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Preface 

Course CT4150 is a Civil Engineering Masters Course in the field of Structural Plasticity for 
building types of structures. The course covers both plane frames and plates.  
 
Although most students will already be familiar with the basic concepts of plasticity, it has 
been decided to start the lecture notes on frames from the very beginning. Use has been made 
of rather dated but still valuable course material by Prof. J. Stark and Prof, J. Witteveen. After 
the first introductory sections the notes go into more advanced topics like the proof of the 
upper and lower bound theorems, the normality rule and rotation capacity requirements. The 
last chapters are devoted to the effects of normal forces and shear forces on the load carrying 
capacity, both for steel and for reinforced concrete frames. The concrete shear section is 
primarily based on the work by Prof. P. Nielsen from Lyngby and his co-workers. 
 
The lecture notes on plate structures are mainly devoted to the yield line theory for reinforced 
concrete slabs on the basis of the approach by K. W. Johansen. Additionally also 
consideration is given to general upper and lower bound solutions, both for steel and concrete, 
and the role plasticity may play in practical design. From the theoretical point of view there is 
ample attention for the correctness and limitations of yield line theory for reinforced concrete 
plates on the one side and von Mises and Tresca type of materials on the other side. This, 
however, is not intended for examination. 
 
I would like to thank ir Cox Sitters for his translation of the original Dutch text into English as 
well as for his many suggestions for improvements. 
 
 
A. Vrouwenvelder 
Delft, 2003 
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1 Introduction 

1.1 Computational models in structural mechanics 

In structural mechanics the following basic quantities appear: 
 
• Displacements:   ux, uy, uz   
• Strains: εxx, εyy, εzz, εxy, εyz, εxz 
• Stresses: σxx, σyy, σzz, σxy, σyz, σxz 
• Forces: fx, fy, fz. 
 
For static situations the relations between these quantities are given by three sets of 
equations: 
 
1) Kinematical equations 
2) Constitutive equations 
3) Equilibrium equations  
 

As indicated in Figure 1.1, the kinematical equations relate the strain components to the 
displacements and the stress components are related to internal and external forces by the 
equilibrium equations. These equations are of a purely geometric nature and independent 
of the material behaviour. The influence of the material is expressed in a third set of 
equations, the constitutive equations. For elastic materials six constitutive equations exist, 
which couple the six stress components to the six strain components. This set is known as 
Hooke’s law. However, in many structural mechanical elements the number of basic 
variables is much smaller. For a beam, for instance, often only the stress component σxx is 
of importance.  
 
A further classification of applied mechanics depends on the fact that each of the sets of 
equations can be linear or non-linear. One distinguishes: 
 
1.  Geometrically linear and non-linear models 
2. Physically linear and non-linear models  
 
The first item refers to the linearity or non-linearity of the kinematical and/or equilibrium 
equations. According to the exact theory, the equations are non-linear, but under certain 
conditions linear approximations may give useful results.  The second item refers to the 

   Forces 
Fx, Fy, Fz 

Displacements 
ux, uy, uz 

Kinematical 
equations 

(6 eq.) 

Constitutive 
equations 

(6 eq.) 

Equilibrium 
equations 

(3 eq.) 

Strains 
εxx, εyy, εzz, 
εxy, εxz, εyz 

Stresses 
σxx, σyy, σzz, 
σxy, σxz, σyz 

Fig. 1.1: Relations between the basic quantities in structural mechanics. 
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constitutive equations, which may be linear (elastic) or non-linear (non-linear elastic, 
elastic-plastic, plastic, fracture). A computational strategy for a certain type of structure is 
a combination of both items and leads to 4 possibilities.  
 
This course covers primarily computational methods for structures of one-dimensional 
elements (beams, frames) with geometrical linear and physical non-linear behaviour. 
The material behaviour is characterised by “plasticity”. Distinction is made between 
methods that describe the behaviour for an incremental increase of the external load and 
methods that only are able to obtain the load at failure. The use of incremental methods is 
required for accurate stability calculations on reinforced concrete and steel. For many 
structures in the common building practice, it is sufficient to know the ultimate load 
bearing capacity. The corresponding computational method is called plastic collapse 
analysis. This course specially focuses on this aspect. 
 
1.2 Modelling of the material behaviour 

It is the strength of the continuum mechanics to describe relations between stresses and 
strains on a macroscopic scale on basis of a limited number of phenomenological 
constants, without paying attention to the processes occurring on an atomic scale. Under 
the restriction of time-independent material behaviour, the mechanical behaviour of 
polycrystalline material (for example steel) under increasing load is controlled by 
successively two mechanisms: 
 
• Elasticity 
For an elastic material, a unique relation between stresses and strains exists. When after 
loading the stresses are reduced to zero, the deformed body gets back its original shape. In 
the classical theory of elasticity, the strains are small and the six constitutive equations are 
linear. Isotropic materials contain two independent material constants (for example the 
modulus of elasticity E and Poisson’s ratio υ). 
 
• Plasticity 
A plastic material is characterised by permanent plastic deformations when after loading 
the stresses are reduced to zero. The total strain in any point of a plastic material is the sum 
of the reversible elastic and the irreversible plastic strain. The constitutive relations in that 
case are given by the so-called yield functions combined with flow rules. 
 
Experiments, especially tensile tests, provide the necessary basic information about the 
material behaviour. Fig. 1.2a shows the relation between the conventional stress (force 
divided by original cross-sectional area) and the axial strain (elongation divided by an 
original reference length) of annealed mild steel in tension. Until the upper yield point is 
reached at point a, the stress-strain relation is linear. After that, the stress suddenly drops to 
the lower yield point a′ and remains constant up to point b. The stretch a′b is called plastic 
yield or plastic flow. After point b the stress increases with increasing strain. This 
phenomenon is called “hardening”. Finally, the maximum conventional stress is reached at 
point c, after which the stress reduces because of necking of the test piece, until fracture 
occurs at d. 
 
The yield stress of mild steel is in the order of 200-400 N/mm2, the ultimate stress is about 
400-600 N/mm2 and the strain at fracture is 30%-50%. A material capable of sustaining 
large strains is called “ductile”, in contrast to brittle materials. 
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From a practical point of view, the part Oab in Fig. 1.2a is the most important one. Since 
the strain at a is about 0.1% and at b about 1-2%, the part is redrawn in Fig. 1.2b on a 
stretched strain scale. The upper and lower yield points are indicated by σu (u = upper) and 
σp (p = plastic), respectively. The slope of the elastic branch is equal to the modulus of 
elasticity E (Young’s modulus) and the slope of the hardening branch is called Es. For mild 
steel Es is only 2-5% of E. The yielding of steel can be seen on the test piece by the 

formation of so-called “Lüder’s lines”, which make an angle of about 45o with the axis of 
the test piece showing that yielding occurs in planes with the largest shear stress (Tresca, 
see chapter 6). 
If in Fig. 1.2b firstly the path Oae is passed into the plastic zone after which the stress is 
reduced, the material becomes elastic and path ef is followed the slope of which is equal to 
the modulus of elasticity E. In the zone of compression a deviation from the linear 
behaviour can be established, which is known as the Bauschinger effect. When the stress is 
increased, again the same elastic path is followed back in opposite direction until point e is 
reached and yielding occurs at the lower yield point σp after which the deformation 
continues on plastic branch eb. After the first cold deformation, the upper yield point 
disappears. For modelling of the material behaviour of steel the upper yield limit, which is 
strongly dependent on the load rate and the details of the test specimen, is neglected. The 
Bauschinger effect is generally not taken into account too. If on top of that hardening is 
neglected too, one speaks of an elastic ideal-plastic material, with identical stress-strain 
curves for tension and compression. The ultimate stress state corresponds to the state of 
yielding. 
Fig. 1.3a shows the stress-strain diagram for this elastic ideal-plastic material, while in Fig. 
1.3b the model is further simplified to rigid ideal-plastic material behaviour, where only 
the irreversible plastic strains occur.       
 
• Brittle material behaviour 
For a brittle materials like concrete the same type of modelling is possible, with the 
difference however that the yield strain is considerably less, namely in the order of 0.2-
0.3%. Further, compared to the compressive stresses only small tensile stresses are 
possible. Therefore, in elementary calculations tensile stresses are neglected (Fig. 1.3c). 

 c σ 

 σp 

 σu 

 σ 

slope E slope E 
slope Es 

 a  a 

 a′  b 

 f 

 e  d 

 0  0 

 b 

 εs  εp  ε  ε 

(a) behaviour until fracture                      (b) the yield region 

Fig. 1.2: Stress-strain diagram for mild steel under tension. 
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Section 6.4 pays more attention to material modelling, especially the more-dimensional 
stress states will be discussed.       
 
The coming calculations are based on the models provided in Fig. 1.3. The influence and 
the importance of hardening will be covered in chapter 4. 

 
1.3 The elastic-plastic behaviour of simple bar structures 

As an introduction, the principles of an elastic-plastic calculation with material modelling 
according to Fig. 1.3 will be demonstrated by a simple example. The stress free, statically 
indeterminate bar structure of Fig. 1.4, with bar cross-section A, passes during loading the 
following stages:  
 
1) Elastic stage: eF F<  

The following set of equations has to be satisfied: 
 

 1 2u u u= =  (kinematical conditions) (1.1) 
  

 1 2
1 2 1 2

2; ; , p
S l S lu u S S A
EA EA

σ∗ ∗
= = ≤  (constitutive conditions) (1.2) 

 
 1 22S S F+ =  (equilibrium condition) (1.3) 
 

From (1.1) and (1.2) it follows: 
 
 1 22S S=  (1.4) 
 

Substitution of (1.3) provides: 
 

 1 2
1 1;
2 4

S F S F= =  (1.5) 

 f  εp 

 −σp 

 σp  σp 

 σ  σ  σ 

 −σp  −σp 

 εp  ε  ε  ε 

(a) elastic ideal-plastic       (b) rigid ideal-plastic                 (c) elastic ideal-plastic  
             (steel)                                 (steel)                               (concrete, with limited 

            yield strain)  

Fig. 1.3: Material modelling for one-dimensional load cases. 

 E 
1 
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Combination with (1.2) delivers: 

 

 
2
Flu
EA

=  (1.6) 

 
The relations (1.5) and (1.6) are graphically displayed in Fig. 1.4c. 

 
2) Elastic limit state: eF F=  

The elastic limit state is determined by the yielding of the middle bar, such that: 
 

 1 2
1;
2p pS A S Aσ σ= =  (1.7) 

 
 1 22 2e pF S S Aσ= + =  (1.8) 
 

 p
e

l
u

E
σ

=  (1.9) 

 

Fig. 1.4: Elastic-plastic behaviour of a simple bar structure. 

 E 

 −σp 

 σp 

 σ 

 εp  ε 
1  S1 

  A 
 S2 
  A 

 S2 
  A 

 F 

 l 

 l 

 u 

 Fp = 3Aσp 

 Aσp 

 Fe = 2Aσp 

 S2 = Aσp/4 
 S1 = Aσp/2 

 S1  S2 

 F 

 u 
 ue = σpl/E  up = 2σpl/E 

Elastic            elastic-plastic          plastic

(a) statically indeterminate structure                     (b) stress-strain diagram of bars

(c) force-displacement diagram 
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3) Elastic-plastic stage: e pF F F< <  
The elastic-plastic stage (in the meantime the structure has become statically 
determinate) is determined by: 
 

 1 2u u u= =  (kinematical conditions) (1.1) 
  

 2
2 1 2

2 ; ;p p
S lu S A S A

EA
σ σ∗

= = ≤  (constitutive conditions) (1.10)  

 
 1 22F S S= +  (equilibrium equation) (1.3) 
 

Substitution of (1.10) and (1.3) in (1.1) delivers (see fig. 1.4c): 
 

 
( )pF A l

u
EA

σ−
=  (1.11) 

 
4) Plastic limit state: pF F=  
The end of the elastic-plastic stage is reached if all three bars are plastic and the system 
does not allow another increase of the external load. The kinematical condition in this case 
is that the structure has become a “collapse mechanism”. The failure load (ultimate load) 
immediately follows – without making use of the preceding load path – from the 
equilibrium equation and constitutive condition at failure: 
 
 1 2 pS S Aσ= =  (1.12) 
 
 1 22 3p pF S S Aσ= + =  (1.13) 
 
For the displacement at failure from (1.11) it follows: 
 

 
2 p

p

l
u

E
σ

=  (1.14) 

 
For the calculation of this displacement information about the preceding load path is 
required. After reaching the elasticity limit Fe = 2Aσp the load can be increased by another 
50% up to Fp = 3Aσp, where the displacement doubles. Bar 1 experiences a plastic 
elongation of up1 = σpl/E. 
 
5) Behaviour during unloading 
Now it will be investigated what will happen when the load F = 3Aσp is removed 
completely. In order to make Fig. 1.4 less confusing, unloading will take place only after a 
certain amount of plastic deformation of all bars, i.e. movement as a mechanism, is 
allowed. On basis of the adopted material model all bars will spring back elastically during 
unloading and therefore the whole structure will react elastically. 
In Fig. 1.4, it can be seen that after complete unloading permanent deformation results. 
Further, the force change in the individual bars is important. The load reduces by 3Aσp. 
According to (1.5) bar S1 accounts for half of this amount and the bars S2 for a quarter, so 
that ∆S1 = −1.5Aσp and ∆S2 = −0.75Aσp. During failure in both bars a tensile force of Aσp 
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was present. Thus the result is that after unloading residual forces remain, being S1 = 
−0.5Aσp and S2 = 0.25Aσp (see Fig. 1.4). These residual forces, the resultant of which is 
zero of course, see to it that during reloading the system behaves elastically until the failure 
load is reached. So “nature” provides an elegant way of prestressing. Anticipating on the 
general theory in chapter 3 it already can be seen that the failure load is insensitive to for 
example forces introduced into the system during assembly of the structure. 
 
1.4 Elasticity versus plasticity approach 

For a number of reasons, the theory of elasticity is applied frequently in practice. Although 
the target of the formal theory of elasticity is to obtain an extreme stress, this goal in most 
cases cannot be satisfied completely. Implicitly in such cases plastic considerations are 
taken into account in order to find the stresses (plastic excuse), Fig. 1.5 provides some 
examples. 
 

(a) The stress distribution in a bar with a hole in tension is considered to be uniform in 
practice, while the theory of elasticity provides a stress along edge of the hole which is 
about three times the average value; 

(b) For a number of bolts in series, the individual bolt force is obtained by division of the 
total load by the number of bolts. The elastic distribution of the bolt forces does not 
correspond with this assumption; 

(c) During the calculation of beams and frames, the theory of elasticity assumes initially 
stress free structures and fixed supports. In reality, in statically indeterminate structures 
assembly stresses will be generated, which cannot be dealt with by the theory of 
elasticity. The real moment distribution will not coincide with the calculated one 
because of settlement of the supports. However, the differences are allowed as will be 
shown later on bases of plasticity considerations.    

 
It may also happen that the theory of elasticity leads to paradoxical conclusions for 
structures made out of ductile material. For a stiffness ratio of 1.5 between the vertical 
columns and horizontal girder in Fig.1.6, the support moment and maximum field moment 
are equal. Suppose that, for whatever  reason, the column is replaced by one having a 

 F 

 σa 
 3σa 

 F  F 

 F  F 
 F 

(b) elastic distribution of bolt forces 

(a) respectively elastic and plastic 
  stress distributions around a hole 

(c) influence of settlement central support 
               on moment distribution 

Fig. 1.5: Plastic excuse for elastic calculations. 
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heavier cross section, bringing the stiffness ratio between the beams to 3. The result of a 
new elastic calculation is that the support moment increases from 6.25 kNm to 7.14 kNm. 
The load that can be supported by the frame in that case reduces to (6.25/7.14)∗100% = 
87.5% of the original load. The fact that addition of material leads to a lower load bearing 
capacity is clearly in contradiction with the engineering judgement.  
 

 
It may be concluded that the theory of plasticity may gives valuable extra qualitative and 
quantitative information regarding the load carrying capacity and thus the reliability of a 
structure. A good engineer should consider them both.  
 
1.5 Historical overview 

From a historical point of view, the development of the computational techniques for 
building structures started with the determination of the ultimate load bearing capacity. 
Some well-known examples are the calculation of a restrained wooden beam subjected to 
bending by Galilei (1638), the buckling formula of Euler (1757) and the vertical 
excavation by Coulomb (1773). The theoretical analysis about the failure behaviour 
remained inadequate. The second half of the 18th century and the entire 19th century can be 
considered as the most prosperous time for the theory of elasticity. Modelling on basis of 
Hooke’s law (1678) made many problems suitable for a mathematical analysis.  
The development of the theory of elasticity into an engineering science is especially 
stimulated by the construction of bridges and coverings with large spans. Since analytical 
solutions for complicated structures quickly leads to large sets of unmanageable equations, 
graphostatics* was developed around 1900 for the calculation of frameworks. With the 
adjustment method of Hardy Cross*(1932) it also became possible to analyse statically 
indeterminate frameworks. The success of the theory of elasticity pushed the influence of 
real material properties, which used to be the starting point, to the background. With the 

 q = 10 kN/m 
 q = 8.75 kN/m 

 −7.14 kN/m 
 −6.25 kN/m 

 6.25 kN/m 
 5.36 kN/m 10 m 

10 m 

Fig. 1.6: The use of heavier columns leads according to 
 the theory of elasticity to a lower limit load. 

 

-curve for  1.5column

girder

EIM
EI

=

-curve for   3column

girder

EIM
EI

=
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exception of some solutions in soil mechanics, the calculation of the state of failure where 
non-linear material properties play a role fell into oblivion too. 
 
The abandoning of Hooke’s law at higher stress levels and the accounting for non-linear 
material properties in the plastic range introduce considerable complications. Undoubtedly 
this must have discouraged practitioners of mechanics in the 19th century, being well aware 
of the non-linear behaviour of materials. In the beginning of the 20th century this attitude 
changed with the recognition of the importance of the ductility on the behaviour of 
especially steel structures. Then it was also realised that for the calculation of the ultimate 
load, on basis of an elastic ideal-plastic material, it was not necessary to calculate the entire 
load path. 
Names such as Kazinczy (1914), Kist (1917) and Maier-leibnitz (1929) are attached to the 
begin period of this method∗, which finally became mature around 1950.  Around 1940 the 
theory of plasticity got an important impulse by the work of Baker and his co-workers at 
the university of Cambridge in Great Britain and by van den Broek (a student of Kist) 
attached to the university of Michigan in the United States.  
In the wake of the developments of the general theory of plasticity for continua by Drucker 
and Prager and others, around 1950 Greenberg, Prager and Home formulated the 
fundamental principles of the limit analysis, which was applied intuitively up to that time. 
In the nineteen sixties a lot of work was done on the operational applications by Beedle 
and co-workers of the Lehigh University in the United States, Home in great Britain, 
Massonet in Belgium and at TNO in the Netherlands. Recent developments are related to 
the research on stability, constructional details, computer applications and calculations of 
supporting structures at fire. Now, in almost all national regulations for steel and concrete 
and also in the Eurocode next to the theory of elasticity, calculations based on the limit 
load bearing capacity are allowed. 
 
