=−1/2*(1−eta)*(1−xiˆ2)+1/2*eta*(1−xiˆ2);
dN(6,2)=−xi*eta*(1+xi);
dN(7,2)= 1/2*(1+eta)*(1−xiˆ2)+1/2*eta*(1−xiˆ2);
dN(8,2)=xi*eta*(1−xi);
dN(9,2)=−2*eta*(1−xiˆ2);

% jacobian matrix

J = x * dN;

% determinant of Jacobain matrix

j = det(J);

% transform normal system derivatives to carthesian system derivatives

dN = dN * inv(J);
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end

D.2.2 Assemble matrix for membrane

function A = assembleMatrixMembrane(Mesh, ElementData, ModelData)

N = Mesh.noNodes * ElementData.dof m;

n = ElementData.nodes * ElementData.dof m;

% allocate system matrix

A=zeros(N,N);

% allocate element matrix

A e = zeros(n);

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);

% loop over all elements to assemble matrix

for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

% loop over integration points

for gauss point = gp

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

dX = gauss point(1)*j;

n = ElementData.nodes;

m = ElementData.dof m;

Dmem = ModelData.Dmem;

% form B matrix

B = zeros(3, m*n);

B(1, 1:m:end) = dN(:,1)';

B(2, 2:m:end) = dN(:,2)';

B(3, 1:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,1)';

% compute element stiffness matrix

A int = B'*Dmem*B*dX;

A e = A e + A int;

end

% compute dof map

dof m = DofMap(ElementData.dof m, connect element, ElementData.nodes);
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% assemble

A( dof m, dof m ) = A( dof m, dof m ) + A e;

% reset element matrix

A e(:) = 0.0;

end

D.2.3 Apply boundary conditions

function [K, F] = applyBoundaryConditions(K, F, BcData, ElementData)

for bc = BcData

dof = ElementData*(bc(1)−1)+bc(3);
K(dof,:) = 0.0;

K(dof,dof) = 1.0;

F(dof) = bc(4);

end

end

D.2.4 Assemble extra strain vector

function f=computeA star(Mesh,u p)

for i=1:Mesh.noNodes

f(i*3−2,1)=1/2*(u p(i*3−1,1))ˆ2;
f(i*3−1,1)=1/2*u p(i*3,1)ˆ2;

f(i*3,1)=u p(i*3−1,1)*u p(i*3,1);

end

end

D.2.5 Compute extra force vector

function f = computeF t star(Mesh, ElementData, ModelData, A star)

N = Mesh.noNodes * ElementData.dof m;

n = ElementData.nodes * ElementData.dof m;

% allocate system vector

f = zeros(N,1);

% allocate element vector

f e = zeros(n,1);

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);

% loop over all elements to assemble vector
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for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

A star element = A star(dof p);

% Loop over integration points

for gauss point = gp

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

dX = gauss point(1)*j;

n = ElementData.nodes;

m = ElementData.dof m;

k = ElementData.dof p;

Dmem = ModelData.Dmem;

% form B matrix

B = zeros(3, m*n);

B(1, 1:m:end) = dN(:,1)';

B(2, 2:m:end) = dN(:,2)';

B(3, 1:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,1)';

% form N star matrix

N star=zeros(3,k*n);

N star(1, 1:k:end) = N(:);

N star(2, 2:k:end) = N(:);

N star(3, 3:k:end) = N(:);

f int = B'*Dmem*N star*A star element*dX;

f e = f e + f int;

end

% compute dof map

dof m = DofMap(ElementData.dof m, connect element, ElementData.nodes);

% assemble

f( dof m ) = f( dof m ) + f e;

% reset element vector

f e = 0.0;

end

D.2.6 Compute membrane stresses

function f = computeMembraneStress(Mesh, ElementData, u m, f t, ModelData, EpData)

N1 = Mesh.noNodes * ElementData.dof p;
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n = ElementData.nodes * ElementData.dof m;

m = ElementData.dof m;

k = ElementData.dof p;

% allocate system vector

f=zeros(N1,1);

Dmem = ModelData.Dmem;

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);

gp1=gp(:,1:4);

gp2=gp(:,5:8);

gp3=gp(:,9);

for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

dof m = DofMap(ElementData.dof m, connect element, ElementData.nodes);

dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

u element = u m( dof m );

f t element = f t( dof p);

% loop over integration points to compute stress

jj = 1;

for gauss point= gp1

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

B = zeros(3, 27);

B(1, 1:3:end) = N(:);

B(2, 2:3:end) =N(:);

B(3,3:3:end) = N(:);

B1 = zeros(3, 18);

B1(1, 1:m:end) = dN(:,1)';

B1(2, 2:m:end) = dN(:,2)';

B1(3,1:m:end) = dN(:,2)';

B1(3,2:m:end) = dN(:,1)';

f int1(jj*3−2:jj*3,1) =Dmem*(B1*u element+B*f t element)*1/4;

jj=jj+1;

end

jj=1;

for gauss point= gp2

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

B = zeros(3, 27);