Following the Anglo-Saxon title “limit design” or “limit analysis” the method in the 
Netherlands was called “bezwijkanalyse”. Now, the method is considered as a part of the 
general theory of plasticity. 
 

                                                 
∗ These methods have fallen into disuse because of introduction of the computer. 
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2 The elastic-plastic calculation 

2.1 The moment-curvature relation for the rectangular cross-section 

A beam element of elastic ideally-plastic material is loaded in pure bending (Fig. 2.1). The 
cross-section of the beam has a rectangular shape. The relation will be derived between the 
bending moment M and the resulting curvature �. 

It is assumed that the beam element in unloaded state is straight and free of stress. For 
small curvatures the material will respond elastically and the relation between moment and 
curvature can be derived as follows: 
 
 xx z� �� �  (kinematical equation) (2.1) 
 
 xx xxE� ��  (constitutive equation) (2.2) 
 
 xx

A

M z dA�� �  (equilibrium equation) (2.3) 

 
The kinematical equation agrees with the well-known hypothesis of Bernoulli (flat cross-
sections remain flat during deformation), where the strain of the centre fibre is zero on 
bases of symmetry (neutral fibre). So, the strain is proportional with the distance to the 
neutral fibre, and the same holds for the stress because of the linear material behaviour. 
Combination of above three equations finally results in the required relation between M 
and �: 
 

 2 31with
12A

M EI I z dA bh�� � ��  (2.4) 

 
This well-known derivation according to the theory of elasticity is valid until the yield 
stress �p is reached in the extreme fibres, i.e. until: 
 

 21
6e pM M bh �� �   (2.5) 

 

 h 

 z 

 b 

 z 

 y  x

 M 

 �

M  �p 

 �

Fig. 2.1: Part of beam with rectangular cross section subjected to bending, 
 with ideal-plastic material behaviour. 
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and: 
 

 2 p
e h E

�

� �� �   (2.6) 

 
The corresponding stress-strain curve is displayed in Fig. 2.2a 
 

When the moment or the curvature is further increased, it is assumed that the hypothesis of 
Bernoulli still holds. The strain distribution remains as given by (2.1). Naturally, during the 
plastic stage equilibrium is satisfied too, as given by (2.3)�. What does change, however,  is 
the relation between stress and strain. As long as no unloading occurs, it is given by: 
 
 for pE� � � �� �   (2.7) 
 
 forp p� � � �� � �   (2.8) 
 
From this material behaviour it is possible to determine the stresses and moment for a 
given strain distribution. Suppose that yielding has progressed so far that the elastic inner 
area has been reduced to �h (see Fig. 2.2). The stress distribution is then given by: 
 

 1for
2

E z h� � �� �   

 

 1for
2p z h� � �� � �   

 

                                                 
� For the determination of (2.1) and (2.3) use has been made of symmetry. In this case the symmetry 
properties also are valid in the plastic stage. However this is not always the case, as for example for unequal 
yield stresses for tension and compression. 

 (a)                      (b)                         (c)                               (d)   

 z 

 � 

 z 

 � 

 z 

 � 

 z 

 � 

 z 

 � 

 z 

 � 

 z 

 � 

 z 

 � 

 �p 

 �p  �p  �p  �p 

 2�p  3�p 

 �h 

 �  � = 2�e  �e  � = 3�e 

 �h  �h 

Fig. 2.2: Stresses and strains for a load above Me. 
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The corresponding bending moment equals: 
 

 2 21 1 1 1 1 1 11
2 2 2 2 3 4 3p p pM bh h b h h bh� � � � � �

� �� � � �� � � �� �
� � � � �� �� � � �� � � �� �

� 	� 	 � 	� 	 � 	� 	
 

 
The first term corresponds to the so-called fully plastic stress distribution. The second term 
is a correction for the elastic inner area (please check!). From Fig. 2.2 the following 
relation between � and � can be derived: 0.5�h� = �p, or through (2.6): 
 
 e�� ��  
 
Now the relation between M and � in the elastic-plastic phase can be written as: 
 

 
2

21 11 1 for
3 3

e
p p eM M M �

� � �

�

� �� � � �
� � � � �� 	
 � 
 �

� 
 � 
� 	� �
 (2.9) 

 

 21
4p pM bh ��  (2.10) 

 
As indicated, formula (2.9) is valid for � � �e; if � = �e the moment M is equal to 2Mp/3 or 
bh2

�p/6. The elastic and elastic-plastic branches are connected. In this case, it even can be 
shown that the M-� diagram does not have a slope discontinuity, because it holds: 
 

  
2

3

2
2 3
3

e e

p
e e

p
e e

MM MM
� � � �

�

� � � �
�

�

� ��� �
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If � increases further, the moment M approaches asymptotically to the value Mp (Fig. 2.3). 
This value is called the fully plastic moment, because for � = � the elastic inner area is 
reduced to zero and in all fibres of the cross-section the yield stress is present (Fig. 2.2d). 
The full-plastic moment Mp is the maximum moment that can be transmitted by a cross-
section. The ratio between the maximum plastic moment and the maximum elastic moment 
is called the shape factor �. For a rectangular cross-section the shape factor equals: 
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The shape factor indicates the plastic reserve of the cross-section with respect to the start 
of yielding. Naturally, the utilisation of this reserve involves extra deformations. In that 
case one speaks about a plastic hinge.   
 
The M-� diagram according to Fig. 2.3 is valid only if the moment or curvature increases 
monotonously. When at a certain stage the moment is reduced, the cross-section will not 
react plastic but completely elastic. After all, all fibres yielding under compression will be 
elongated (unloaded) and vice versa. Suppose the cross-section was nearly loaded up to Mp 
and then the moment is removed completely. In Fig. 2.4 it is indicated what will happen: 
an elastic moment distribution with a maximum stress in the extreme fibre of 3�p/2 is 
superimposed on a full-plastic stress distribution. The result is a so-called residual-stress 
distribution, the resulting moment and resulting normal force of which are equal to zero. 
Note that at the bottom of the beam a compressive stress remains, while the strain is still 
positive. Such a phenomenon often occurs during plastic deformation and one should be 
cautious for it; stress and strain are not uniquely related anymore, but their relation is also 
determined by the whole load history. 
 

When the moment is further reduced to �Me/2, the cross-section remains elastic, since in 
totally 2Me can be subtracted before the extreme fibres start yielding in the opposite 
direction (Fig. 2.5). After that again plastic zones develop and finally an ultimate moment 
of  �Mp can be carried. Moment variations can be carried with a total range of 2Mp, 
inducing so-called alternating yielding. The number of alternations should not become too 
high, as in that case a heavy form of fatigue occurs (low-cycle fatigue or plastic fatigue; 
important for example in earthquake calculations). Stress fluctuations within the range of 
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2Me are completely elastic. In this case depending on the amplitude, only for a much larger 
amount of alternations fatigue fracture occurs. 
 
2.2 Arbitrary cross-sections 

The analysis carried out in section 2.1 can be applied to every arbitrary cross-section. In 
Fig. 2.6 the most important properties are collected, i.e. the elastic section factor, the 
plastic section factor and the shape factor, where the plastic section factor is defined by: 
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�  (2.11) 

 
The shape factor heavily depends on the choice of cross-section. A big shape factor occurs 
for example for circular sections (�= 1.70) and a low factor for an  I section (�= 1.15).  
 
For the determination of the plastic resistance capacity Wp, firstly double-symmetrical 
sections will be considered, with bending about one of the symmetry axis (Fig. 2.7). The 
procedure for this type of profiles is almost identical to the one for rectangular cross-
sections. After an increase of the curvature to several times the elastic limit value, 
practically the whole area z > 0 yields in tension and the area z < 0 yields in compression. 
From (2.3) the full-plastic moment then can be computed as: 
 
 � �

0 0
p xx p p

A z z

M z dA zdA zdA� � �

� �

� � � �� � �  

 
Since the cross-section is symmetrical, for Wp it finally follows: 
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Fig. 2.5: The M-� curve during loading, unloading and reloading up to � Mp. 
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 2pW S�  (2.12) 
 
with: 
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S is the static moment of half the cross-section about the centre of gravity of the cross-
section; further A is the area of the entire cross-section and az the distance from the centre 
of gravity of the upper half of the cross-section to the centre of gravity of the whole cross-
section. Sometimes it is convenient (for example for an I-section) to divide the cross-
section into more parts and to use: 
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In this relation is Si the (absolute) static moment of part i with area �Ai and distance 
between the centres of gravity ai. For the I-section (Fig. 2.6) in this manner it can be found: 
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As mentioned before the I-section has a low shape factor. This is related to the effective 
place of the material in the elastic phase. In relation to this, the M-� diagram has another 
character (Fig. 2.8). As soon as the point M = Me is passed almost immediately complete 

yielding takes place in the upper and lower flanges (for t h� ). The stiffness EI of the 
whole section reduces to the stiffness of the web and the diagram shows a slope 
discontinuity. During the increase of � the value Mp is soon reached. This leads to the idea 
to approximate the displayed behaviour by two straight branches: the so-called bilinear M-
� diagram, where Me is set equal to Mp. By the way, this approximation is used in 
calculations with other cross-sections too.   
 
The behaviour of asymmetrical cross-sections is more complicated then the behaviour of 
symmetrical cross-sections. As an example, the T-section is chosen of Fig. 2.9, 
where t a� . In the elastic phase, the neutral line passes through the centre of gravity of 

 EI 
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 �  �e 

bilinear M-� diagram 

Fig. 2.8: Approximation of the M-� curve of an I-section by a bilinear M-� diagram. 
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the cross-section. The stresses at the top are three times larger than at the bottom (for these 
specific dimensions). After loading beyond Me only the top part yields and the lower flange 
remains elastic. The neutral line cannot remain fixed at its position, because else the 
increase in total tensile force will be larger then the increase in total compressive force, 
which is impossible from equilibrium point of view. So, in the plastic phase the neutral line 
shifts to the flange. Further increase of the moment finally causes the lowest fibre to yield 
too. After that, the plastic areas grow at both sides. When both plastic areas have almost 
approached each other, the fully plastic moment is reached. 
 
The determination of the M-� diagram is a very labour-intensive procedure. In most cases 
only the value of the fully plastic moment is important, which can be found quite easily. 
The key is that the place of the neutral line in the full-plastic phase is uniquely defined; this 
line has to divide the cross-section into two parts of equal area, in order to zero the 
resulting normal force. One says that the neutral line coincides with the bisection line. For 
an arbitrary asymmetrical cross-section the full-plastic moment then can be determined as 
follows (Fig. 2.10): 
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S1 and S2 are the absolute values of the static moments of the respective parts above and 
under the bisection line. The static moments can be determined about the centre of gravity 
of the cross-section as well as about the bisection line. 
 

For the considered T-section, it is found that the bisection line coincides with the top 
surface of the flange. For a positive moment the flange as a whole will yield positively and 
the whole body negatively. The yield force in both parts equals �p, the arm is a/2, so that a 
yield moment results of (1/2)a2t�p. Through the formal way this result can be obtained too 
from (2.15). To achieve that the static moments about the centre of gravity of the section 
are determined: 
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Finally, for the T-section it still is interesting to find out what happens if after reaching Mp 
the load is reduced (by a small amount). In first instance, it is assumed that the beam reacts 
completely elastic just as for the rectangular cross-section. However, in Fig. 2.9 it clearly 
can be seen (black triangle) that in the area between the centre of gravity and the bisection 
line the yield stress has to be exceeded, which is impossible. Therefore, it can be concluded 
that the section has to behave elastic-plastic during unloading. Also for the T-section 
completely elastic load alterations in the range of 2Me are possible. This phenomenon does 
not occur instantly but after a number of oscillations. The analysis of this process is called 
yield-stop analysis. 
 
2.3 The moment-curvature relation of reinforced concrete 

Fig. 2.11 shows the cross-section of a concrete beam. The cross-section is rectangular with 
width b and height h. The reinforcement with area As is situated at the bottom of the beam. 
The ratio As/(bh) is the geometrical reinforcement ratio indicated by �, i.e.: 
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Fig. 2.10: For a non-symmetrical cross-section the full-plastic moment Mp is given by 
� �1 2 pS S �� , where S1 and S2 are the static moments of the 

 parts above and below the bisection line.  
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 sA
bh

� �  (2.16) 

 
The material behaviour of steel and concrete are indicated in Fig. 2.11 too. The load case is 
considered where the beam is loaded by a pure moment. So, the normal force is equal to 
zero. 
When the load is gradually increased from M = 0, initially the cross-section will behave 
elastically (see Fig. 2.12a). The neutral line is situated just below the centre of the beam, 
because steel has a higher E-modulus than concrete. In this stage, the stiffness is about the 
same as for an unreinforced section. At a certain moment at the bottom of the beam the 
tensile strength of the concrete is reached and cracking occurs.  

The behaviour after the cracking-moment is reached depends on the amount of 
reinforcement and the softening properties of the concrete. During increasing curvature in 
most cases the moment initially will drop slightly, but will rise again after that. The 
cracked zone progresses upwards during this process. The stress distribution is given in 
Fig. 2.12b. Finally, the branch is reached corresponding to the “cracked” cross-section. 
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Then for a well-designed cross-section the point is reached where the steel will yield too. 
The moment still increases because the neutral line goes further upwards, increasing the 
internal lever arm. This situation is displayed in Fig. 2.12c. Finally, in the concrete 
compression zone, the maximum capacity is reached and the neutral line stops its upward 
movement. The limit load bearing capacity is reached with the stress distribution according 
to Fig. 2.12d. The entire M-� diagram is given in Fig. 2.12e. The ultimate moment Mu can 
be determined to be: 
 
 � �u s yM A h x� ��� �  (2.17) 
 
where h� is the distance from the reinforcement bars to the top surface of the beam (= h � d 
� �/2, with d the concrete cover and �  the bar diameter), �y is the yield stress of the steel, x 
is the height of the concrete compression zone and � a factor depending on the stress 
distribution in the concrete. If the concrete tensile stress is neglected and the concrete 
stress in the entire compression zone is assumed constant and equal to cf � then the factor � 
equals 0.5 and x can be determined from the horizontal equilibrium of forces: 
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where c is called the material reinforcement ratio. In order to get an impression of its order 
of magnitude the following realistic values are chosen: � = 1%, �p = 240 MPa and 24cf � �  
MPa. For c it then follows: 0.01 240 24 0.10y cc f�� �� � � � . 
 
2.4 The elastic-plastic behaviour of a statically indeterminate beam 

Fig. 2.13 shows a beam, which is restrained at both sides and loaded by a uniform surface 
load f. It is assumed that for f = 0 the beam is straight and stress free and that the M-� 
diagram can be assumed to be bilinear for each cross-section. When the load is increased in 
the beam the well-known elastic moment distribution develops with field moment fl2/24 
and fixed-end moment fl2/12. The load can be increased elastically until the fixed-end 
moments become equal to the full-plastic moment Mp. The distributed load then is: 
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What will happen if now the load is increased further? On basis of the M-� diagram, it can 
be concluded that at the fixed ends no further increase of the moment is possible. However, 
the curvatures can increase. In other words, during a further load increase �f, the fixed-
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ends act as simple supports with a maximum field moment of �fl2/8. Now, further increase 
of the load is possible until in the middle of the beam the full-plastic moment is reached 
too. So, the field moment increases from fl2/24 = 0.5Mp at the end of the elastic phase to 
Mp at the end of the plastic phase. The possible increment can then be calculated to be: 
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The total load then becomes: 
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The resulting moment distribution is given in Fig. 2.13. The field moment and both fixed-
end moments are equal to Mp. A further increase of the load is not possible, because for 
any additional �f at both fixed ends and at the middle of the beam, a plastic hinge will be 
created. Such a structure is not capable of carrying any load increment. The smallest 
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Fig. 2.13: Elastic-plastic analysis of a beam, which is restrained at both sides and is 
loaded by a uniformly distributed load. 



 25

thinkable increment will cause infinite displacements. The structure has become a 
mechanism and the ultimate load bearing capacity or limit load is reached. 
The limit load can also be directly determined from the moment distribution at failure, the 
equilibrium equation reads: 
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So, the ultimate load bearing capacity obtained from the plasticity theory equals 16Mp/l2, 
which is 33% higher than the value according to the elasticity theory. It can be said that the 
structure has a redistribution factor of 1.33. The extra plastic load carrying capacity is 
originated from the indeterminate character of the structure. A statically determinate 
structure always has a redistribution factor of 1. In statically indeterminate structures some 
of the underloaded parts still can supply an extra contribution after the formation of one or 
more plastic hinges, which finally delivers a factor >1. This phenomenon is called the 
redistribution of stresses. An important conclusion is that the “safety against failure” of 
statically indeterminate structures designed according to the elasticity theory is completely 
different from the one based on plastic design.     
 
The increase of the load above the elastic limit load, however, is accompanied by larger 
deformations. At the end of the elastic phase the midspan deflection is given by: 
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In the elastic-plastic phase the increase of u is: 
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Although the load increment �f is only 1/3 part of the elastic load step, the displacement is 
more than 1.5 times larger, as can be seen from the load-displacement diagram in Fig. 
2.13. 
 
The deflection curves are interesting too. In Fig. 3.13, it can be seen that the slopes of the 
lines at the fixed ends are unequal to zero. Because of the plastic hinge at the fixed end, the 
following rotation is present at the point of failure: 
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Such a rotation is called a plastic (hinge) rotation and develops in each structure where 
during a certain load increase a plastic hinge is present. In the present modelling, a plastic 
rotation is a finite angular displacement of a single cross-section. It is called a “point 
hinge”. The finite angular displacement over an infinitely small distance would imply an 
infinitely large curvature. It is clear that this is impossible. Therefore, the reality is 
somewhat more complicated, in chapter 4 more attention will be paid to this phenomenon.    
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Finally, some attention will be paid of how the failed statically indeterminate beam 
responds on load removal. It is assumed that during unloading the cross-section is, and 
remains, completely elastic (So, the cross-section cannot be a T-section). The fixed-end 
moment resulting from the load reduction is equal to fl2/12 = 1.33Mp and the field moment 
fl2/24 = 0.67Mp. The consequence is that for both the resulting fixed-end and field 
moments a value of 0.33Mp remains. Also for the intermediate points a value of 0.33Mp 
results. This easily can be seen by considering the fact that the second derivative of the 
moment is equal to the external load, which in this case is equal to zero, i.e.: the moment 
line must be linear between the calculated points. The moment distribution, which arises 
like this, is called a residual moment distribution. This residual moment distribution (the 
same as with residual stresses) makes it possible to take up load alterations, which are 
completely elastic.  
It is for the reader to determine the residual stress distribution across the cross-sections in 
the middle and at both ends of the beam. These residual stresses then should deliver a 
moment of 0.33Mp. 
  
2.5 The elastic-plastic behaviour of a frame 

The behaviour of an arbitrary frame is basically the same as that of the beam previously 
discussed. At low load levels the frame responds linear elastic. The elastic phase ends as 
soon as somewhere in the structure the bending moment becomes equal to the plastic 
moment Mp. At that spot a plastic hinge develops: the cross-section still transmits Mp but 
behaves as a hinge under a load increment. Subsequently, more plastic hinges may develop 
during the increase of the load. This process continues until in the structure such a 
configuration of plastic hinges is present that a mechanism is formed, which means that the 
structure can deform unlimited without any load increase. 
In Fig. 2.14 this process is demonstrated for a simple portal frame. The frame has a height 
and width equal to l. It is horizontally loaded by the force 0.5F and vertically loaded by the 
force F. Both the columns and the cross girder have a bilinear M-� diagram with bending 
stiffness EI and full-plastic moment Mp. 
In the elastic stage the largest moment occurs in cross-section (4). The moment has a value 
of 0.190Fl and therefore the first plastic hinge occurs for a value of F = 5.25Mp/l. During a 
further increase of the load, the construction responds as if in cross-section (4) a hinge is 
present. The corresponding moment distribution is also given in Fig. 2.14. In order to find 
out where the second hinge develops, for all sections the load increment �F has to be 
determined for which Mp is reached. For example for cross-section (1) the first hinge is 
generated for M =0.53Mp. So, the moment is allowed to increase by 0.47Mp. For cross-
section (1) the value of �F equals: 
 
 0.47 0.24 1.96p pM Fl F M l� � � � �  
 
Similarly for cross-section (2) it follows �F  = 14.5Mp/l, for cross-section (3) �F  = 
0.35Mp/l and for cross-section (5) �F = 0.15Mp/l. So, at cross-section (5) the second hinge 
develops because it provides the smallest force increment. The load then is increased to F 
= 5.40Mp/l. During further increase of the load, subsequently plastic hinges are formed in 
the cross-sections (3) and (1). By the presence of these four hinges a mechanism is formed 
and no further load increase is possible. The limit load equals Fu = 6.00Mp/l. 
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Fig. 2.14: Elastic-plastic analysis of a portal frame. 
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At the bottom of Fig. 2.14 the relation is displayed between the load F and the horizontal 
displacement u of the cross girder. The relation consists of a number straight branches. The 
first long branch is the elastic one, which is followed by a number of short straight 
branches with reducing slope generated at the formation of each plastic hinge. Finally, a 
horizontal branch is formed when the limit load is reached.  
The difference between the ultimate elastic and ultimate plastic load bearing capacity for 
this portal frame is 0.75Mp/l or 14%. The redistribution factor of the structure is 1.14. The 
displacements in the plastic stage are relatively large: the 14% stress increase requires the 
same displacement as the entire elastic branch. By the way, in absolute sense the 
displacements do not need to be large at all.  
 
An interesting aspect, in view of coming chapter, is the degree of statically indeterminacy. 
Initially the portal frame is 3rd-order statically indeterminate. At the formation of each 
hinge, the degree of statically indeterminacy reduces by one. After the formation of the 3rd 
hinge the structure become statically determinate and the 4th hinge changes it into a 
mechanism.  
 
For the mechanism the complete moment distribution at failure can easily be determined 
and the ultimate load can directly be obtained independently from the load history, being 
the sequence of formation of the plastic hinges (check this!). The important consequence is 
that the incremental procedure does not have to be followed in order to obtain the ultimate 
load. The problem is shifted to the tracing of the proper collapse mechanism. In chapter 3, 
more attention will be paid to this aspect. 
 
Summarising the following statement can be formulated: a nth-order statically 
indeterminate structure fails after the formation of n + 1 plastic hinges. This is a good 
guideline, in spite of the fact that to both sides (more or less hinges) exceptions are 
possible. 
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3 Plastic limit state analysis 

3.1 Introduction 

In previous chapter, the limit load of a structure was calculated through an elastic-plastic 
calculation. The limit load can also be determined directly from the upper- and lower-
bound theorems of the theory of plasticity. In this chapter, both theorems will be 
introduced, corresponding working methods discussed and demonstrated. After that it will 
be shown how the actual limit load can be enclosed by making a systematic use of both 
theorems. 
 
In this chapter, beam structures will be considered with one-dimensional stress states, in 
which case the upper- and lower-bound theorems easily can be proved. For structures with 
two- or three-dimensional stress states (for example with normal and shear stresses), 
additional hypotheses are required. These will be discussed in chapter 6.  
 
Further, it is assumed that the deformation capacity will be sufficient all the time. Attention 
to this aspect will be paid in chapter 4. 
 
3.2 Upper-bound theorem 

General formulation: 
 
“Starting from an arbitrary mechanism, the corresponding equilibrium equation will 
provide an upper-bound solution for the limit load.” 
 
The proof will be postponed till section 3.3. We will first clarify the theorem and show 
some examples. 
   
The equilibrium equation mentioned in the theorem can best be formulated through the 
principle of virtual work. According to this principle for a virtual displacement field �u the 
virtual work done by the external load equals the virtual work of the internal stresses: 
 
 T T

V

dV F u� �� � �����  (3.1) 

 
where � is the general symbol for the virtual increase, F is the external loads vector, � is 
the load factor with which all external loads are multiplied, u is the vector with the 
displacements, � T = [�xx �yy �zz �xy �xz �zy] is the stress vector and � = [�xx �yy �zz �xy �xz �zy] T 
is the strain vector. The superscript T stands for “transposed”. 
 
In the case of a two-dimensional beam structure subjected to purely bending, in x-
direction, which is coinciding with the beam axis, only the stresses �xx and the strains �xx 
are present (Fig.3.1). This reduces (3.1) to: 
 
 T

xx xxdV F u� �� � �����  (3.2) 

 
For pure bending, the strain is given by: 
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 xx z� ��  (3.3) 
 
Further, the moment is given by (also see (2.3)): 
 
 xxM z dydz�� ��  (3.4) 
 
Combination with (3.2) yields: 
 
 TM dx F u�� � ����  (3.5) 
 
The sigma symbol indicates summation over all bars. The displacement field of a plastic 
mechanism only contains displacements that are allowed by the mechanism. So, the 
(concentrated) bending only occurs in the plastic hinges, as indicated in Fig. 3.1. 
Therefore, in (3.5) the summation over all bars can be replaced by the summation over all 
plastic hinges. The integration takes place over the “length” of the hinge. However, this 
length is very small, theoretically it is approaching zero. In practice of course, some finite 
length is present. More attention to this aspect is paid in chapter 4. For the moment the 
length of the hinge is considered to approach zero and its curvature to approach infinity. 
This results into a finite angular displacement in the plastic hinge:     
 
 dx� �� �  (3.6) 
 
The virtual work equation for a mechanism now becomes: 
 

 T

1

m

pk k
k

M F u�� � �

�

��  (3.7) 

 
where m is the number of plastic hinges. From now on the variation symbol will be 
omitted. Further, only point loads are considered and therefore the vector notation can 
replaced by the summation over the external work of all point loads. This delivers the 
following result: 
 

 
1 1

qm

pk k i i
k i

M Fu� �

� �

�� �  (3.8) 

 

 z 

 x

 z

 y
 M

 M

 �xx 

 � 

Fig. 3.1: Moment and rotation in a plastic hinge.  

F
2F

�



 31

where q is the number of point loads. It is good to note that the both � and M have the 
same sign. A positive moment goes together with a positive angular displacement and vice 
versa. This follows from the fact that the considered displacement field is not arbitrarily 
chosen but corresponds with the mechanism. 
 
The procedure for an upper-bound calculation now is as follows: 
 
1. Choose a mechanism; 
2. Determine in each plastic hinge the plastic rotation �k ; 
3. Determine in each hinge the full-plastic moment Mpk and its sign; 
4. Determine the displacements of the point loads Fi ; 
5. Determine the virtual work done in the plastic hinges; 
6. Determine the virtual work done by the external loads; 
7. Determine the load factor � from (3.8). 
 
The found value of � is an upper bound for the load factor �c of the limit load. 
 
Example 3.1 
Consider the portal frame of Fig. 3.2a. From the elastic-plastic analysis in the previous 
chapter, the collapse mechanism is known. This mechanism including the magnitude of the 

angular displacements in the plastic hinges (bullets) and the displacements of the external 
point loads are indicated in Fig. 3.2b. The work equation (3.8) then becomes: 
 
 � � � � � �� � � �� �2 2 2 2p p p pM M M M F l F l� � � � � � �� � � � �� �� �  
 
From this it follows �F = 6Mp/l, which is exactly the same result as obtained in chapter 2 
after the performance of a very extensive elastic-plastic calculation. The answer is the 
same since the proper mechanism was used. However, suppose the mechanism of Fig. 3.2c 
was chosen. Then the work equation becomes: 
 
 � �� �4 2pM F l� � ��  
 
This leads to �F = 8Mp/l, which is an overestimation of the failure load, exactly as 
predicted by the upper-bound theorem. From this last example, it also can be shown that 
the virtual work equation agrees with the equilibrium equation corresponding to the 
mechanism. Both columns have a top-end moment of +Mp and a bottom-end moment of 

Fig. 3.2: Simple example of a mechanism.  
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              a)                      b) Correct mechanism F=Fp        c) Incorrect mechanism F>Fp
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�Mp. The transverse force in both columns therefore is 2Mp/l + 2Mp/l. This also provides 
�F = 8Mp/l.  
 
3.2.1 Systematic application 

It is relatively simply to carry out upper-bound calculations with mechanisms. However, 
the solution is always higher than the limit load and principally at the unsafe side. 
Therefore, a sharp upper bound has to be found. An effective method is to find and check 
all possible mechanisms. For a frame out of straight prismatic beams having point supports 
and loaded with point loads this is possible in principle. Then the procedure is as follows: 
 
1. Determine the degree of statically indeterminacy (n); 
2. Determine the number of places where a hinge may develop (m); 
3. Obtain a set of e = m � n elementary mechanisms; 
4. Determine all combination mechanisms. 
 
The spots where a possible hinge may develop can simply be identified. All beam-ends and 
points of action of the external loads are possible candidates. Between these points, the 
moment line is linear and no maximum can occur there. Thus, in the example of Fig. 3.2 n 
= 3, m = 5, e = 2 and the number of hinges is n + 1 = 4.     
 
A set of elementary mechanisms can be found by starting from an arbitrary mechanism and 
then subsequently replacing hinges by other ones: 
 

Location 1 2 .. .. n n+1 .. .. m 
First mechanism 1 2 .. .. n n+1    
Second mechanism  2 3 .. .. n+1 n+2   
Third mechanism   3 4 .. .. n+2 n+3  
Etc.          

 
In the first mechanism of above scheme plastic hinges are present in the first n + 1 of the in 
totally m positions. This is exactly the number required to get an ordinary mechanism for a 
nth-order statically indeterminate structure. The second mechanism can be obtained by 
replacement of the first plastic hinge by the one on position n + 2, etc. In this manner 
mechanisms are created which are not a combination of the already existing set. If the 
highest number is equal to the number of places m, no further shifting is possible. 
Obviously the number of elementary mechanisms follows from the equation n + e = m, so 
that it holds e = m – n. Given a set of “e” elementary mechanisms, all mechanisms can be 
found by superposing two or more of the elementary mechanisms in such a ratio that the 
total number of appearing and disappearing hinges are the same.   
 
In above text it is assumed that an nth-order statically indeterminate structure leads to n+1 
plastic hinges. This is not necessarily always the case. In Fig. 3.3a for example a 
mechanism is depicted with 3 hinges in a 3rd-order statically indeterminate structure. Such 
a mechanism is called a partial mechanism. In Fig. 3.3b, its counterpart is present, the 
over-complete mechanism: there are 3 hinges in a 1st-order statically indeterminate 
structure. Finally, Fig. 3.3c shows a mechanism that is both over-complete and partial (the 
structure contains one hinge more than necessary, but still is statically indeterminate). It is 
important to know that for all these mechanisms the upper-bound theorem holds too. 
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Example 3.2 
Again, the portal frame of chapter 2 is considered, also see Fig. 3.4. The structure is 3rd-
order statically indeterminate and there are 5 possible places for the development of plastic 
hinges. Therefore, e = m –1 = 5 – 3  = 2 elementary mechanisms can be identified. Which 
ones are chosen is not that important. In this case, the following mechanisms are chosen: 
 
�� the sway mechanism 
�� the beam mechanism 
 

Note hat the second one is actually a partial mechanism: the angular rotation at location 2 
is zero, so basically three hinges are present. Now combination mechanisms are 
investigated where the joint hinges 2, 3 and 4 will disappear one by one. 

          a) Partial mechanism                       b) Over-complete mechanism               

                                   c) Both over-complete and partial mechanism 

Fig. 3.3: Several types of mechanisms.  

                combination 1                          combination 2 (2 variants) 

                                                        elementary 1                      elementary 2    

Fig. 3.4: Example of portal frame with m = 5, n = 3, e = 2.  
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3 4 5 
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Location 1 2 3 4 5 
Sway mechanism +� +� +� +�  
Beam mechanism  0 �� +� +2� 
Combination mechanism 1 +� +�  +2� +2� 
Combination mechanism 2 +� +� +2�  �2� 
      

 
The first combination mechanism (also indicated in Fig. 3.4) is obtained by addition of 
both elementary mechanisms. At position 3 (upper left corner) the plastic hinge disappears 
and at position 4 (upper right corner) the angular displacement doubles. In the middle of 
the horizontal beam (position 5) the beam mechanism still provides the hinge with rotation 
+2�. The rotations � at the fixed ends are maintained. 
 
In addition, a combination can be made such that the joint hinge 4 disappears. Then a 
mechanism is created for which one of the two loads always performs negative work. This 
mechanism might still be possible, but with reduced chance to success. 
The third combination has to be created by the disappearance of hinge 2. However, in this 
case this is not possible because the beam mechanism is a partial one.  
 
Example 3.3 
Not all examples are that simple as the previous one. For example, take the two-storey 
portal frame of fig. 3.5. The structure is 6th-order statically indeterminate (n = 6) and 16 
possible places for the creation of plastic hinges are present (m =16). Therefore, 10 
elementary mechanisms can be identified (e = 16 – 6 = 10). It is not important which ones 
exactly, as long as they are independent. The following choice is made: 

Fig. 3.5: Two-story portal.  
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                 m = 16 
                  n =   6 
     e = m – n = 10  
 

6 beam mechanisms 
2 sway mechanisms 
2 rotation mechanisms
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�� 6 beam mechanisms 
�� 2 sway mechanisms 
�� 2 rotation mechanisms 
 
In a rotation mechanism, the entire node rotates. This mechanism occurs independently 
only if in the node an external torsional moment is present. However, as elementary 
mechanism it plays an excellent role, even if the specific torsional load is not present in a 
certain case. Again, combinations of the elementary mechanisms can be investigated. 
Doing so, the actual mechanism as shown in Fig.3.5 can be found. It is a combination of 
the mechanisms I, II, VII and VIII and the rotation mechanisms IX and X.     
 
3.2.2 Special cases 

Although, computer programmes with automatic search procedures can carry out this type 
of procedures for finding the decisive mechanism, they hardly are applied. However, 
handy for manual calculations are the cases with very low levels or on the other hand very 
high levels of statically indeterminacy.  
 
Suppose the structure is statically determinate, then just one hinge is required for the 
creation of a mechanism. That means that in total m mechanisms exist, which can be found 
easily. Is the construction 1st-order statically indeterminate two hinges are required for a 
mechanism. For the first hinge, m positions are possible and for the second hinge (m�1) 
positions. 
After correction for the double counting, finally m(m�1)/2 mechanisms are possible. 
Normally this amount is still manageable. For a 2nd-order statically indeterminate structure 
the number of mechanisms becomes m(m�1)(m�2)/6. For m =10 this comes down to 120 
mechanisms, which makes the analysis complicated.   
 
At the other side of the scale, the highly statically indeterminate structures can be found. 
For example, take a structure that is (m�1)-order statically indeterminate. Then only e = (m 
� n) = 1 elementary mechanism can be found. Such a construction is called kinematically 
determinate. 
A (m–2)-order statically indeterminate structure has m elementary mechanisms. These can 
easily be found by assuming hinges in each possible position and then repeatedly removing 
one hinge in one of the positions. In a (m–3)-order statically indeterminate structure 
combinations of 2 hinges have to be removed repeatedly. 
 
Summarising: 
 
n e = m � n total number description 
0 m m statically determinate, 1 hinge only 
1 m�1 1/2m(m � 1) 1st-order stat. indet., all comb. of 2 hinges  
2 m�2 1/6m(m � 1)(m � 2)  
    
m�3 3 1/2m(m � 1) 2 positions without hinge 
m�2 2 m 1 position without hinge 
m�1 1 1 kinematically determinate, but a mechanism 
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Fig. 3.6 shows an overview and some examples. The already discussed portal frame is 
included as well, having m = 5 possible hinge positions and n + 1 = 4 required hinges. In 
all cases, one position does not contain a hinge. The exclusion of the restrained column 
ends leads to the same partial beam mechanism. 
 

3.2.3 Uniformly distributed load 

When a uniformly distributed load is present (or a continuous elastic support, or non-
prismatic or curved beams) the analysis becomes more complicated. The positions of the 
hinges are not fixed anymore and have to be found through a process of optimisation. 
 