B(1, 1:3:end) = N(:);

B(2, 2:3:end) =N(:);

B(3,3:3:end) = N(:);

B2 = zeros(3, 18);

B2(1, 1:m:end) = dN(:,1)';
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B2(2, 2:m:end) = dN(:,2)';

B2(3,1:m:end) = dN(:,2)';

B2(3,2:m:end) = dN(:,1)';

f int2(jj*3−2:jj*3,1) =Dmem*(B2*u element+B*f t element)*1/2;

jj=jj+1;

end

jj=1;

for gauss point= gp3

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

B = zeros(3, 27);

B(1, 1:3:end) = N(:);

B(2, 2:3:end) =N(:);

B(3,3:3:end) = N(:);

B3 = zeros(3, 18);

B3(1, 1:m:end) = dN(:,1)';

B3(2, 2:m:end) = dN(:,2)';

B3(3,1:m:end) = dN(:,2)';

B3(3,2:m:end) = dN(:,1)';

f int3(jj*3−2:jj*3,1) = Dmem*(B3*u element+B*f t element);

jj=jj+1;

end

dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

f(dof p(1:12))=f(dof p(1:12))+f int1;

f(dof p(13:24))=f(dof p(13:24))+f int2;

f(dof p(25:27))=f(dof p(25:27))+f int3;

end

% extrapolate

f(EpData.ring1*3−2)=f(EpData.ring2*3−2)+(f(EpData.ring2*3−2)−f(EpData.ring3*3−2));
f(EpData.ring1*3−1)=f(EpData.ring2*3−1)+(f(EpData.ring2*3−1)−f(EpData.ring3*3−1));
f(EpData.ring1*3)=f(EpData.ring2*3)+(f(EpData.ring2*3)−f(EpData.ring3*3));

f=f/ModelData.t;

end

D.2.7 Compute curvature

function f = computeCurvature(Mesh, ElementData, EpData, a p)

N = Mesh.noNodes * ElementData.dof p;

n = ElementData.nodes;

m = ElementData.dof p;

% allocate system vector

f=zeros(N,1);

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);

gp1=gp(:,1:4);



Source code 92

gp2=gp(:,5:8);

gp3=gp(:,9);

for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

a p element = a p( dof p);

% loop over integration points to compute curvature

jj = 1;

for gauss point= gp1

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

% form B matrix

B = zeros(3, m*n);

B(1, 2:m:end) = dN(:,1)';

B(2, 3:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,2)';

B(3, 3:m:end) = dN(:,1)';

k int1(jj*3−2:jj*3,1) = B*a p element*1/4;

jj=jj+1;

end

jj=1;

for gauss point= gp2

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

% form B matrix

B = zeros(3, m*n);

B(1, 2:m:end) = dN(:,1)';

B(2, 3:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,2)';

B(3, 3:m:end) = dN(:,1)';

k int2(jj*3−2:jj*3,1) = B*a p element*1/2;

jj=jj+1;

end

jj=1;

for gauss point= gp3

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

% form B matrix

B = zeros(3, m*n);

B(1, 2:m:end) = dN(:,1)';

B(2, 3:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,2)';

B(3, 3:m:end) = dN(:,1)';
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k int3(jj*3−2:jj*3,1) = B*a p element;

jj=jj+1;

end

% assemble

f(dof p(1:12))=f(dof p(1:12))+k int1;

f(dof p(13:24))=f(dof p(13:24))+k int2;

f(dof p(25:27))=f(dof p(25:27))+k int3;

end

% extrapolate

f(EpData.ring1*3−2)=f(EpData.ring2*3−2)+(f(EpData.ring2*3−2)−f(EpData.ring3*3−2));
f(EpData.ring1*3−1)=f(EpData.ring2*3−1)+(f(EpData.ring2*3−1)−f(EpData.ring3*3−1));
f(EpData.ring1*3) =f(EpData.ring2*3)+(f(EpData.ring2*3)−f(EpData.ring3*3));

f(EpData.corner*3−2)=2*f(EpData.corner*3−2);
f(EpData.corner*3−1)=2*f(EpData.corner*3−1);
f(EpData.corner*3) =2*f(EpData.corner*3);

end

D.2.8 Compute membrane forces in z direction

function f = computeF t star(Mesh, ElementData, ModelData, A star)

N = Mesh.noNodes * ElementData.dof m;

n = ElementData.nodes * ElementData.dof m;

% allocate system vector

f = zeros(N,1);

% allocate element vector

f e = zeros(n,1);

% compute Gauss point locations and weights

gp = IntegrationScheme(ElementData.noInt);

% loop over all elements to assemble vector

for element = Mesh.connect

% set−up local node coordinates and connectivity

connect element = element(1:ElementData.nodes);

x element = Mesh.x(:,connect element);

dof p = DofMap(ElementData.dof p, connect element, ElementData.nodes);

A star element = A star(dof p);