Example 3.4 
Consider the example of Fig. 3.7. The beam is 1st-order statically indeterminate, so 2 
plastic hinges are required for failure. Firstly, the mechanism is considered with a plastic 
hinge in the middle of the beam and a plastic hinge at the restrained end. The virtual work 
equation for this mechanism reads: 
 

 1 12
2 2p pM M qa a� � �

� �� � � �� �
 

 
The limit load then becomes: 
 

n = m � 1, m = 2, e = 1:  total number = � �1 11 2 1 12 2m m� � � � �    

Fig. 3.6: Total number of mechanisms for different cases. 

n = 0, m = 3, e = 3:  total number = 3   

1 2 

3 4 5 

n = 1, m = 3, e = 2:  total number = 1 3 2 32 � � �    

n = m � 2, m = 5, e = 2:  total number = � �� �1 11 2 5 4 3 2 524 24m m m� � ��� � � � � � �  
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The mechanism was arbitrarily chosen, therefore this solution is an upper bound. The 
actual failure load can be found through an upper-bound calculation by positioning the 
plastic hinge at an arbitrary distance “�a” from the simple support (see Fig. 3.7). The 
virtual work equation for this case becomes: 
 

  � � 21 1 1 11 2
2 2p p p pM M M qa a M qa� � �

� � � � �
� �

	 	 	� � � �� � � 	 
 � �� � � �� � � �
 

 
This can be worked out to: 
 

 � �
� �

2 2 1
1p

qa
M

�

� �

�

�

�

 

 
For each value of � an upper-bound solution can be found. The lowest upper bound, and 
thus the correct value of �, can be found by minimisation of this function. Differentiation 
and equating the numerator to zero provides: 
 

 � � � �� �

� �
2

22

2 1 2 1 1 2
2 1 0 1 2

1
� � � �

� � �

� �

� � � �
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�

 

 
Substitution in the expression for qa2/Mp gives: 
 

 
� �� �

2 2 2 11.66
1 2 2 2p

qa
M

� �

� � �

 

 
Indeed this value is smaller than the previously found one, however the difference is small. 
 
3.2.4 Proof of the upper-bound theorem 

As a conclusion of this section, proof of the upper-bound theorem will be given for the 
case of prismatic straight beams, loaded by point loads only. 
Suppose the real collapse mechanism is given by a displacement field u and rotations � in 
the plastic hinges. Thus, the load factor �c corresponding to the ultimate load can be 
determined through: 
 
 λc i i k kFu M ��� �  (3.9) 

 a 2a 2a a� � �1 a��

Fig. 3.7: Beam with distributed load: mechanisms for upper-bound calculation. 
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The values of Mk are the full-plastic moments Mpk where the sign follows from the sign of 
the rotations �k. 
Now consider an arbitrary mechanism with displacement field iu�  and plastic rotations k�

� . 
This displacement field leads to a limit load with level �  given by: 
 
 i i k kFu M� ��� � �� �  (3.10) 
 
The values of kM �  are the full-plastic moments Mpk at hinge k where the sign follows from 
the sign of the rotations k�

� . 
 
Since the real solution ( ,  )c kM�  satisfies the equilibrium equation, the real solution also 
has to satisfy the virtual work equation corresponding with the arbitrary mechanism given 
by ( , )i ku �� � . Therefore, it holds: 
 
 c i i k kFu M� ��� �� �  (3.11) 
 
Because the work i iFu��  in both equations (3.10) and (3.11) is the same it follows: 
 

 
λ

k k k k

c

M M� �

�

� � �
�

� �  (3.12) 

 
As k k k kM M� ��� � �� �  (see below) it follows that c� �� , which had to be proved. 
 
That k k k kM M� ��� � �� �  can be seen quite easily. Suppose that in hinge k of the arbitrary 
mechanism 0k�� � , then k pk kM M M� � �  and the inequality is valid. On the other hand if  

0k�� � , then k pk kM M M� � � �  and the inequality is valid too. Moreover, if the inequality 
holds for one hinge, it holds for the sum over the hinges too. 
 
3.3 Lower-bound theorem 

General formulation: 
 
“Each arbitrary moment distribution, that is in equilibrium with the external load and for 
which nowhere the yield condition is violated, delivers a lower bound for the limit load.” 
 
3.3.1 Application 

Lower-bound solutions for simple structures normally can be found quite easily. Note that 
the ordinary elastic solution provides a lower-bound solution too. The advantage of a 
lower-bound solution is that it is always at the safe side. However, the derivation of such a 
solution can be very uneconomical. Sometimes, the search for the best lower-bound 
solution can be done analytically or numerically, but in most cases, a trial and error method 
is applied. 
 
Example 3.5 
Given is the portal frame according to Fig. 3.8. The structure is 1st-order statically 
indeterminate. If the reaction force H in point B is introduced as the redundant, the 
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structure becomes statically determinate. The moment line is calculated for the statically 
determinate primary structure together with the moment line caused by the redundant. 
Then both lines are combined. For a handy chosen value of H the moment line of Fig. 3.8d 
can be obtained, of which in the points 2 and 5 the moment is equal to the full-plastic 
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Fig. 3.8: Failure mechanism of a 1st-order statically indeterminate portal frame. 
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moment Mp. In the other points, the moment is lower. The limit load Pp and H can be 
determined from: 
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3.3.2 Uniformly distributed load 

Again, consider the problem of Fig. 3.7. For the lower-bound calculation the moment 
distribution is used as drawn in Fig. 3.9. Suppose the reaction at the simple support is equal 
to Q, then M(x) is given by: 
 

 21( )
2

M x Qx qx� �  

 

At the fixed end (x = a) a moment can be supported equal to M = �Mp and the value of Q 
follows then from: 
 

 21 1
2 2

p
p

M
M Qa qa Q qa

a
� � � � � � �  (a) 

 
The field moment is maximal for: 
 
 Q qx�  
 
The value of this maximum is set equal to +Mp. Combination with the first relation yields: 
 

 
2 2 21 1

2 2p
Q Q QM
q q q
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The results (a) and (b) together provide: 
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The lower-bound solution finally becomes: 
 

� �1 2a �

 a 

Fig. 3.9: Beam with distributed load and moment curve for lower-bound calculation. 
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So, the best lower-bound solution coincides exactly with the best upper-bound solution, 
which was previously found. 
 
3.3.3 Proof of the lower-bound theorem 

Provided is a structure of prismatic straight members, having full-plastic moments Mpk and 
loaded by point loads Fi. 
 
Suppose that the real collapse mechanism is given by a displacement field ui and rotations 
�k in the plastic hinges. Then the load factor �c corresponding with the failure load can be 
determined through: 
 
 c i i k kFu M� ��� �  (3.13) 
 
The Mk’s are equal to the full-plastic moments Mpk where the sign follows from the sign of 
the rotations �k. 
Now, consider an arbitrary moment field M � , which is in equilibrium with a load F�  and 
satisfies the yield conditions. Since all equilibrium equations are satisfied, the virtual work 
equation corresponding with the real collapse mechanism is satisfied too. So, it follows: 
 
 i i k kFu M� �� �� �  (3.14) 
 
Sine the work i iFu�  in both (3.13) and (3.14) is the same, it follows that: 
 

 k k k k

c

M M� �

� �

�
�

� �  (3.15) 

 
Because k k k kM M� ���� � � (see below) it follows that c� �� , which had to be proved. 
 
That k k k kM M� ���� �  can be shown quite easily. Firstly, assume that in hinge k of the 
real collapse mechanism �k > 0. In that case is k pk kM M M �� �  and the inequality is valid. 
Conversely, if it is assumed that �k < 0 then k pk kM M M �� � �  and the inequality holds 
again. And when it holds for one hinge it also holds for the sum over the hinges. 
 
3.4 Combination of upper- and lower-bound theorems 

The handiest way (for a manual calculation) to determine the limit load is obtained through 
a combination of the upper- and lower-bound theorems. The procedure then is as follows: 
 
1. Choose a mechanism with a large chance to success; 
2. Draw the corresponding moment line that satisfies equilibrium; 
3. If nowhere the full-plastic moment is exceeded, the collapse mechanism is found; 
4. Determine a valid lower-bound solution; 
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5. Determine a new mechanism with plastic hinges at the positions with the largest 
moments. 

 
Example 3.6 
The method is demonstrated by the problem of Fig. 3.10. It is assumed that the sway 
mechanism is the most likely one. This provides an ultimate load of: 
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Fig. 3.10b provides a sketch of the corresponding moment distribution. It appears that the 
moment in the middle of the beam becomes equal to: 2.33Mp. So, a lower-bound 
estimation for the ultimate load is found equal to: 
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Fig. 3.10: Alternating use of upper- and lower-bound solutions.  
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It is clear that in the next attempt at position 3 a hinge has to be introduced in the 
mechanism. The problem now is to find out, which of the old hinges has to disappear. In 
this case the hinge at position 4 is the most obvious one (see Fig. 3.10c). This delivers a 
failure load of: 
 

 5.4 p
u

M
F

a
�  

 
The corresponding moment line can now easily be drawn. The full-plastic moment is not 
exceeded and the failure load has been found. 
 
3.5 Some consequences of the lower- and upper-bound theorems 

One of the outcomes of the lower- and upper-bound theorems is that a unique limit load 
will be found. One knows that the load factor determined through an elastic-plastic 
analysis is unique and does not depend on the way of how the analysis is carried out. After 
all, if a solution is found that satisfies equilibrium and at the same time causes a 
mechanism, then the hypothesis that still a higher limit load can be found contradicts the 
lower-bound theorem and vice versa. In next chapter more attention will be paid to this 
subject. 
 
Another important observation is that the ultimate load does not appear to depend on the 
elastic material properties. If the mutual flexural stiffnesses are changed but the full-plastic 
moments are kept the same, the same value for the load factor at collapse will be found. 
But note that then sometimes another mechanism is found, or another moment distribution 
at failure. 
 
Finally, there is the aspect of additional external loads, such as temperature, settlement, 
erection stresses, etc.. In elastic models they can cause large stresses in statically 
indeterminate structures. However, for the ultimate load they are not important: they 
simply are not capable of performing work during failure. The key is that these loads do 
not cause stresses in statically determinate structures or in a statically determinate parts of 
structures. And just before a mechanism is formed the structure (or for a partial mechanism 
a part of the structure) becomes statically determinate. 
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4 Rotation capacity 

4.1 Introduction 

For the analysis of the elastic-plastic behaviour of a structure in the previous chapters it  
was assumed that an unlimited redistribution of moments could take place. It even 
appeared that for the determination of the elementary ultimate load, no relations for the 
description of the deformation were necessary. The ultimate load just followed from the 
equilibrium of the statically determined system during collapse. 
 
For this really to happen, the full-plastic moment Mp should be preserved during the 
rotations, which are necessary to create the rest of the plastic hinges. This property is called 
“rotation capacity”. For a more detailed discussion, it is referred back to the example of 
the uniformly loaded beam that is restrained at both ends of Fig. 2.13. Starting from a 
stress-free undeformed structure, firstly at the ends the full-plastic moments are reached 
during loading. In order to make the creation of a plastic hinge in the middle of the beam 
possible, the hinges at the ends are subjected to a certain amount of rotation. In chapter 2 it 
already was mentioned that this rotation cannot take place in a single cross-section. This 
would require infinite strains and no material can provide these. Each material has a finite 
breaking strain, therefore a finite length is required for the plastic deformation to take 
place. 
 
4.2 Restrained steel beams 

For the case of the restrained beam, the situation is further detailed in Fig. 4.1. For the 
provision of the required rotation, in the first place it is important that the M-� diagram is 
not purely bilinear, but already starts curving as soon as the moment surpasses Me. Further, 
it is important that the real material is not ideal-plastic, but demonstrates strain hardening 
(see Fig. 4.2). Then a situation develops as indicated in Fig. 4.1: in one part of the beam 
the moment is a bit higher than Mp. In Fig. 4.1 the curvature distribution is sketched too. 
Indeed, the required rotation �� can be considered to be built up out of finite curvatures 
over a finite but small length. Fracture occurs if the fixed-end moment exceeds the ultimate 
moment Mu. This information is used as a criterion for the deformation capacity of the 
material. This will be worked out below. 
 
The moment at the restrained end can be written as: 
 
 fixed end pM M Qa� �  (4.1) 
 
where Q is the transverse force and a the distance from the fixed end to the cross-section 
with M = Mp. The distance "a" can be considered as the “length” of the plastic hinge. The 
influence of the path between Me and Mp is neglected. Supposing the rupture moment is 
equal to 1.15 times the full-plastic moment then: 
 
 1.15u pM M�  (4.2) 
 
In the plastic failure phase, the transverse force Q equals Q = 8Mp/l. Therefore, the rotation 
capacity is reached if: 
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 0.15 8 p
p

M a
M Qa

l
� �  (4.3) 

 
The distance a then follows as: 
 
 0.02a l�  (4.4) 

 

 a 

Fig. 4.1: Stresses and deformations in a plastic hinge. 
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Fig. 4.2: Moment-curvature diagram. 
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The rotation that can occur over this distance is estimated to be (see Fig. 4.1): 
 

  1
3 150

u
u

la �
� �� � �  (4.5) 

 
In chapter 2 for the restrained beam a required rotation capacity was found to be: 
 
 6 6p eM l EI l� �� � �  (4.6) 
 
The requirement for sufficient rotation capacity can now be written as: 
 

 25
150 6

u e u

e

l l� � �

�

� � �  (4.7) 

 
This condition then also holds for the strains: 
 

 25u

e

�

�

�  (4.8) 

 
So, for �e = 0.001 the required deformation capacity is found to be �u > 0.025. For most 
types of steel this condition is satisfied. However, for some high-strength steels or at very 
low temperatures this condition might be a problem. 
 
As demonstrated by above derivation, it appears that the length a of the plastic hinge is 
small compared to the span of the beam. On a macro scale, the assumption of a pin hinge 
conveniently can be made. 
 
In the above analysis, the required rotation capacity was determined by application of the 
external load on the undeformed stress-free structure. In reality numerous other factors can 
exist, which may influence the rotation capacity. In chapter 3 it was already mentioned that 
factors like temperature, pre-stressing, assembly faults, settlements and the like do not 
affect the failure load. Also, the flexural stiffness ratios in the structure and the sequence in 
the application of the loads have no influence within certain limits. However, these 
phenomena do have an impact on the magnitude of the deformations in the failure phase. 
This effect can be both positive and negative. In most cases, it must be assumed that all 
these factors put extra requirements on the rotation capacity. 
 
Above calculation of the rotation capacity was based on a geometrically linear 
consideration. Non-linear phenomena such as buckling, wrinkling, and twisting can have a 
negative impact on the rotation capacity of a member or a joint. In order to deliver 
sufficient rotation capacity, for steel structures conditions are given on the thickness-width 

M 
Mp 

 �required       � 
Fig. 4.3: Reduced full plastic moment.  



 47

ratio of flanges. Introduction of reduced full-plastic moments is also one of the remedies 
(see Fig. 4.3). 
 
Finally, it can be remarked that a plastic hinge in the middle of a member can develop a 
longer length. Therefore, the problem of insufficient rotation capacity, because of reaching 
the breaking point of the material, is less pronounced. 
 

The rotation capacity is also important for the assessment of joints. Therefore, the same 
restrained beam is considered, however with elastic restraints (see Fig. 4.4), the spring 
constant of which equals KEI l . In Fig. 4.5, the load-deformation diagram of this structure 
is given for different values of the spring constant. From the figure it can be concluded 
that: 
 
�� For K > 6 the first plastic hinges appear at the restrained ends. The required rotations 

for the formation of a plastic hinge in the middle are partly delivered by the elastic 
rotation in the joints and partly by the plastic rotation in the plastic hinges at the 
restrained ends. Depending on the magnitude of the plastic moment, the plastic rotation 
is delivered by the joint itself or by the member next to the joint. 

�� For K = 6 the plastic hinges at the restrained ends and in the middle of the member 
appear simultaneously. So, no redistribution of moments has to take place and actually 
no conditions for the rotation capacity are present. 

 p 

  l 

Ml
KEI

� �

structure                                                            model 
Fig. 4.4: Beam with end-plate connection. 
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Fig. 4.5: Load-deflection diagrams. 
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�� For K < 6 the first plastic hinge appears in the middle of the beam. Now, conditions are 
imposed on the rotation capacity of the beam itself. If the spring is very weak this 
situation may lead to unrealistic large deformations (see section 4.4). 

 
4.3 Experiments by Stüssi and Kollbrunner 

Stüssi and Kollbrunner performed in 1935 a number of tests on beams, which have become 
classical. The beams were simply supported at four positions and were loaded by a point 
load in the middle of the centre field (see Fig. 4.6). The degree of restraint of the centre 
field is determined by the factor k, which is the ratio of the lengths of the end fields and the 
centre field.   
 

In Fig. 4.7 the computational results for different values of k are displayed. The result is 
comparable with that of Fig. 4.5. The deflection at the moment of collapse up increases 
with increasing length of the end field. For values of k larger than 3 the slope of the 
diagram P > Pe becomes so small, that only for very large deflection the ultimate load is 
reached. For k = � the ultimate load actually cannot be reached. In that case the theoretical 
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Fig. 4.6: Stüssi-Kollbrunner beam. 

Fig. 4.7: Load-deflection relations for beam of Fig. 4.6 (from [Nea 77]). 
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collapse load has no practical meaning anymore. In addition, in the firstly created plastic 
hinge a very high rotation takes place, which may lead to premature failure by wrinkling, 
twisting or brittle fracture. 
 
The experimental result for k = 2 is indicated by a dashed line in the figure too. It can be 
concluded that the theory is confirmed by the tests and that the theoretical elementary 
ultimate load is reached. 
 
4.4 Reinforced concrete 

For reinforced concrete, the assessment of the available plastic rotation capacity is even 
more complex than for steel. To start with, the more irregular moment curvature relation 
applies as indicated in Fig. 2.12. The redistribution of internal forces starts already after the 
formation of the first small cracks. Then there is a second stage of redistribution after 
yielding of the reinforcement due to the change in position of the neutral line and due to 
slip of the reinforcement. This indicates that many geometrical and mechanical parameters 
are involved. In the Thesis by A. Bigaj “Structural dependence of rotation capacity of 
plastic hinges in reinforced beams and slabs, Delft 1999” detailed information can be 
found. The remaining part in this chapter has also been retrieved from that thesis. 
 
Fig. 4.8 gives a simplified estimate by showing the available rotation capacity for a simply 
supported beam with slenderness a/h  = 12 as a function of the material reinforcement ratio 

/y cc f�� �� (see chapter 2). For values of c greater then 0.15 the figure gives a general 
linear representation as most other factors are of limited importance. For lower values, 
however, many other influences play a role. The top value (usually reached for c = 0.05) 
may vary from �� = 0.01 to �� = 0.06. The most important parameter in this region is the 
reinforcement parameter p given by: 
 
 � � � �

0.80.752 1u sh t yp f f� �� � �  (4.9) 
 
where: 

u�  =  rupture strain of the steel 
sh�  =  strain at the onset of hardening 
tf  =  rupture strength of the steel  
yf  =  yield strength of the steel  

 
In the case of cold worked steel the term sh�  is not present. For low reinforcement ratios, 
the following relation holds: 
 
 12 0.7 p�� �  (4.10) 
 
where the subscript 12 indicates the bean slenderness a/h. For slenderness values of a/h 
different from 12 the following correction needs to be applied: 
 
 � �

0.85
a 12 = a 12h h� �� �� �� �  (4.11) 

 
As an example, a two sided clamped beam with uniformly distributed load is considered 
(see Fig. 4.9), having a span L = 6000 mm, cross sectional dimensions h = 300 mm and b = 
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150 mm, a geometrical reinforcement ratio of 0.8%� � , and material properties 
30,000bE �  N/mm2 and 300yf �  N/mm2. In that case it approximately holds:  

 

 

2

3 2

0.9 33 kNm
1 10,000 kNm

12

p yM bh f

EI E b h

�� �

� �

 

 
This means that the required rotation capacity at the clamped cross-sections can be found 
as (see chapters 2 and 4.1): 
 

 0.0032 rad
6

pM L
EI

�� � �  

 
The value of the material reinforcement ratio c in this case is about 0.1 (assuming 30cf � �  
MPa). Fig. 4.8 indicates an available rotational capacity of about 0.013. This value, 

however, should be corrected for the slenderness and divided by 2 as we have only one 
side now (clamped in situation). The value of a in this case equals two times the distance 
from the clamped in section to the point of zero bending moment (see figure 4.9): 
 

 L

 a 

moment curve

Fig. 4.9: Determination of “a” for the example of a two-sided clamped in beam.  
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Fig. 4.8: Rotation capacity as a function of the material reinforcement ratio 
(for ductile steel and a/h =12). 
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 2 1500 mm
8 4
L La � � �  

 
This leads to 1500 300 5a h � �  and so: 
 
 � �

0.855 12 0.013 2 0.0031 rad�� � � �  
 
This is practically sufficient to deal with the condition. 
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5 The yield contour 

5.1 Plane truss 

Fig. 5.1 shows a pin-jointed plane truss, consisting out of two bars. It is loaded by a 
horizontal force Fx and a vertical force Fy. Both bars can sustain a yield force Np in 

compression as well as in extension. The structure is statically determined, which means 
that a mechanism is created as soon as one of the bars starts yielding. Four mechanisms 
can be distinguished: 
 
 Mechanism 1: bar 1 yields in compression 
 Mechanism 2: bar 1 yields in extension 
 Mechanism 3: bar 2 yields in compression 
 Mechanism 4: bar 2 yields in extension 
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Fig. 5.1: Mechanism and yield contour for a truss with two bars. 



 53

The work equation for these mechanisms reads: 
 
 ; 1,2x x y y p iF u F u N l i� � � �  (5.1) 
 
In the table below, the relations are given between ux, uy, �l with respect to a reference 
displacement u. 
 

 ux uy 1l�  2l�  
Mechanism 1 u �u u � 
Mechanism 2 �u u u � 
Mechanism 3 0 u � u /�2 
Mechanism 4 0 �u � u /�2 

 
Substitution into (5.1) leads successively to the following equations: 
 

 

Mechanism 1:
Mechanism 2:

Mechanism 3: 2

Mechanism 4: 2

x y p

x y p

y p

y p

F F N
F F N

F N

F N

� �

� � �

�

� �

 (5.2) 

 
If Fx can be written as a function of Fy or vice versa, then from (5.2) the decisive collapse 
mechanism can be found, including the corresponding failure load. On the other hand, if 
the ratio between Fx and Fy is kept free, it is possible to find out which combinations of Fx 
and Fy can be carried and which combinations lead to overstepping of the load carrying 
capacity. The best way to execute such an analysis is by setting up a Fx-Fy diagram, as 
indicated in Fig. 5.1c. Each of the four mechanisms is represented by a straight line. These 
four lines enclose an area given by: 
 

 
2

2

x y p

x y p

y p

y p

F F N
F F N

F N

F N

� �

� � �

�

� �

 (5.3) 

 
Combinations of Fx and Fy that satisfy these inequalities are called safe or permissible 
combinations. Load combinations situated outside the indicated area cannot be carried by 
the structure. This is the unsafe area. 
 
The line enclosing the safe area is called the yield contour. The yield contour is an 
important concept in the theory of plasticity, which is not only applied to frames and 
trusses, but also to cross-sections loaded by moments and normal forces, and also to two- 
and three-dimensional stress states in general. In all cases, the yield contour turns out to 
have a number of interesting properties. The first property is that a yield contour always 
encloses a convex area. This is not very surprising because the safe area can be described 
by a number of linear inequalities. 
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The second property concerns the (plastic) displacements. On the yield contour of fig. 5.1c 
for each mechanism, the displacement vector u is drawn of the loaded node. It can be 
established that for each mechanism this displacement vector is perpendicular to the yield 
contour. This phenomenon is called normality and is connected to the growth of the plastic 
deformations. Later in this chapter, more attention will be paid to this topic. 
 
5.2 Yield contour of a portal frame 

The portal frame of Fig. 5.2a is considered. The ratio between the forces F1 and F2 is left 
free, just as in the framework in section 5.1. 
 

The equations for the three mechanisms are: 
 

2 2 2

1 1 1

1 1 2 2 1 2

a) Beam mechanism (Fig. 5.2b) : 4 with 2
b) Sway mechanism (Fig. 5.2c) : 4 with
c) Combined mechanism (Fig. 5.2d): 6 with ; 2

p

p
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Fig. 5.2: Yield contour for a simple portal frame..  
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Note that only positive values of F1 and F2 are considered. 
The three found mechanisms can be depicted in a F1-F2 diagram (Fig. 5.2e). A contour is 
created inside which the permissible combinations of F1 and F2 are situated. Load 
combinations lying outside the contour cannot be carried.  
The total contour is built up out of three branches: the horizontal one generated by the 
beam mechanism, the vertical one of the sway mechanism and the slanting one of the 
combined mechanism. So, ratios between F1 and F2 can be identified for which one of the 
mechanisms is decisive. However, other ratios can be chosen, which make other 
mechanisms decisive. It is also possible that a mechanism lies completely outside the yield 
contour and never is decisive. 
 
Again it can be observed that the yield contour is convex and that the normality condition 
is satisfied: 
 
�� For the beam mechanism the displacement (u1,u2) = (0, a�/2) is perpendicular to the 

horizontal axis. 
�� For the sway mechanism the displacement (u1,u2) = (a�,0) is perpendicular to the 

vertical axis. 
�� For the combined mechanism the displacement (u1,u2) = (a�, a�/2) is perpendicular to 

F1a + F2a/2 = 6Mp. 
 
Interesting points of the yield contour are the corner points, where two mechanism lines 
intersect. In such an intersection point the mechanism is over-complete. Movements are 
possible according to the one or the other mechanism, and also for an arbitrary 
combination of both mechanisms with positive coefficients. That is why a whole fan of 
displacements is drawn in the corner points of Fig. 5.2e. 
The proof for this normality condition can be delivered rather easy. The energy dissipation 
equation for a structural mechanism reads: 
 
 1 1 2 2 pFu F u M� �� �  
 
where � is a factor depending on the mechanism. Further, for each specific mechanism the 
relations u1 = c1� and u2 = c2� can be given, which leads to: 
 
 1 1 2 2 pF c F c M�� �  (5.4) 
 
The directional vector of this line is {dF1, dF2}, for which it holds: 
 
 1 1 2 2 0dF c dF c� �  (5.5) 
 
It can be concluded that the dot product of the vectors {dF1, dF2} and {c1, c2} is equal to 
zero, from which it follows that these vectors are perpendicular. Therefore, also the vector 
{u1, u2} = �{c1, c2} is perpendicular to the failure line, which completes the proof. 
Another way of looking at the problem is as follows. Relation (5.4) can be rewritten as: 
 
 1 1 2 2 0pFu F u M� � �� � � �  (5.6) 
 
The quantity � is called the plastic potential. The gradient vector �� is given by: 
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 1 1

2 2

F u
F u

�
�

�

� �� � � �
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� �� 	 � 	
 (5.7) 

 
Since the yield figure � = 0 is a contour line and because the gradient is perpendicular to 
contour lines, the normality condition is conveniently proved.  
Relation (5.7) is often used in the reversed way, where starting from the plastic potential 
the displacements are determined. 
The plastic potential is not uniquely defined, since all terms can be multiplied with a 
certain factor. This means that only the direction of the displacement vector can be 
obtained. In order to find the magnitude of the displacements an undetermined (or through 
other circumstances a determined) positive scale factor � is introduced, i.e.: 
 

 1 1

2 2

u F
u F

�
�

�

� �� � � �
�� � � �

� �� � � �
 (5.8) 

 
Above relation (5.8) is the usual formulation of the normality principle. 
 
Finally the following: suppose the structure is loaded by F1 = F2 = F = 4Mp / a. Normally, it 
is assumed that this situation is reached by a slowly and proportional increase of F1 and F2 
until failure occurs. Proportional in this case means that �F1 = �F2. However, it is also 
possible to follow another load path and firstly apply F1 = 4Mp / a followed by F2 = 4Mp / a. 
The yield contour in Fig. 5.3 shows that this is possible, since all combinations of F1 and 
F2 are situated inside the yield contour. Therefore, failure occurs at the same load as for the 

proportional load case. The failure load appears to be independent from the followed load 
path, which is known as the proposition of the invariant failure load. Important of course 
is that the whole path is inside the yield contour, if not so, premature failure will occur (see 
Fig. 5.4). 
 
 
 
 
 
 
 

Fig. 5.3: Load path has no influence on failure load and type of mechanism. 
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5.3 Normality 

In the previous text it is established twice that the yield contour is convex and that the 
plastic displacement increments have directions, which are coinciding with the outward-
pointing normal on the yield surface. These two properties will be investigated in this and 
next sections. Consider an arbitrary framework or truss including point loads Fj. In a 
number of cross-sections i plastic hinges may develop, the full-plastic moments of which 
are Mpi. For an arbitrary mechanism it then can be written: 
 
 j j pi iF u M ��� �  (5.9) 
 
where uj are the displacements of the points of action of Fj in the direction of the forces 
and �i are the rotations corresponding with Mpi. For convenience’s sake, it is assumed that 
the full-plastic moments are the same for both positive and negative curvature. The 
computation for asymmetrical sections is not essentially different, but requires more paper 
work. The summations in (5.9) have to be done over all loads and all (potential) plastic 
cross-sections. For a fixed mechanism, the right-hand side is completely determined except 
for the factor �, which is a proportionality factor for the displacements. 
 
Now, consider a neighbouring load case Fj + �Fj. It is assumed that the mechanism 
remains the same one and that this load case causes failure too (Fig. 5.5a). It then holds: 
 
 � �j j j pi iF F u M �� � �� �  (5.10) 
 
From (5.9) and (5.10) it then follows: 
 
 0j jF u� ��  (5.11) 
 
The geometric interpretation of this is that �F and u, both considered and plotted out as 
vectors, are perpendicular to each other (normality)(see Fig. 5.5a). For the physical 
interpretation, the idea is abandoned that Fj represents a failure state with respect to the 

Fig. 5.4: The point (Fx, Fy) = (0.5Mp/a, 4Mp/a) cannot be reached by application of 
firstly a vertical load and secondly a horizontal load. 
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considered mechanism. If it is assumed that Fj represents an arbitrary safe load 
combination (Fig. 5.5b), relation (5.9) is changed to: 
 
 j j pi iF u M ��� �  (5.12) 
 
Combination with (5.10) in this case leads to: 
 
 0j jF u� ��  (5.13) 
 
The load increment �Fj can be considered as the last load step until failure occurs. Firstly, 
the safe state Fj is reached and then the last increment is imposed until failure occurs. 
Inequality (5.13) displays that irrespective from which side �Fj approaches the state of 
failure, it always will perform positive work. In other words, to bring a structure into a 
state of failure always costs energy and no energy is generated. For this to happen it is 
required, that uj is perpendicular to the yield surface (apart from the corner points of the 
surface).  

a) State of failure F and 
neighbouring state of failure F + �F, 
belonging to the same mechanism 

b) The state of failure F + �F is 
reached by several load paths; F is 
an arbitrary safe load and �F is the 
last load increment leading to failure 

c) If the plastic displacement vector 
is not perpendicular to the yield 
contour, it is always possible to 
choose F and �F in such a manner 
that negative work is done 

Fig. 5.5: State of failure and normality. 
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If the outcome should have been different, very strange things would happen. Suppose that 
the portal frame of Fig. 5.2 is almost collapsing. For complete collapse, only a small 
increment �F1 to the right is required. It would be very strange if, after the application of 
the increment, the frame would move to the left instead of to the right. This is exactly the 
logic, which is brought to expression by the normality principle. 
 
At first sight, normality seems to be a property that generally can be found in structures 
and materials. Indeed, normality can be confirmed for frames as discussed above. The key 
issue in this is that all considered situations can be reduced to 1-dimensional stress states. 
As soon as 2- or 3-dimensional stress states are involved, normality cannot be derived any 
more, but has to be introduced as an assumption (Postulate of Drucker). Given the above 
outcome this seems very plausible, which however is not the case. Normality turns out to 
be a material property and one just has to wait and see if the condition is satisfied. Steel 
does satisfy the normality condition very well, but sand for example not at all. This is 
because the plastic behaviour of sand is based on a frictional mechanism. 
 
5.4 Plastic potential, convexity 

According to (5.9) the mechanism equation for an arbitrary mechanism can be written as:  
 
 j j pi iF u M ��� �  (5.9) 
 
It is assumed that all displacements depend on one single scale parameter �, because uj = 
cj� and i ia� �� . If further all moments Mpi are equal to biMp the mechanism equation can 
be rewritten as: 
 
 j j pF M� ��  (5.14) 
 
Analogously to (5.6) a plastic potential is defined: 
 
  j j pF M� �� ��  (5.15) 
 
If the loads Fj are such that � < 0, then no failure occurs for this mechanism; for � � 0 it 
does. The outward-pointing normal on the yield contour is given by (�� / �Fj). The 
normality condition is then given by (also see (5.8)): 
 

 j j
j

u
F
�

� ��
� ��

� �� �� ��� �
 (5.16) 

 
where � is a positive scale factor. 
Generally, the yield contour is built up out of different yield functions �k (Fig. 5.6). If the 
load on the structure is only composed out of point forces, all functions �k are linear. If one 
part of the load is uniformly distributed, the yield line can be curved too. In fact, the curve 
can be assumed to be a polygon built up out of infinitesimal-small straight-line pieces (Fig. 
5.7). The total yield contour, which is built up out of curved and straight-line pieces, is 
always convex. On the one hand, this directly follows from the definition of the yield 
contour, but on the other hand, this can be shown more explicitly. Therefore, two arbitrary 
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points A and B are considered situated on the yield contour (Fig. 5.6). It is assumed that all 
possible mechanisms are incorporated, so that in the points A and B moment distributions 
can be applied, which satisfy equilibrium and the yield condition. Now, an arbitrary load 
combination C is considered, situated on a straight line passing A and B. The load in C can 
be considered as the sum of certain proportions of the loads in A and B. These proportions 
are called � and (1 - �): 
 
 � �1C A BF F F� �� � �  (5.17) 
 
The fact that the sum of the proportions is equal to unity reflects that C is situated on a 
straight line through A and B. In each arbitrary point of the structure a bending moment can 
be defined of MC = �MA + (1 - �)MB. If this is done for each point, the moment distribution 
for point C has been found, which satisfies equilibrium. Since further –Mp � MA � +Mp and 
–Mp � MB � +Mp it also holds that  –Mp � �MA + (1 - �)MB � +Mp, which can be proved 
easily. So for Mc it holds  –Mp � MC � +Mp. So, a moment distribution in point C is found, 
which satisfies equilibrium and the yield conditions. Therefore, Point C is situated inside 
or on the yield contour, which means that the yield contour is convex. 
 
To conclude this chapter another example with a uniformly distributed load f will be 
discussed. As mentioned above a curved yield contour will appear. The frame and yield 
contour are drawn in Fig. 5.7. Again, three mechanisms can be distinguished: a beam 
mechanism, a sway mechanism and a combined mechanism. The beam and sway 
mechanisms are self-evident and will not be discussed. For the combination mechanism the 
work equation reads: 
 

 � �
1 22 40
2 2x pF a fa a M ��

� � �
�

� � � �
� � �� � � �

�� 	 � 	
 (5.18) 

 
where � is the position parameter of the plastic hinge in the beam. With Fy = 2fa the 
mechanism equation is given by: 
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Fig. 5.6: In the case of loading by point forces, the yield contour 
is composed out of linear line pieces. 
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In Fig. 5.7 the lines are drawn for � = 0, � = ½, � = 1. For � = 0 the mechanism is exactly 
the sway mechanism, for � = 1 the hinge is positioned exactly in the middle of the beam. 
For each value of � a mechanism line can be drawn with another slope in the Fx-Fy 
diagram. The more lines for different values of � are drawn, the more the inscribed 
polygon approaches the flowing curve. In order to find this curve for fixed Fy the value of 
Fx is determined through minimisation with respect to � : 
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Substitution of � in (5.20) provides: 
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Fig. 5.7: Due to the distributed load the position of the hinge is not fixed and the yield 
contour is curved; the displacement component yu , which is important for normality, is 

the average displacement of all points of the upper beam.   
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Since (5.21) is valid only for � � 0, relation (5.22) is valid only for Fy � 2Mp/a. For lower 
values of Fy the sway mechanism holds. The transition from sway mechanism to 
combination mechanism is gradually, and the deformation vector{ , }x yu u is unique. The 
transition from the combination mechanism to the beam mechanism is an abrupt one and 
more deformation vectors are possible (over-complete mechanism). Note that the 
displacement yu , for which in this example the normality condition holds, is not the 
displacement of the plastic hinge, but the “average displacement of the beam”, which is 
half of the hinge displacement. Namely, it is essential that the displacement related to 
normality, belongs to the corresponding force, in such a sense that their product represents 
a work. The choice of one of the two quantities is basically free. In this example the 
displacement of the hinge could have been chosen too, but than Fy should have been 
defined by Fy = fa. 
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6 Yield criteria 

6.1 Introduction 

In chapter 1 the yield behaviour of a 1-dimensional stress state was discussed. For more-
dimensional stress states so-called yield criteria are required, indicating which 
combination of stresses will lead to limit stress states. In structural mechanics, frequently 
two-dimensional stress states are encountered and therefore, most attention will be paid to 
this in this chapter. 
 