% loop over integration points

for gauss point = gp

% compute shape functions

[N, dN, j] = ShapeFunction(x element, gauss point);

dX = gauss point(1)*j;

n = ElementData.nodes;

m = ElementData.dof m;

k = ElementData.dof p;
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Dmem = ModelData.Dmem;

% form B matrix

B = zeros(3, m*n);

B(1, 1:m:end) = dN(:,1)';

B(2, 2:m:end) = dN(:,2)';

B(3, 1:m:end) = dN(:,2)';

B(3, 2:m:end) = dN(:,1)';

% form N star matrix

N star=zeros(3,k*n);

N star(1, 1:k:end) = N(:);

N star(2, 2:k:end) = N(:);

N star(3, 3:k:end) = N(:);

f int = B'*Dmem*N star*A star element*dX;

f e = f e + f int;

end

% compute dof map

dof m = DofMap(ElementData.dof m, connect element, ElementData.nodes);

% assemble

f( dof m ) = f( dof m ) + f e;

% reset element vector

f e = 0.0;

end

D.3 Postprocessor

D.3.1 Compute reaction forces

function Reactions = computeReactions(Mesh, K p, BcData, u p)

for i=1:BcData.noBc

Reactions.value(i)=K p(BcData.plate(1,i)'*3−2,:)*u p;

Reactions.x(i,:)=Mesh.x(:,BcData.plate(1,i)');

end

end

D.3.2 Compute bending stresses

function Sigma b = computeBendingStress(Mesh, ModelData, Kappa)

for i=1:Mesh.noNodes

Sigma b(3*i−2:3*i,1)=ModelData.Dmem*−0.5*Kappa(3*i−2:3*i,1);
end

end
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D.3.3 Compute total stresses

function Sigma t = computeTotalStress(Sigma m, Sigma b)

Sigma t.SxxL1=Sigma b(1:3:end)+Sigma m(1:3:end);

Sigma t.SyyL1=Sigma b(2:3:end)+Sigma m(2:3:end);

Sigma t.SxyL1=Sigma b(3:3:end)+Sigma m(3:3:end);

Sigma t.SxxL2=Sigma m(1:3:end);

Sigma t.SyyL2=Sigma m(2:3:end);

Sigma t.SxyL2=Sigma m(3:3:end);

Sigma t.SxxL3=−Sigma b(1:3:end)+Sigma m(1:3:end);

Sigma t.SyyL3=−Sigma b(2:3:end)+Sigma m(2:3:end);

Sigma t.SxyL3=−Sigma b(3:3:end)+Sigma m(3:3:end);

end

D.3.4 Compute principal stresses

function Sigma p = computePrincipalStress(Mesh, Sigma m, Sigma b)

for i=1:Mesh.noNodes

Sigma p.P1L1(i,1)=(Sigma m(i*3−2)+Sigma b(i*3−2)+Sigma m(i*3−1)+Sigma b(i*3−1))/2 +

sqrt(((Sigma m(i*3−2)+Sigma b(i*3−2)−Sigma m(i*3−1)+Sigma b(i*3−1))/2)ˆ2 +

(Sigma m(i*3)+Sigma b(i*3))ˆ2);

Sigma p.P2L1(i,1)=(Sigma m(i*3−2)+Sigma b(i*3−2)+Sigma m(i*3−1)+Sigma b(i*3−1))/2 −
sqrt(((Sigma m(i*3−2)+Sigma b(i*3−2)−Sigma m(i*3−1)+Sigma b(i*3−1))/2)ˆ2+
(Sigma m(i*3)+Sigma b(i*3))ˆ2 );

Sigma p.P1L2(i,1)=(Sigma m(i*3−2)+Sigma m(i*3−1))/2 +

sqrt(((Sigma m(i*3−2)−Sigma m(i*3−1))/2)ˆ2 + Sigma m(i*3)ˆ2);

Sigma p.P2L2(i,1)=(Sigma m(i*3−2)+Sigma m(i*3−1))/2 −
sqrt(((Sigma m(i*3−2)−Sigma m(i*3−1))/2)ˆ2 + Sigma m(i*3)ˆ2);

Sigma p.P1L3(i,1)=(Sigma m(i*3−2)−Sigma b(i*3−2)+Sigma m(i*3−1)−Sigma b(i*3−1))/2 +

sqrt(((Sigma m(i*3−2)−Sigma b(i*3−2)−Sigma m(i*3−1)−Sigma b(i*3−1))/2)ˆ2 +

(Sigma m(i*3)−Sigma b(i*3))ˆ2);

Sigma p.P2L3(i,1)=(Sigma m(i*3−2)−Sigma b(i*3−2)+Sigma m(i*3−1)−Sigma b(i*3−1))/2 −
sqrt(((Sigma m(i*3−2)−Sigma b(i*3−2)−Sigma m(i*3−1)−Sigma b(i*3−1))/2)ˆ2+
(Sigma m(i*3)−Sigma b(i*3))ˆ2);

end

end