In chapter 1 it was discussed, that for a 1-dimensional stress state, the limit state is 
determined by yielding, for which: 
 
 p� �� �  (6.1) 
 
For more-dimensional stress states several yield criteria have been developed, the most 
important ones of which will be discussed. 
 
6.2 The yield criterion of Tresca (steel) 

Since it was observed that for tensile tests carried out on mild steel, the plastic 
deformations occur along planes making an angle of about 450 with the axis of the test 

specimen, it was quite logical to assume that the maximum shear stress was the decisive 
factor for yielding. The magnitude of the maximum shear stress can easily be obtained 
from a tensile test (Fig. 6.1a): 
 

 ,max 2
xx

xy
�

� �  (6.2) 

 
and therefore the yield stress equals: 
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a) unidirectional stress state                                 b) plane stress state (� yy = 0)  

Fig. 6.1: Maximum shear stress. 
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In the case of a special plane stress state, for example the stress state of a beam subjected 
to bending by a transverse force as shown in Fig. 6.1b, the maximum shear stress becomes: 
 

 2 2
,max

1 4
2xy� � �� �  (6.4) 

 
With Tresca’s yield criterion according to (6.3) the yield condition for this stress state 
becomes: 
 
 2 2 24 p� � �� �  (6.5) 
 

This relation is displayed in Fig. 6.2a. In the 3-dimensional stress space having principal 
stresses 1 2 3( , , )� � �  the largest shear stress is given by the largest of the absolute values of 
the differences given below: 
 

 1 2 2 3 3 1; ;
2 2 2

� � � � � �� � �  

 
This changes the yield condition into: 
 
 1 2 2 3 1 3max , , p� � � � � � �� � � � � �� �  (6.6) 
 
In the 3-dimensional principal stress space this is a regular hexagonal prism, which is 
symmetrical with respect to the space diagonal 1 2 3� � �� � . For the plane stress state with 

3 0� � the yield condition can be written as (Fig. 6.3b): 
 
 1 2 1 2max , , p� � � � �� � � �� �  (6.7) 
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a)                                                                    b) 
Fig. 6.2: Yield criterion of Tresca for plane stress 

a) for the components �, � (� yy = 0);                        
b) in the principal stresses � 1, � 2 (� 3 = 0). 
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This condition is sketched in Fig. 6.2b. For stress combinations inside the hexagon the 
material reacts elastically. Stress combinations on the hexagon cause the material to yield. 
Unloading takes place elastically. Outside the hexagon, no stress combinations are 
possible. 
 
6.3 The yield criterion of von Mises (steel) 

From experiments, it is known that the yield criterion of Tresca underestimates the yield 
shear stress. In this respect the yield criterion of von Mises provides a better 
approximation. For the 3-dimensional stress state having principal stresses 1 2 3( , , )� � � the 
criterion reads: 
 
 � � � � � �

2 2 2 2
1 2 2 3 3 1 2 p� � � � � � �� � � � � �  (6.8) 
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Fig. 6.3: Maximum shear stress. 
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Fig. 6.4: Yield criterion of von Mises for plane stress 
a) in the principal stresses � 1, � 2 (� 3 = 0); 
b) for the components �, � (� yy = 0);  
the dashed line shows Tresca’s yield criterion.      
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 2 2 2 2
1 2 3 1 2 2 3 3 1 p� � � � � � � � � �� � � � � �  (6.9) 

 
In principal stress space, this is a cylinder that is symmetrical with respect to the space 
diagonal. For the plane stress state 3 0� � the yield condition (6.9) changes into: 
 
 2 2 2

1 2 1 2 p� � � � �� � �  (6.10) 
 
This is graphically represented in Fig. 6.4a. The dashed line indicates the criterion of 
Tresca. 
For a plane stress state, defined by , 0,xx yy xy� � � � �� � � (bending by a transverse force), 
the principal stresses are (see Fig. 6.1b): 
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Combination with (6.10) yields: 
 
 2 2 23 p� � �� �  (6.11) 
 
This yield condition is displayed in Fig. 6.4b. The dashed line represents Tresca’s criterion. 
From (6.11) immediately the shear stress according to von Mises follows: 
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Fig. 6.5: The yield criteria of von Mises and Tresca in three-dimensional stress space.
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Since the criterion of von Mises provides better results for steel and aluminium than the 
criterion of Tresca, it is normally applied for the calculation of steel and aluminium 
structures. 
 
Finally, Fig. 6.5 shows the 3-dimensional stress space 1 2 3( , , )� � � , with both Tresca’s and 
von Mises yield criterion. The intersection of the cylinder and prism with the 1 2� �� plane 
provides an ellipse and a hexagon, respectively (Fig. 6.4a). As can be seen from the figure 
as well as from the structure of the criteria (6.6) and (6.8) addition of a hydrostatic stress 

1 2 3� � �� �  does not affect a critical stress state. This property is characteristic for the 
behaviour of isotropic materials. The structure of the yield criterion for brittle materials 
such as concrete and friction materials such as soil is for that reason very different. 
 
6.4 The yield criterion of Mohr-Coulomb (concrete, rock / soil) 

The yield criterion of Mohr-Coulomb is not only a good approximation for loose granular 
materials such as sand, but also a good first approximation for rock-like materials such as 
unreinforced concrete. First of all, these materials are characterised by enormous different 
properties for compression and tension. In the Mohr-Coulomb criterion, it is assumed that 
failure occurs, if in an arbitrary plane the shear stress becomes equal to the maximum 
allowable shear stress. This allowable shear stress depends linearly on the normal stress on 
the same plane. In formula form: 
 
 max tanc� � �� �  (6.13) 
 
where c is the cohesion and � the angle of internal friction. Opposite to the normal sign 
convention, in soil mechanics compressive stresses are assumed positive. 
 
The yield criterion can be displayed graphically by two straight lines in Mohr’s diagram 
(Fig. 6.6). Immediately it can be seen that for � = 0 the Mohr-Coulomb criterion 
transforms into Tresca’s criterion with c = �p / 2. In the figure an arbitrary stress state is 
indicated, the shear stress of which is critical. Shear takes place along two planes, making 
an angle of (� / 4 + � / 2) with respect to the largest principal stress � 1, the deformation for 
which is unlimited. 
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Fig. 6.6: The yield criterion of Mohr-Coulomb, tensile stresses are positive 
and ((� 1 > �  2 > � 3). 
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For stress circles situated completely inside the envelope, no failure will occur and the 
deformations are limited. Generally, for concrete and soil, as a first approximation these 
deformations can be described with an isotropic linear-elastic material model. 
From Fig. 6.6 it also becomes clear that contrary to the criteria of von Mises or Tresca, the 
addition of a hydrostatic stress 1 2 3� � �� � �� �  to a critical stress state has a significant 
impact. As can be expected the influence of hydrostatic compression is positive, however 
the resistance against hydrostatic tensile stresses is very limited. By means of a geometrical 

transformation, the yield criterion can be displayed in principal stresses. In Fig. 6.7a this 
transformation is carried out for 1 2 3� � �� � . This changes (6.13) into: 
 
 � � � �1 31 sin 1 sin 2 cosc� � � � �� � � �  (6.14) 
 
For the 3-dimensional stress state the yield condition becomes: 
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 (6.15) 

 
In space this is a irregular hexagonal pyramid with apex 1 2 3 cosc� � � �� � � . 
For the plane stress state with 2 0� �  criterion (6.15) changes into: 
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Fig. 6.7: Transformation of the Mohr-Coulomb yield criterion 
to principal stresses (� 1 > � 2 > � 3 ). 
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which is graphically displayed in Fig. 6.7b. For � = 0 the figure is identical to Fig. 6.2b, 
which is based on Tresca’s criterion. During the last few decades, several modifications on 
the Mohr-Coulomb criterion are proposed, for both concrete and soil. In concrete 
mechanics, frequently use is made of the Mohr-Coulomb criterion with a prescribed 
maximum tensile stress. So, except for the material parameters c and � also a maximum 
tensile strength f has to be introduced (see Fig. 6.7b). For principal stresses smaller than 
zero failure takes place through shear deformation (see Fig. 6.6), for principal stresses 
larger than zero failure takes place through crack formation perpendicular to the principal 
stress direction � 1. 
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7 Effects of normal forces on plastic frame behaviour 

7.1 The influence of the normal force on the fully plastic moment 

7.1.1 Introduction 

In chapter 2 the calculation of the plastic moment for pure bending was discussed. In this 
chapter it will be discussed, to what degree the magnitude of the moment Mp is changed, 
under influence of a normal force N acting on the same cross-section. Just as in chapter 2, 
the first focus will be on the rectangular cross-section. After that, other shapes of cross-
sections will be discussed. The assumptions made in chapter 2 are valid here as well. 
 
7.1.2 Rectangular cross-section 

Let us first reformulate the limit for the elastic stage (see Fig. 7.1): 
 

      p
N M
A W

�� �  

 
This relation can also be written as: 
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Fig. 7.1: Normal force and bending moment on rectangular cross section. 
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Relation (7.1) can be represented graphically by a yield contour as drawn in Fig. 7.2. 
After reaching the yield stress in the extreme fibre, the stress distribution across the cross-
section becomes elastic plastic (see Fig. 7.3). At the side where �  = �p the yielded area is 

expanding. When at the upper side the yield stress is reached too, also here the yielded area 
starts growing. The state of failure is reached, when all fibres are yielding.  
For the calculation of the moment and the normal force in the state of failure, it is handy to 
split the stress diagram of Fig. 7.3c into two parts, as indicated in Fig. 7.4. The stresses in 
the central part of the cross-section (with height d) are caused by the normal force only. 

The remaining stresses in the rest of the cross-section deliver a pure bending moment. The 
stresses are distributed in such a manner that the normal force is transmitted through fibres, 
which are situated around the neutral line, while the moment is provided by the most 
effective extreme fibres. For the calculation of M (Fig. 7.4e) the fictive model of Fig. 7.5 is 
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Fig. 7.3: Elastic, elastic-plastic and full-plastic state. 
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used. The limits of the plastic (N,M)-combinations can be calculated through N = bd�p and 
Np = bh�p. It then follows: 
 

 p
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Combination of (7.2) and (7.3) then leads to: 
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 (7.4) 

 

This relation forms the plastic yield contour, as displayed in Fig. 7.6. For comparison, the 
elastic contour according (7.1) is drawn inside. Because of the quadratic term (N/Np)2, 
small normal forces have only little impact on the fully plastic moment. 
 
7.1.3 Arbitrary double-symmetric cross-section 

Relation (7.1) derived in the previous section, being valid for the elastic area, is valid too 
for double symmetrical cross-sections (see Fig. 7.7). Similarly as for the rectangular cross-
section, the maximum combination of M and N in the state of failure can be derived from 
the full-plastic stress distribution (see Fig 7.8). It is assumed that all fibres are yielding 
either in tension or in compression. The central part with height d, which is assumed to 
carry the normal force N, has a cross-sectional area AN  and a plastic section factor WpN. For 
a certain value of the height d of the hatched central part in Fig. 7.8, the values of N and M 
follow from the following relations: 
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These two equations determine the plastic contour of the plastic area and obviously are 
independent from the geometry of the cross-section. The equations (7.5) can be rewritten 
as: 
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Consider as an example an I-section, subjected to bending about the strong axis (x-x axis). 
The influence of the rounding between flanges and body is neglected. So, the section is 
schematised as if it is composed out of rectangular bars. Two different cases may arise: 
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Fig. 7.8: Model for separation of the force and moment contribution. 

p�

p�

p�

p�� p��

N
A

M
W

p�

N 

M 
2
h

1

p

p p

N M
A W

N M
N M

�� �

�

� �

Fig. 7.7: Normal force and bending moment on double-symmetric cross section. 

2
h



 74

 
1. The normal force is smaller than the yield force of the web, so: N < �ptw(h � 2tf). In the 

state of collapse (full-plastic) the neutral line is situated in the body (Fig. 7.9). Through 
N = �ptwd1 and N = �pA it then can be found: 
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N t d
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�  (7.7) 

 
2. The normal force is larger than the yield force of the web, so �ptw(h � 2tf) < N < �pA. In 

the state of collapse, the neutral line is situated in the flange (Fig. 7.10). Then it holds 
(see Figs. 7.11 and 7.12): 
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For practical applications the above curves normally are approximated by a simple 
contour, composed out of two straight lines per quadrant (Fig. 7.13). The slanting line in 
the first quadrant is given by the relation: 
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The approximation is quite acceptable within the framework of structural design. 
 
7.2 The moment-curvature diagram in the presence of a normal force 

In this section it is discussed how the moment-curvature diagram is affected by a normal 
force N. The obtained diagrams often are indicated as M-N-� diagrams. These diagrams are 
used for example for the evaluation of the strength and deformation properties of columns 
subjected to bending and compression.   
 
7.2.1 Rectangular cross-sections 

As discussed in section 7.1.1, for increasing curvature the stress distribution passes the 
stages as indicated in Fig. 7.14 (compare with Fig. 7.3).   
 

For the elastic stage we have: 
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The end of the elastic range is reached if: 
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For the elastic-plastic stage two steps should be considered:  
 
1. Only the zone of compression is yielding (see Fig. 7.14): 
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Fig. 7.14: Normal compressive force and bending moment on rectangular cross section.
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where  y y h� � , 0 p� � �� � , p pN bh�� , 21

6e pM bh ��  and 2e p Eh� �� . 
From these equations the variables � �and y�  can be eliminated, leading to: 
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Equation (7.12) is valid as long as only one side of the section yields (case b1 in Fig. 7.14). 
At the moment the bottom side starts yielding then 0 1p� � � �� � � . Substitution of this 
value in (7.9) and (7.11) provides the following condition: 
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 (7.13) 

 
2. The zones of compression and tension are yielding (see Fig. 7.14): 
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where x x h� �  and y y h� � . 
From (7.14), (7.15) and (7.16) the variables x�  and y�  can be eliminated, leading to: 
 

 � �
� �

2

2

3 11
2 2

p
e e

M N N
M � �

� �� � �� �� �
 (7.17)  

 
As an illustration, the full M-N-� curves are presented in Fig. 7.15. The maximum value of 
M/Mp is obtained for infinitely large curvature. So, for e� � ��  from (7.17) it follows: 
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Compare this result with (7.4). 
 
7.2.2 I-shaped cross-sections 

Completely analogously as for the previously described rectangular cross-section, for I- 
sections similar relations can be derived between the moment and curvature in the presence 
of a normal force of magnitude pN N . In Fig. 7.16 an example is given. The point of 
contact of the elastic-plastic part of the curve and the elastic branch is determined by (7.1): 

1p eN N M M� � . For e� � �� , the curves approach the limit values for pM M , 
which follow from the interaction formulae (7.7) and (7.8) as derived in section 7.1.2. 
Rolling stresses r� affect the curves of the M-N-� diagrams. Naturally, the maximum value 
of pM M is not influenced by the rolling stresses.  

Fig. 7.15: Rectangular cross section. 

1.0 
 
0.8 
 
0.6 
 
0.4 
 
0.2 
 
0.0 

  
1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 1 2 3 4 5 6 7

p

M
M e

M
M

 
0.2 

0.4 

 
0.6 
 
 
0.8 
 
0.9 

0 
p

N
N

e

�

�

Eq. (7.17)

Eq. (7.12)
Eq. (7.13)

1.5 



 79

 
7.3 Reinforced concrete cross-section 

The reinforced concrete cross-section of Fig. 7.17 is considered. The beam has a width b, a 
height h and at the bottom side a reinforcement sA bh�� . Both steel and concrete are 
considered ideal elastic-plastic. The steel yields at +�p and ��p, the concrete has a 

compressive yield strength of �f and a tensile yield strength of zero. For the normal force N 
and the moment M the following definitions are used: 
 
 xxN dydz�� ��  (7.18) 

Fig. 7.16: I-shaped cross section. 
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Fig. 7.17: Data reinforced concrete cross-section. 
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 xxM z dydz�� ��  (7.19) 

 
The y-z coordinate system is indicated too in Fig. 7.17. The origin of the system coincides 
with the geometrical centre of gravity of the cross-section, so it does not coincide with the 
elastic centre of gravity, usually used in the theory of elasticity. It is noted that the choice 
of a coordinate system in principle is arbitrary. However, one should take care during the 
comparison of results, that for normal forces N � 0, the moment is depending on the origin 
of the coordinate system. 

In Fig. 7.18 a number of different cases of strain and stress distributions have been drawn. 
The first case will be worked out, with ��p > 0 (positive curvature) and 0 � x � h (the 
neutral line is inside the cross-section, x is the distance from the neutral line to the top side 
of the beam). For the derivations of the formulae, the concrete cover on the reinforcement 
is neglected. Therefore, it is assumed that the reinforcement coincides with the concrete 
fibre at the bottom. For the mentioned case the following formulae are valid: 
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For simplification of above relations it is defined: 
 

 
 

 
 

 
��p > 0 

 

 
��p < 0 

 
 

0 < � � 1 
 

 
 
 
 

 

 
� = 0 

 
 
 
 

 

 
� > 1 

 
 
 
 

 

 
� < 0 

 
 
 
 

 

 

p�� �

h�

p�

f�

p�� �

h�

f�

p��

p�� �

a�

f�

a�

p�� �

a�
a�

p�

p�� � p�� � f�

p��

p�

�p��� f�

p��

p��

Fig.7.18: The stress and strain distributions that can be distinguished; 
��p
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 p pN bh� ��  (7.22) 

 s pA
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where Np is the yield force carried by the steel and c is the material reinforcement ratio as 
introduced in section 2.3. Substitution of these relations into (7.20), leads in combination 
with As = �bh to: 
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Now, x can be eliminated from (7.21), which provides: 
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The full-plastic moment Mp of chapter 2 shows up again (see (2.19)), being the ultimate 
positive moment that can be carried for N = 0: 
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 (7.25) 

 
Finally, for M it now follows: 
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For the considered case (0 � x � h) the relation between the ultimate M and N is a top 
parabola as indicated in Fig. 7.19. For both ends of the curve it holds that M = 0.5hNp = 
0.5�bh2

�p = Mp / (2 – c). The maximum moment is reached halfway for: 
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The value of the maximum moment is: 
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 (7.27) 

 
For c = 0.1 the maximum moment equals 1.8Mp. The fact that the moment reaches it 
maximum value for x = h/2 can be concluded directly on bases of normality. The tangent to 
the yield contour at the position of the maximum moment is horizontal, and therefore the 
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deformation vector (��p,��p) has to point in vertical direction. This means that ��p = 0 and 
therefore x = h/2, as indicated in Fig. 7.19. 
 
The second branch of the yield contour can be obtained by taking x = h, which means that 
the fibre with � = 0 coincides exactly with the position of the reinforcement. The 
consequence of this is that the stress in the reinforcement is indeterminate and may vary 
between ��p and + �p. The equation for this case are thus given by: 
 
 aN bh bhf� �� �  (7.28) 

 21
2 aM bh� ��  (7.29) 

 
where ��p < �a < +�p. Elimination of the unknown steel stress �a leads to: 
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 (7.30) 

 
This straight branch is indicated too in Fig. 7.19. This exercise completes the yield contour 
for ��p > 0 and 0 � x � h. In Fig. 7.18 it easily can be seen that x > h and x < 0 do not 
deliver any additional points. Since for x < 0 the same points on the yield contour are found 
as for x = 0. The points on the yield contour for x > h directly follows from the yield 
contour for x = h by substitution of �a = �p in (7.28) and (7.29). For both ends of the yield 
contour the deformation vector (��p,��p) is indeterminate, which also follows from the 
indeterminate character of the slope of the respective strain diagrams in Fig. 7.18. 
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Fig. 7.19: Yield contour of a reinforced concrete cross-section 
with bottom reinforcement only. 
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Now, the derivation is continued for the case of a negative curvature. For 0 � x � h the 
normal force and moment are given by: 
 
 pN bh bhf� � �� � �  (7.31)  
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2 2 2pM bh h bhf h h� � � �
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Similarly to the derivation of (7.26), after elimination of � it follows: 
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For ��p < 0 and � = 0 it finally holds: 
 
 aN bh� �� �  (7.34) 

 1
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or: 
 

 1
2

M Nh�  (7.36) 

 
So, for ��p < 0 a dip parabola and a straight line through the origin results, which can be 
seen in Fig. 7.19. If topside reinforcement is present the yield contour becomes slightly 
different, as can be seen from Fig. 7.20. For equal top and bottom reinforcement the yield 
contour is symmetrical with respect to the line M = 0. However, with respect to the line N 
= 0 the yield contour remains asymmetrical, because of the different properties of concrete 
in compression and tension.  
 

Fig. 7.20: Yield contours of reinforced concrete cross-sections with: 
different top and bottom reinforcements; 
identical top and bottom reinforcements. 
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7.4 Yield function and normality 

The normality condition between loads and displacements of frames, as described in 
chapter 5, can also be demonstrated between the loads and deformations of a plastic hinge.  

Fig. 7.21 shows a rectangular cross-section, loaded by a moment M and a normal force N. 
The strain and stress distributions are shown too, together with the M-� diagram for given 
N (flat cross-sections remain flat). Starting from: 
 

 2 21 1
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For the yield function it can be derived: 
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where Mp = �pbh2/4 and Np = �pbh. 
 
The yield function is 2-dimensional and therefore it can be drawn as a yield contour (see 
Fig. 7.22). Because of symmetry only a quarter of the curve needs to be drawn (M, N > 0). 
The outward-pointing normal of the yield function can be obtained from the vector having 
the following components: 
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From the strain diagram of Fig. 7.21 it turns out that the deformation vector, determined by 
the curvature � and strain � = �y/2, coincides with the outward-pointing normal on the 
yield contour. This proves the normality between load and deformation. Also in this case, 
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Fig. 7.21: Rectangular cross-section loaded by moment and normal force.  
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it does not concern the absolute values of the plastic deformations but their relative 
increments (incremental deformations). For the case N = 0, the deformation vector is 
uniquely defined. This in contrast with the case M = 0, where the deformation vector can 
be obtained from a range of possibilities, bounded by the normal(s) on the yield contour(s) 
in that point (��/�M = � 1, ��/�N = h/2). For M > 0 and N < 0 the yield contour can be 
obtained by reflection of the curve in Fig. 7.22 with respect to the line N = 0.  
 
The normality condition can be extended to rotation and elongation in a plastic hinge. As 
mentioned before, the adoption of ideal-plastic material behaviour leads to the situation 
that plastic hinges are concentrated in one single cross-section. The beam parts rotate as 
rigid bodies about this cross-section. In Fig. 7.23 a plastic hinge has been drawn, which is 
subjected to both a moment M and a normal force N. During rotation M and N remain 
constant. 

For a given combination of M and N (situated on the yield contour), the energy dissipation 
Ed for a rotation � equals: 
 
 2dE M N y� �� �  (7.43) 
 
For given M, N (which fixes y too) and �, the dissipation Ed is constant, therefore: 
 
 2 0dM dN y� �� �  (7.44) 
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From which it immediately follows that the deformation vector, determined by the 
components: rotation 2� and elongation �y, is perpendicular to the yield surface. This 
result can be checked by using (7.41) and (7.42): 
 

 
2

dM y
dN N M
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� �
 (7.45)    

 
Equation (7.45) is identical to (7.44). 
 
From the preceding text, under the assumptions of “cross-sections remain flat” and ideal-
plastic material, it follows that the plastic deformations in a hinge can be described on 
basis of the normality condition. The normality property turns out to be important for 
problems, where the plastic strains in the plastic hinges play a role in the kinematical 
conditions. Some examples will be discussed. 
 
Example 1: Frame structure with linear yield contour. 
 
Consider a portal frame with two columns connected by hinges to the horizontal beam (see 
Fig. 7.24a). The cross-sections of the two columns are web-less I-sections, with a plastic 
M-N yield contour as displayed in Fig. 7.24a. The maximum allowable normal force is Np 
and the maximum allowable moment is Mp = Np h / 2. The frame is loaded by a horizontal 
force H and a vertical force V.  
 
Firstly, an upper-bound solution will be given. Three mechanisms can be distinguished 
(Fig. 724b): 
 
(1) A sway mechanism 

 
 2 2p pHa M H M a� �� � �  
    
(2) A compression mechanism 

 
 2p p pVe N e V N M h� � � �  
 
(3) A combination mechanism 

 
 � �pHa Ve M M Ne� � �� � � �  
 
For the evaluation of this mechanism use is made of the linear M-N interaction formula: 
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and the simple normality relation 1
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Substitution provides: 
 

 1 11
2 2p p

p

NHa hV M M N h
N

� � � � �
� �

� � � � �� �� �
� 	

 

 
Division by �  and making use of Mp = Np h / 2 leads to: 
 

 1 2
2 pHa hV M� �  

 
The three mechanisms are set out in Fig. 7.24c. It should be remarked that in practice 
normally a simpler procedure is followed: For each bar, the value of the normal failure 
force is estimated and on bases of that the full plastic moment determined. Then the failure 
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Fig. 7.24: Frame structure with linear yield contour. 
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load is calculated. If the outcome is not satisfactory, the normal forces may be adapted and 
the calculation repeated.    
 
Now, an elastic-plastic calculation is considered. A fixed ratio between H and V is chosen: 
 
 H a V h�  
 
It is assumed that initially the structure is stress-free and without any deformation. When 
the load is slowly increased, the structure in first instance responds elastically. In this 
elastic phase it holds: 
 
 H1 = transverse force in left column  =  H / 2 
 H2 =  transverse force in right column  =  H / 2 
 V = normal force in left column   
 
In the left column the yield contour is reached if: 
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M N

� �  

 
or if: 
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With 2 /p pN M h�  this condition becomes: 
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2 2p p
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For the external forces it then simply follows: 
 
 ; 2p p pH M a V M h N� � �  
 
In the right column: 
 

 10 1
2 2 2

p

p p

MHa
M M
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This column is not yielding yet. Fig. 7.24d shows which combinations of moment and 
normal force, are present in both columns. 
 
For h = Mp / a, the load carrying capacity of the system has not been reached yet. The right 
column still can sustain a larger moment and the left column a larger normal force. 
However, for the left column to carry a larger normal force it is required that the moment 
reduces. This is the elastic-plastic phase. 
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The external load increments �H1 and �V of the left column have to satisfy: 
 

 1 0
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H a V
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The increase of the transverse force �H2 in the right column leads to plasticity if: 
 

  2 1 10 1
2 2p
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Further it holds: 
 
 1 2H H H� � � � �  
 
This brings the number of equations to three for the four unknowns �H, �H1, �H2 and �V. 
Introduction of �V = a �H / h then leads to: 
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The total external load on the structure then equals: 
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For that situation the internal load in the left column is: 
 

 1 2;
3 3p pM M N N� �  

 
and in the right column it is found: 
 
 ; 0pM M N� �  
 
In Fig. 7.24d these M-N combinations are drawn on the yield contour for both columns. It 
can easily be confirmed that this load indeed lies on the failure line, which also was found 
by the upper-bound analysis. 
 
Example 2: Restrained beam, parabolic yield contour, geometrically non-linear 
 
Fig. 7.25a shows a beam, which is restrained at both sides in such a manner that horizontal 
displacements are impossible. The relation between the force F and the displacement w of 
the middle of the beam has to be determined. The material is rigid plastic and the yield 
contour is as given in Fig. 7.22 (rectangular cross-section). 
 
The problem is simple, as long as the analysis is geometrically linear. The beam does not 
deform until at F = 8Mp/l failure occurs; the downward displacement w is indeterminate for 



 90

the load (see Fig. 7.26). However, for large values of w the geometrical non-linear effects 
cannot be neglected anymore. Because the deflection w in combination with the given 
boundary conditions, cause the development of considerable plastic strains, generating 
normal forces. The way of how this happens including the influence of this on the total 
force transmission will be analysed below. 

On bases of the equilibrium equation, the normal force in the middle of the beam is equal 
to the normal forces at its restraints. If it is given that both middle and end cross-sections 
are yielding and the yield contour is symmetrical with respect to the N-axis, it can be 
concluded that the magnitudes of fixed-end and the field moments are equal. Finally, it can 
be shown (on basis of symmetry this is already very plausible, see Fig. 7.23) that the 
plastic elongation in the hinges at both fixed ends is equal to (�lp) and in the middle of the 
beam is twice that amount (2�lp). Using these assumptions, the equations will be 
composed, which are necessary for the solution of the problem. 
 
1. Kinematical equations 
Between the plastic angular displacement �p and the downward displacement w the 
following relation exists: 
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l

� �  (7.46) 

 
The proposition of Pythagoras is used for the determination of the relation between the 
plastic elongation �lp and the downward displacement w: 
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Neglecting the quadratic terms in �lp leads to: 
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2. Constitutive equations 
The first constitutive equation is the yield condition. For the hinge in the field, it reads: 
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The second constitutive equation follows from the normality condition (compare with 
(5.16)): 
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Both equations are set up for infinitesimal increments. This is necessary because in this 
case, �p and �lp are continuously changing and normality only holds for displacement 
increments. Elimination of the unknown scale factor � leads to: 
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Through Mp / Np = h / 4 (rectangular cross-section), it finally follows: 
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 (7.48) 

 
Note that the normality condition is not formulated in curvatures and strains, but in angular 
displacements and elongations. The reason is that it is useless to talk about strains and 
curvatures in relation to plastic hinges, because these quantities are infinite over an 
infinitesimal small length. 
 
 
3. Equilibrium equation 
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The equilibrium equation reads (see Fig. 7.25b): 
 

 8 4M NwF
l l

� �  (7.49) 

 
The first term is the geometrical linear bending contribution and the second term is the 
non-linear membrane action. 
 
With the relations (7.46) up to (7.49) the considered problem is completely described. As 
first step in the solution procedure, the normality equation given by (7.48) is worked out 
further, by making use of the kinematical relations (7.46) and (7.47). 
On basis of (7.46) it holds: 
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On basis of (7.47) it holds: 
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Substitution into (7.48) provides: 
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 (7.50) 

 
The normal force appears to be proportional to the deflection. Naturally, the magnitude of 
N cannot exceed Np. This means that the formula above is valid only for 0 � w � h. 
Now N is known as a function of w, the moment M can be determined too. Substitution of 
(7.50) into the yield condition (7.40) leads to: 
 

 
2

1
p

M w
M h

� �� � � �� �
 (7.51) 

 
Combination of (7.50) and (7.51) with the equilibrium equation (7.49) provides the desired 
relation between F and w: 
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Through Mp / Np = h / 4 it finally follows: 
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This relation is drawn in Fig. 7.27. Due to non-linear effects, the load carrying capacity for 
w = h twice as big as for w = 0. So, during deformation, the force distribution is transferred 
from pure bending action (M = Mp, N = 0) into pure membrane action (M = 0, N = Np). 

For w > h the beam keeps taking up the load completely through membrane action. From 
(7.49) the relation between F and w can be derived to be: 
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0 ;p pN w N w
F w h

l l
� 
 � �  (7.53) 

 
This part of the load-displacement diagram is displayed in Fig. 7.27 too. The load carrying 
capacity of the beam seems to become infinite for infinite displacements. Naturally, this is 
not correct. In practice, the deformation capacity of the beam is already exceeded for 
several times the elementary failure load, which means that fracture will occur. 
 
Example 3: Restrained reinforced concrete beam, geometrically non-linear 
 
Consider the restrained concrete beam of Fig. 7.28a. In the middle cross-section only 
bottom reinforcement is present, and at the fixed ends only top reinforcement of the same 
amount. Therefore, for the middle cross-section the upper part of the yield contour of Fig. 
7.19 is valid. The yield contour for the fixed ends can be found by reflection of the contour 
about the N-axis. 
 
It is started with a geometrically linear consideration, as done for the previous problem. It 
seems to be obvious that the elementary failure load Fp, just as for the homogeneous beam 
is given by 8Mp/l. However, for reinforced concrete beams this is not correct. Therefore, 
the yield contour for the middle cross-section is considered. At the point N = 0, M = Mp, 
the deformation vector {d�lp,d�p} has a horizontal component, which indicates a plastic 
elongation of the central fibre. Similarly it holds that for N = 0, M = �Mp the central fibres 
of the fixed ends are changing length too. Because of the support conditions, the total 
length of the beam remains constant (no mechanism has developed yet). Therefore, for a 
kinematical admissible displacement field, it is required that the sum of the plastic 
elongations in the middle and the ends of the beam is equal to zero. In this symmetrical  

geometrical linear 

geometrical non-linear 
 F 
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 B 

16 4p pM N h
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�8 pM
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Fig. 7.27: Force-deflection curve for both geometrical linear and non-linear cases. 
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Fig. 7.28: Analysis of reinforced concrete beam. 
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case, this only can be achieved by making all separate elongations equal to zero. Thus,the 
deformation vector {d�lp,d�p}has to be vertical. Therefore, the moments have to be 
maximal and the failure load is given by: 
 

 max
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 (7.54) 

 
The difference with the elementary failure load 8Mp/l, is originating from so-called 
retaining forces and is called the dome effect. Fig. 7.28c gives a geometric interpretation of 
this effect. For the stress distribution with N = 0 and M = Mp, the position of the neutral 
line in the beam middle is high and at the ends it is low. These stress zeros, also form the 
hinges of the mechanism. The Figure shows that during movement as a mechanism a 
normal force is created, which contradicts the assumption that N = 0. Therefore, a 
mechanism is possible only if all three hinges are situated at the same height, which in this 
case because of symmetry is in the geometric centre of gravity of the beam (� = ½, Fig. 
7.28c).   
 
Now, the geometrical non-linear problem will be worked out. The kinematical relations 
and equilibrium equation remain the same as for the homogeneous beam. Naturally, the 
constitutive equations will change. The yield condition becomes: 
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For the normality condition it follows: 
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Combination provides: 
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 (7.56) 

 
The derivation is similar to that of the homogeneous beam as discussed in one of the 
foregoing sections. It still holds that d(�lp)/d�p = w/2, changing (7.56) into: 
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The moment M can be obtained after substitution into the yield criterion: 
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From equilibrium it then follows: 
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With Mp = hNp(1 � c/2) (see (7.25)) this relation can be rewritten in a more organised way: 
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 (7.57) 

 
Again, the relation between F and w is a parabola. The first term corresponds with the 
previously found dome effect from the geometrical linear calculation. The second term 
reduces F already for small values of w. This is the price that has to be paid for the large 
compressive force that actually creates the dome effect. The last term is quadratic in w and 
reflects the decrease of the normal force because of the bending deflection. With that, the 
F-w curve first reaches a minimum (see Fig. 7.28d), and then starts to rise as soon as the 
normal force becomes positive. The position of the minimum coincides with N = 0 and 
therefore exactly coincides with the elementary failure load 8Mp/l. Formula (7.57) is valid 
up to w = h. At that deflection it holds N = Np and the point of the yield contour is reached. 
For w > h the stress distribution remains the same. Therefore, it holds: 
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Substitution in the equilibrium equation (7.49) in combination with (7.25) yields: 
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 (7.58) 

 
Just as for the homogeneous beam, this is a straight branch. However, the difference is that 
M � 0, which means that the line does not pass through the origin. Therefore, even for 
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large deflections a contribution by bending remains present and the displacement curve 
does not degenerate into a pure catenary curve. 
 
Summarising: 
�� For w = 0 the stress distribution in the cross-sections(s) corresponds to point 1 on the 

yield contour(s) (N < 0);  
�� For 0 < w/h � 1-2c under increasing deflection, the stress distribution in the cross-

section(s) shifts on the yield contour(s) from point 1 to point 2 (N = 0); 
�� For 1-2c < w/h � 1 under increasing deflection, the stress distribution in the cross-

section(s) shifts on the yield contour(s) from point 2 to point 3 (N = Np); 
�� For w/h >1 under increasing deflection, the stress distribution in the cross-section(s) 

remains fixed at point 3 of the yield contour(s). 
 
Finally, in Fig. 7.28d the elastic-plastic curve of F versus w/h is sketched too. It can be 
concluded that in that case the dome effect is less pronounced: only for sufficiently stiff 
constructions the dome effect can really be important, which is also confirmed by 
experiments. Anyway, in the design practice the dome effect is not taken into account.  
On the other hand, the increase of the load carrying capacity through membrane action is 
of great importance in case a concrete structure is exposed to fire. 
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8 The effect of shear forces on plastic frame behaviour 

8.1 Steel cross-sections 

Usually a plastic hinge has to transmit a transverse force too. This means that in the cross-
section, in addition to normal stresses shear stresses are present. According to the lower-
bound theorem the calculation then can be based on the following basic assumption: 
 
“When in a cross-section in addition to normal stresses � shear stresses � are present, then 
these stresses can be distributed across the section in the most favourable manner.” 
 
At those positions where both normal and shear stresses are present, the yield criterion of 
von Mises has to be satisfied: 
 
 2 2 23p x y x y� � � � � �� � � �  (8.1) 
 
On basis of this relation the ultimate value of the shear stress � in the absence of normal 
stresses becomes: 
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It is called to mind, that shear stresses are linked to the difference (��/�x)dx between the 
normal stresses in one fibre at both sides of a considered cross-sectional slice of the beam 
having thickness dx (see Fig. 8.1). When at both sides the yield stress �p is present, there is 
no difference in normal stress, which means that the shear stress is zero (see Fig. 8.2). 

Therefore, shear stresses generated by the transverse force are present only in the part of 
the cross-section around the neutral line, which is the area where the bending stresses have 
not yet reached the value of �p.  
 
8.1.1 Rectangular cross-sections 
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          Fig. 8.1: Bending and shear                             Fig. 8.2: Bending and shear  
                         elastic stage.                                                     elastic-plastic stage. 
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A cantilever beam is considered with a rectangular cross-section. The beam is loaded by a 
point load at the free end (Fig. 8.3). As discussed above, the stress distribution in the 
elastic part of the beam easily can be obtained from equilibrium. The normal stresses vary 
linearly across the height of the beam, the shear stresses are parabolic. It also was 

mentioned that, as soon as the extreme fibres start yielding due to bending action, the shear 
stresses will be concentrated in the centre of the beam around the neutral line where the 
normal stress distribution is still linear. The height of this area is indicated by s. The 
distribution of the shear stresses remains parabolic. If the height s becomes small enough, 
the maximum value of the shear stress reaches the yield shear stress. The magnitude of s 
for which this happens equals: 
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where T is the transverse force in the beam, which is equal to F in this case. In the beam of 
Fig. 8.3 it is assumed that this state occurs in section B1B2. At the left side of section B1B2 
the shear yield area is spreading out. The state of failure is attained when this shear yield-
area reaches the bending-yield area. In Fig. 8.3, this is the case in section C1C2. It does not 
turn out to be easy to find the correct stress distribution in this cross-section. A very simple 
and most obvious assumption is a distribution of rectangular stress fields, as indicated in 
Fig. 8.4a. For this stress distribution the interaction formula for T and M are derived.   
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Fig. 8.3: Elastic-plastic stress distribution in a rectangular beam. 
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combination of (a) and (b) delivers: 
 

Fig. 8.4: Three possible stress distributions in the end-cross-section. 
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It is interesting to investigate what interaction formula is obtained for the stress distribution 
present in section B1B2 of Fig. 8.3 (also see Fig. 8.4b): 
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combination of (c) and (d) delivers: 
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It is remarkable that (8.2) provides larger values than (8.3). 
 
A third possibility is to distribute the shear stress uniformly across the entire cross-section 
(computational model of Heyman and Dutton, see Fig. 8.4c). Doing so, the normal stresses 
are lowered to a reduced yield stress �ps, which follows from the applied yield criterion: 
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On basis of this stress distribution, it is quite simple to derive: 
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Combination of (e) and (f) gives: 
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Anyway, the “lower-bound solutions” provided by (8.2) up to (8.4) are no real lower-
bound solutions. For this solution it is required that, the equilibrium is investigated of the 
2-dimensional stress state in the rectangle A1C1C2A2 (see Fig. 8.3). This exercise has been 
done by Drucker, who found the following result: 
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 (8.5) 

 

In Fig. 8.5 the interaction formulae are displayed in graphical form. It can be observed that 
(8.2) and (8.3) are good lower bounds. However, solution (8.4) is too optimistic for large 
values of T. 
 
Example: Simply supported beam with point load in the middle 
 
This example is an illustration of the importance of the reduction of the full-plastic 
moment by a transverse force. Fig. 8.6 shows a statically determined beam with 
rectangular cross-section, loaded by a point load in the middle of the beam. The transverse 
force is equal to: 
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Fig. 8.5: Various results for bending shear interaction for rectangular beams. 
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Through Mp = �pbh2/4 and Tp =  �pbh/�3 it follows: 
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Combination with (8.3) provides: 
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It can be concluded that only for very short high beams (h = l/2) the influence of the shear 
force becomes significant. 
 
8.1.2 I-sections 

For I-sections (see Fig. 8.7), it is assumed that the transverse force is carried by the web. 
For simplicity, a uniform shear stress distribution is adopted, comparable with the model of 
Heyman and Dutton (Fig. 8.4c). For calculation of the moment in the web the reduced 
yield stress �ps has to be applied (because of the shear stress) and in the flanges, the yield 
stress �p. It follows: 
 

 F 

 F/2  F/2 

 b 

 l 

 h 

Fig.8.6: Simply supported beam with point load in the middle. 
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Combination of (a), (b) and (c) yields: 
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 (8.6) 

 
Fig. 8.8 show the range of all interaction curves obtained by (8.6), for the broad-flanged 
HE series and IPE series, respectively. For comparison, the interaction curve for 
rectangular cross-sections according (8.4) can be found as well. For I-beams, the reduction 
is even less then for rectangular cross sections. 
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8.2 Reinforced concrete cross-sections 

8.2.1 Introduction 

As mentioned in section 8.1, the influence of the transverse force on the ultimate load 
carrying capacity is quite limited. However, for concrete beams this may be quite different. 
This is caused by the low tensile strength of concrete, as a result of which the carrying of 
shear stresses quickly becomes a problem. Therefore, the transverse force indeed is 
important for concrete structures. The first extra possibility to transmit a transverse force is 
through the dome effect. Use is made of the fact that normally the load is applied on the 
top of the beam, while the supports are situated at the bottom. It is only effective for short 
high beams. If the dome effect is not sufficient, reinforcement to take up the transverse 
force has to be applied. This can be done by bended bars, but normally stirrups are used.     

In these lecture notes, the analysis of the transverse bearing capacity by the dome effect 
and stirrups is based on a material model for concrete without any tensile strength and 
compressive strength fc (Fig. 8.9). This means that in practice the bearing capacity 
generally will be higher. 
 

Fig. 8.8: Bending-shear interaction for HE and IPE sections.. 
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Fig. 8.9: Material model for concrete without tensile strength. 
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8.2.2 Yield lines 

To gain understanding in the transverse bearing capacity of concrete beams, just like for 
steel structures upper- and lower-bound calculations are utilised. For the upper-bound 
calculation, yield lines are used. A yield line is a material zone with length L, small 
thickness � and a width b equal to the width of the beam, in which plastic deformations 
occur (see Fig. 8.10). The thickness � only has been introduced for convenience. Actually, 
just like the plastic hinge, the yield line is not expected to have a thickness. The material at 
both sided of the yield line is considered to behave elastic or rigid, which means all plastic 
deformations are concentrated in the yield line. 
A right-handed rectangular coordinate system is attached to the yield line, with axes s 

(longitudinally) and t (transversely). It is assumed that the beam parts at both sides of the 
yield line experience a mutual displacement. Suppose the left part of the beam is fixed and 
the right part displaces over a distance u. For the yield line this means that the left edge is 
fixed too and the right edge displaces over the same distance u (see Fig. 8.10). 
 
Given the displacement u under an angle � with the normal on the yield line, the 
deformations in the yield line can be determined to be: 
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 (8.7)

  

Fig. 8.10: Deformation of a yield line. 
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These are the longitudinal, transverse and shear strains, respectively. For calculation of the 
energy dissipation in the yield line, it is handy to know the principal strains: 
 

 
� �

� �

1 1 1cos cos 1
2 2 2
1 1 1cos cos 1
2 2 2

I

II

u u u

u u u

� � �

� � �

� � � �
� � �

� � � �
� � �

 (8.8) 

 
where the principal direction � is equal to half of � (see Fig. 8.10): 
 

 1Principal direction:
2

� ��  (8.9) 

 
The internal work done over the length L is then given by: 
 
 � �i I I II IIA Lb� � � �� � �  (8.10) 
 
Mohr’s circle shows that one of the two principal strains is always negative. Because the 
tensile strength of concrete was set to zero, this means that only the principal compressive 
stress � II delivers a contribution to the internal work. Therefore, relation (8.10) reduces to: 
 
 i II IIA Lb� �� �  
 
Substitution of � II = �fc and �II given by (8.8) delivers: 
 

 � �� � � �
1 11 cos 1 cos
2 2i c c

uA f Lb f u L� �� � � � � �
�

 (8.11) 

 
This determines the expression for the energy dissipation of a yield line, which can be used 
in an upper-bound calculation. Note that the arbitrarily chosen thickness � of the yield line 
does not play any role in the final formula. 
 
It should be remarked that there are two types of yield lines: lines with increasing � and 
lines with decreasing �. In the first case (see Fig. 8.10) � is smaller than 900 and the largest 
principal strain lies more or less in the direction of the normal on the yield line. The 
upsetting direction is than more or less along the yield line. For the second type, � is larger 
than 900, the upsetting direction for which coincides more or less with the normal on the 
yield line. 
 
Example 
 
Consider the cantilever beam of Fig. 8.11. The free end of the beam is loaded by a 
uniformly distributed compressive load � c. A yield line is considered under an arbitrarily 
chosen angel �. If again a displacement u is assumed under an angle � with the yield line, 
equating the internal work to the external work of the load � c delivers: 
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1 1 cossin 1 cos sin
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The lowest load follows from minimisation with respect to the angle �. 
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It follows: 
 

 
2
�

� � � �� � � �  

 
For the lowest load, the angle � has to be twice the angle of the yield line. Substitution of 
this result in the relation for � c delivers: 
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1 1 2sin 21 cos
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In fact, the choice of � and � is not important, since the load carrying capacity is always the 
same. The only important fact is that � is equal to 2�.  
Two special cases will be considered, a perpendicular yield line and one under an angle of 
450 (see Fig. 8.12). In the table below, the results are summarised. 
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Fig. 8.11: Beam under compression. 
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The principal strains are different, but the stresses for both cases are identical. One 
principal stress is always horizontal and equal to �fc, while the other is vertical and equal to 
zero. 
  
8.2.3 Beam with stirrup reinforcement / upper-bound calculation 

Consider a beam loaded by a transverse force and a moment (see Fig. 8.13). The beam has 
both stirrup and bottom reinforcement. It is assumed that the concrete cannot sustain 
tensile loads. The used nomenclature is: 
 
 V =  transverse force 
 M = bending moment 
 H = lever, effective beam height 
 B = beam width 
 ds = stirrup distance 
 a = distance point load to support 
 fc = compressive strength concrete 
 fy = yield strength steel of reinforcements 
 � s = tensile stress in stirrups 
 � 0 = tensile stress in bottom reinforcement 
 As = total stirrup area 
 A0 = total area bottom reinforcement 
 
The considered mechanism is displayed in Fig. 8.13 as well. The part at the right side of 
the yield line experiences a downward displacement u. It is assumed that both the stirrup 
reinforcement and the concrete are yielding; the bottom reinforcement is not yielding. The 
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Fig. 8.12: Yield lines under different angles. 
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work performed by the external load equals V�u. The internal work consists out of two 
parts, being contribution of the yield line (as discussed in 8.2.2) and the contribution of the 
stirrups in the yield line. Equating the internal to the external work yields: 
 

 � �� � � �
1 sin 1 cos cot
2 c s y sb f u h A f u h d V u� � �� � �  (8.12) 

 
where relation (8.11) has been used with L = h �sin� and � = �. For the transverse failure 
force, it then follows: 
 

 1 1cot cot
2 siny cV s bh f bh� �

�

� �
� � �� �

� 	
  (8.13) 

 
The effective yield stress in the steel has been introduced defined by sy = Asfy �bds. Division 
by fcbh provides:  
 

 � �� �21 1 cot 1 2 cot
2c

v
f
�

� �� � � � � �  (8.14) 

 
where: 
 

 V
bh

� �  (average shear stress) (8.15) 

Fig. 8.13: Beam with stirrup reinforcement / upper-bound calculation.  
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 y s y

c s c

s A f
f bd f

� � �  (material reinforcement fraction for the stirrups) (8.16) 

 
The lowest upper-bound solution can be found by optimising the angle of the yield line. 
Through �
��� = 0 and some arithmetic manipulations it is found: 
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 (8.17) 

 
Substitution into (8.14) delivers: 
 

 � �1
c

v
f
�

� �� � �  (8.18) 

 
This is half a circle as shown in Fig. 8.13c. For 	 = 0 (no stirrup reinforcement) the load 
carrying capacity is zero. When stirrup reinforcement is added, the load carrying capacity 
increases rapidly. For 	 > 0.5, the load carrying capacity seems to reduce. This is not 
correct of course. In this area, the amount of steel is so large that no yielding of the steel 
occurs. The model does not account for this phenomenon correctly (cot�  becomes smaller 
than 0 and � larger than 900). Naturally, for larger stirrup reinforcement, the load carrying 
capacity 
�fc remains at a constant value equal to 0.5. 
 
For very low values of 	 the formula is not completely correct as well. Then the 
inclination of the yield line decreases. A physical constraint occurs for cot� = a�h. When 
this value is substituted instead of (8.17), the failure load becomes: 
 

 � �
21 11 1 2

2 2c

a av
f h h
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 (8.19) 

 
with 	 = 0, it then follows: 
 

  
21 1 11

2 2 4c

a a av
f h h h
� � �

� � � � 
� �
� 	

 (8.20) 

 
So, for 	 = 0, the load carrying capacity is not equal to zero. Anyway, for slender beams 
the load carrying capacity is small. For example for a�h = 0.25 it holds that v = 0.06, 
compared with v = 0.5 for 	 = 0.5 this is small of course.  
 
The phenomenon that a high beam still has load carrying capacity, which is possible 
because the angle of the yield line is limited, is called “dome action”. During the 
discussion of the lower-bound solution, this phenomenon will be considered again. 
 
Finally, the equation is also useful for finding approximations of v for concrete without 
reinforcement. The value of 
 is about 0.4 times the tensile strength, which in its turn is 5 
to 10 percent of the compressive strength. This leads to values of v ranging from 0.02 to 
0.04.     
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8.2.4 Beam with stirrup reinforcement / lower-bound calculation 

The lower-bound calculation is based on an equilibrium system, which is based on (see 
Fig. 8.14): 
 

- a vertical distributed vertical tensile stress s due to the stirrups; 
- a unidirectional stress �c in the concrete under an angle � (compression diagonals); 
- a stress in the bottom reinforcement equal to � 0.  
 
The angle � is a degree of freedom that can be optimised. In terms of � xx, � yy and � xy the 
stresses can be summarized as follows: 
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 (8.21) 

 
The equilibrium relations between these stresses and the transverse force V and bending 
moment M are given by: 
 
 sin cosxy xy cV dA bh bh� � � � �� � ��  (8.22) 
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Fig. 8.14: Beam with stirrup reinforcement / lower-bound calculation. 
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The last equation provides the moment equilibrium about the upper fibre. Further, it 
follows from � yy = 0 that: 
 
 2sincs � ��  (8.24) 
 
The yield conditions are respectively: 
 

 0; ;s y
c c y y

s

A f
f s s f

bd
� �� � � �  (8.25) 

 
Assuming the bottom reinforcement is over dimensioned so that only the concrete and 
stirrups are yielding, it holds: 
 
 ;c c yf s s� � �  (8.26) 
 
In that case, it follows:    
 
 2siny cs f ��  (8.27) 

 � �cos sinb y c yV bhf bh s f s� �� � �  (8.28) 
 
Division by bhfb provides: 
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Comparison with (8.18) shows that for both the lower- and upper-bound calculation the 
same result is found. This means that an exact solution has been found, however within the 
limitations of the model. Particularly, the details of the force entry around the load and 
supports have not been considered. 
 
It is also interesting to look into the found angles for the compression diagonals of the 
lower-bound solution and the yield lines of the upper-bound solution. For the lower-bound 
solution it has been found that the optimum value of � corresponds with sin2

� = 	, or 
expressed in the cotangent: 
 

 1cot �
�

�

�

�  (8.30)  

 
For the optimum slope of the yield line it was found: 
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Through the formula for the double angle, it can be derived: 
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From Fig. 8.14b it is clear that this is exactly in agreement with the theory of section 8.2.3, 
where it has been shown that the angle � of the principal stress equals half the angle � 
between the yield line and the direction of the relative displacement between the beam 
parts.  
 
Naturally for completeness, the bottom reinforcement has to be checked as well. The 
following equation has to be satisfied: 
 
 0

1 cot
2y

MA f V
h

�� �  (8.33) 

 
To investigate the effect of dome action for the lower-bound calculation, in first instance a 
beam is considered without stirrup reinforcement (see Fig. 8.14c). In addition, it is 
assumed that sufficient bottom reinforcement is present. The compressive force in the 
slanting compression diagonal under an angle � equals: 
 
 cN t b f�  (8.34) 
 
where t is the thickness of the imaginary compression bar. This thickness will be 
determined later. The transverse force V is equal to the vertical component of N, i.e: 
 
 sinV N ��  (8.35) 
 
The following geometrical relations are important: 
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Substitution of t in N and subsequently of N in V leads to: 
 

 tansin
cosc

h aV bf �
�

�

�

�  (8.37) 

 
Division by bhfc yields: 
 

  tan 1 tan
c

V av
bh f h

� �
� �� � �� �
� �

 (8.38) 

 
The thickness t still has to be optimised. Of course, it is much handier to optimise the value 
of tan�. This delivers tan� = h � 2a. The lower-bound value for V then becomes: 
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 (8.39) 

 
This result is almost identical to the upper-bound solution without stirrup reinforcement 
(see (8.20). For this case, it also holds that no attention has been paid to the details of the 
force entry and the location of the reinforcements. Therefore, it is out of the question that 
the real lower-bound solution has been found. Experiments show that the above-derived 
results in most cases are 20 to 30 percent too high, in spite of the fact that zero tensile 
strength for concrete was assumed. For finding more realistic failure loads, it is better to 
generate so-called “strut and tie” solutions. Fig. 8.15 shows some examples. Naturally, 
these calculations are also subjected to several model inaccuracies. Of course, concrete is 
no plastic material, but a material subjected to cracking, displaying a complicated post-

Fig. 8.15: Strut and tie solutions. 
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cracking behaviour. In addition, the interaction between concrete and steel is very 
complicated. A sound analysis can only be made by heavy non-linear computer 
programmes. Even then, in numerous cases the results do not show the desired agreement 
with experimental tests. For the daily practice, these computer programmes are not 
suitable. In most cases, the design practice relies on the design formulae given in the 
standardisation codes, which often have a strong empirical character. 
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